1
|
Abdelrahman RS, Abdelaziz RR, Abdelmageed ME. Montelukast alleviates thioacetamide-induced hepatic encephalopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04291-9. [PMID: 40411618 DOI: 10.1007/s00210-025-04291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Hepatic encephalopathy (HE) is a serious neuropsychiatric dysfunction associated with acute and chronic liver disease. Montelukast (Mon) is a cysteinyl leukotriene receptor 1 (CysLT1R) antagonist approved as adjuvant therapy for asthma. The antioxidant and anti-inflammatory effects of montelukast have been reported in previous studies. To the best of our knowledge, Mon therapeutics' efficacy against thioacetamide-induced HE has not been investigated. This study aims to detect the protective effects of Mon (5 and 10 mg/kg, orally for seven consecutive days) on TAA (200 mg/kg, i.p., at three alternative days) induced HE in rats and to demonstrate its hepato/neuroprotective effects mechanisms. Results showed that Mon significantly improved hepatic and brain function, suppressed the release of inflammatory factors (brain and liver levels of NF-κB and TNF-α), and reduced oxidative stress (MDA and NO levels in both the brain and liver). Moreover, Mon activated PI3K/Akt expression in the brain and suppressed TAA-induced brain caspase-3 expression. Finally, TAA-induced histopathological changes in brain and liver sections were markedly normalized by Mon. Mon shows promise as a therapeutic agent in experimental HE models, and its mechanism of action involves the upregulation of PI3K/Akt expression, thereby inhibiting the expression of caspase-3 and the activity of TNF-α and NF-κB.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, 41477, Al-Madina Al-Munawwarah, Saudi Arabia
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Khan MS, Qureshi N, Khan R, Son YO, Maqbool T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects. Front Cell Neurosci 2025; 19:1578138. [PMID: 40260080 PMCID: PMC12009953 DOI: 10.3389/fncel.2025.1578138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic and biomedical research in recent years. It enables editing and modulation of gene function with an unparalleled precision and effectiveness. Among the various applications and prospects of this technology, the opportunities it offers in unraveling the molecular underpinnings of a myriad of central nervous system diseases, including neurodegenerative disorders, psychiatric conditions, and developmental abnormalities, are unprecedented. In this review, we highlight the applications of CRISPR/Cas9-based therapeutics as a promising strategy for management of Alzheimer's disease and transformative impact of this technology on AD research. Further, we emphasize the role of CRISPR/Cas9 in generating accurate AD models for identification of novel therapeutic targets, besides the role of CRISPR-based therapies aimed at correcting AD-associated mutations and modulating the neurodegenerative processes. Furthermore, various delivery systems are reviewed and potential of the non-viral nanotechnology-based carriers for overcoming the critical limitations of effective delivery systems for CRISPR/Cas9 is discussed. Overall, this review highlights the promise and prospects of CRISPR/Cas9 technology for unraveling the intricate molecular processes underlying the development of AD, discusses its limitations, ethical concerns and several challenges including efficient delivery across the BBB, ensuring specificity, avoiding off-target effects. This article can be helpful in better understanding the applications of CRISPR/Cas9 based therapeutic approaches and the way forward utilizing enormous potential of this technology in targeted, gene-specific treatments that could change the trajectory of this debilitating and incurable illness.
Collapse
Affiliation(s)
- Mohamad Sultan Khan
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Nousheen Qureshi
- Department of Higher Education, Government of Jammu and Kashmir, Srinagar, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Pietrantonio F, Serreqi A, Zerbe H, Svenningsson P, Aigner L. The leukotriene receptor antagonist montelukast as a potential therapeutic adjuvant in multiple sclerosis - a review. Front Pharmacol 2024; 15:1450493. [PMID: 39346564 PMCID: PMC11427386 DOI: 10.3389/fphar.2024.1450493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.
Collapse
Affiliation(s)
| | | | | | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Sood R, Anoopkumar-Dukie S, Rudrawar S, Hall S. Neuromodulatory effects of leukotriene receptor antagonists: A comprehensive review. Eur J Pharmacol 2024; 978:176755. [PMID: 38909933 DOI: 10.1016/j.ejphar.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Cysteinyl leukotrienes (CysLTs) are central to the pathophysiology of asthma and various inflammatory disorders. Leukotriene receptor antagonists (LTRAs) effectively treat respiratory conditions by targeting cysteinyl leukotriene receptors, CysLT1 and CysLT2 subtypes. This review explores the multifaceted effects of LTs, extending beyond bronchoconstriction. CysLT receptors are not only present in the respiratory system but are also crucial in neuronal signaling pathways. LTRAs modulate these receptors, influencing downstream signaling, calcium levels, inflammation, and oxidative stress (OS) within neurons hinting at broader implications. Recent studies identify novel molecular targets, sparking interest in repurposing LTRAs for therapeutic use. Clinical trials are investigating their potential in neuroinflammation control, particularly in Alzheimer's disease (AD) and Parkinson's diseases (PD). However, montelukast, a long-standing LTRA since 1998, raises concerns due to neuropsychiatric adverse drug reactions (ADRs). Despite widespread use, understanding montelukast's metabolism and underlying ADR mechanisms remains limited. This review comprehensively examines LTRAs' diverse biological effects, emphasizing non-bronchoconstrictive activities. It also analyses plausible mechanisms behind LTRAs' neuronal effects, offering insights into their potential as neurodegenerative disease modulators. The aim is to inform clinicians, researchers, and pharmaceutical developers about LTRAs' expanding roles, particularly in neuroinflammation control and their promising repurposing for neurodegenerative disease management.
Collapse
Affiliation(s)
- Radhika Sood
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Queensland, 4222, Australia
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
6
|
Chen Y, Zhang M, Li W, Wang X, Chen X, Wu Y, Zhang H, Yang L, Han B, Tang J. Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis. Front Chem 2023; 11:1250043. [PMID: 37744058 PMCID: PMC10514366 DOI: 10.3389/fchem.2023.1250043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.
Collapse
Affiliation(s)
- Yulong Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinfa Tang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Xie X. GPCRs in Oligodendrocyte Differentiation and Myelin Regeneration. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Xie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, 189 Guo Shou Jing Rd, 201203, Shanghai, China
| |
Collapse
|
8
|
Liu X, Tang SS, Liu SM, Zeng J, Chen ZG, Liu CH, Mu RH, Yuan DH, Zhao JJ, Hong H, Wang H. Deficiency of astrocyte CysLT1R ameliorates depression-like behaviors in mice by modulating glutamate synaptic transmission. Neurobiol Dis 2022; 175:105922. [DOI: 10.1016/j.nbd.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
|
9
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
10
|
Montelukast, an Antagonist of Cysteinyl Leukotriene Signaling, Impairs Burn Wound Healing. Plast Reconstr Surg 2022; 150:92e-104e. [PMID: 35536768 DOI: 10.1097/prs.0000000000009228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Burns are severe injuries often associated with impaired wound healing. Impaired healing is caused by multiple factors, including dysregulated inflammatory responses at the wound site. Interestingly, montelukast, an antagonist for cysteinyl leukotrienes and U.S. Food and Drug Administration approved for treatment of asthma and allergy, was previously shown to enhance healing in excision wounds and to modulate local inflammation. METHODS In this study, the authors examined the effect of montelukast on wound healing in a mouse model of scald burn injury. Burn wound tissues isolated from montelukast- and vehicle-treated mice at various times after burn injury were analyzed for wound areas ( n = 34 to 36), reepithelialization ( n = 14), inflammation ( n = 8 to 9), and immune cell infiltration ( n = 3 to 6) and proliferation ( n = 7 to 8). RESULTS In contrast to previously described beneficial effects in excision wounds, this study shows that montelukast delays burn wound healing by impairing the proliferation of keratinocytes and endothelial cells. This occurs largely independently of inflammatory responses at the wound site, suggesting that montelukast impairs specifically the proliferative phase of wound healing in burns. Wound healing rates in mice in which leukotrienes are not produced were not affected by montelukast. CONCLUSION Montelukast delays wound healing mainly by reducing the proliferation of local cells after burn injury. CLINICAL RELEVANCE STATEMENT Although additional and clinical studies are necessary, our study suggests that burn patients who are on montelukast may exhibit delayed healing, necessitating extra observation.
Collapse
|
11
|
Khodabakhsh P, Khoie N, Dehpour AR, Abdollahi A, Ghazi-Khansari M, Shafaroodi H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology 2022; 30:313-325. [PMID: 35013876 DOI: 10.1007/s10787-021-00907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Student Research Committee, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilgoon Khoie
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lu L, Yu X, Cai Y, Sun M, Yang H. Application of CRISPR/Cas9 in Alzheimer's Disease. Front Neurosci 2021; 15:803894. [PMID: 34992519 PMCID: PMC8724030 DOI: 10.3389/fnins.2021.803894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder clinically characterized by cognitive impairment, abnormal behavior, and social deficits, which is intimately linked with excessive β-amyloid (Aβ) protein deposition along with many other misfolded proteins, neurofibrillary tangles formed by hyperphosphorylated tau protein aggregates, and mitochondrial damage in neurons, leading to neuron loss. Currently, research on the pathological mechanism of AD has been elucidated for decades, still no effective treatment for this complex disease was developed, and the existing therapeutic strategies are extremely erratic, thereby leading to irreversible and progressive cognitive decline in AD patients. Due to gradually mental dyscapacitating of AD patients, AD not only brings serious physical and psychological suffering to patients themselves, but also imposes huge economic burdens on family and society. Accordingly, it is very imperative to recapitulate the progress of gene editing-based precision medicine in the emerging fields. In this review, we will mainly focus on the application of CRISPR/Cas9 technique in the fields of AD research and gene therapy, and summarize the application of CRISPR/Cas9 in the aspects of AD model construction, screening of pathogenic genes, and target therapy. Finally, the development of delivery systems, which is a major challenge that hinders the clinical application of CRISPR/Cas9 technology will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Fang SC, Wang JJ, Chen F, Tang SS, Mu RH, Yuan DH, Zhao JJ, Hong H, Long Y. Hippocampal CysLT1R overexpression or activation accelerates memory deficits, synaptic dysfunction, and amyloidogenesis in young APP/PS1 transgenic mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1531. [PMID: 34790737 PMCID: PMC8576703 DOI: 10.21037/atm-21-4518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022]
Abstract
Background Our previous studies demonstrated that cysteinyl leukotrienes receptor 1 (CysLT1R) knockout, pharmacological blockade, or hippocampus knockdown produced beneficial effects against Alzheimer’s disease (AD); however, whether CysLT1R upregulation has deleterious effects on AD remains elusive. Methods In this study, we investigated the changes in behaviors, hippocampal amyloidogenesis, and synapse plasticity after CysLT1R overexpression by microinfusion of the lentiviral vector, containing its coding sequence of mouse (LV-CysLT1R), into the bilateral dentate gyri (DG) of the hippocampus or CysLT1R activation by repeated systemic administration of its agonist YM-17690 (0.1 mg/kg, once a day, i.p., for 28 d). Results The behavior data showed that overexpression of CysLT1R in hippocampal DG or administration of YM-17690 deteriorated behavioral performance in Morris water maze (MWM), Y-maze tests, and novel object recognition (NOR) in young APP/PS1 mice. The further studies showed that these treatments significantly destroyed synaptic function, as evidenced by impaired hippocampal long-term potentiation (LTP), decreased spine density, low number of synapses, and decreased postsynaptic protein (PSD95), and promoted the generation of amyloid β (Aβ) through increased expression of BACE1 and PS1 in the hippocampus of young APP/PS1 mice. Conclusions Together, our results indicate that CysLT1R upregulation accelerates memory impairment in young APP/PS1 mice, which is associated with promoting synaptic dysfunction and amyloidogenesis in the hippocampus.
Collapse
Affiliation(s)
- Shun-Chang Fang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jun-Jie Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Rong-Hao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Dan-Hua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jia-Jia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Hood AM, Stotesbury H, Kölbel M, DeHaan M, Downes M, Kawadler JM, Sahota S, Dimitriou D, Inusa B, Wilkey O, Pelidis M, Trompeter S, Leigh A, Younis J, Drasar E, Chakravorty S, Rees DC, Height S, Lawson S, Gavlak J, Gupta A, Ridout D, Clark CA, Kirkham FJ. Study of montelukast in children with sickle cell disease (SMILES): a study protocol for a randomised controlled trial. Trials 2021; 22:690. [PMID: 34629091 PMCID: PMC8502503 DOI: 10.1186/s13063-021-05626-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023] Open
Abstract
Background Young children with sickle cell anaemia (SCA) often have slowed processing speed associated with reduced brain white matter integrity, low oxygen saturation, and sleep-disordered breathing (SDB), related in part to enlarged adenoids and tonsils. Common treatments for SDB include adenotonsillectomy and nocturnal continuous positive airway pressure (CPAP), but adenotonsillectomy is an invasive surgical procedure, and CPAP is rarely well-tolerated. Further, there is no current consensus on the ability of these treatments to improve cognitive function. Several double-blind, randomised controlled trials (RCTs) have demonstrated the efficacy of montelukast, a safe, well-tolerated anti-inflammatory agent, as a treatment for airway obstruction and reducing adenoid size for children who do not have SCA. However, we do not yet know whether montelukast reduces adenoid size and improves cognition function in young children with SCA. Methods The Study of Montelukast In Children with Sickle Cell Disease (SMILES) is a 12-week multicentre, double-blind, RCT. SMILES aims to recruit 200 paediatric patients with SCA and SDB aged 3–7.99 years to assess the extent to which montelukast can improve cognitive function (i.e. processing speed) and sleep and reduce adenoidal size and white matter damage compared to placebo. Patients will be randomised to either montelukast or placebo for 12 weeks. The primary objective of the SMILES trial is to assess the effect of montelukast on processing speed in young children with SCA. At baseline and post-treatment, we will administer a cognitive evaluation; caregivers will complete questionnaires (e.g. sleep, pain) and measures of demographics. Laboratory values will be obtained from medical records collected as part of standard care. If a family agrees, patients will undergo brain MRIs for adenoid size and other structural and haemodynamic quantitative measures at baseline and post-treatment, and we will obtain overnight oximetry. Discussion Findings from this study will increase our understanding of whether montelukast is an effective treatment for young children with SCA. Using cognitive testing and MRI, the SMILES trial hopes to gain critical knowledge to help develop targeted interventions to improve the outcomes of young children with SCA. Trial registration ClinicalTrials.govNCT04351698. Registered on April 17, 2020. European Clinical Trials Database (EudraCT No. 2017-004539-36). Registered on May 19, 2020
Collapse
Affiliation(s)
- Anna M Hood
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Hanne Stotesbury
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Melanie Kölbel
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michelle DeHaan
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michelle Downes
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jamie M Kawadler
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Satwinder Sahota
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dagmara Dimitriou
- Department of Psychology and Human Development, UCL Institute of Education, London, UK
| | - Baba Inusa
- Children's Sickle Cell and Thalassaemia Centre, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Olu Wilkey
- North Middlesex Hospital National Health Service Trust, London, UK
| | - Maria Pelidis
- Department of Paediatric Haematology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Sara Trompeter
- University College London Hospitals NHS Foundation Trust, London, UK.,NHS Blood and Transplant, London, UK
| | - Andrea Leigh
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Emma Drasar
- Whittington Health NHS Trust, London, UK.,Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - David C Rees
- Department of Haematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Sue Height
- Paediatric Haematology, King's College Hospital NHS Trust, London, UK
| | - Sarah Lawson
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Johanna Gavlak
- Department of Child Health, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Atul Gupta
- Department of Paediatric Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Deborah Ridout
- Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher A Clark
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Fenella J Kirkham
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.,Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Child Health, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Han B, Zhang YY, Ye ZQ, Xiao Y, Rasouli J, Wu WC, Ye SM, Guo XY, Zhu L, Rostami A, Wang LB, Zhang Y, Li X. Montelukast alleviates inflammation in experimental autoimmune encephalomyelitis by altering Th17 differentiation in a mouse model. Immunology 2021; 163:185-200. [PMID: 33480040 DOI: 10.1111/imm.13308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Montelukast is a leukotriene receptor antagonist that is known to prevent allergic rhinitis and asthma. Blocking the Cysteinyl leukotriene receptor (CysLTR1), one of the primary receptors of leukotrienes, has been demonstrated to be efficacious in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through disrupting chemotaxis of infiltrating T cells. However, the role of CysLTR1 in the pathogenesis of MS is not well understood. Here, we show that MS patients had higher expression of CysLTR1 in the circulation and central nervous system (CNS). The majority of CD4+ T cells expressed CysLTR1 in MS lesions. Among T-cell subsets, Th17 cells had the highest expression of CysLTR1, and blocking CysLTR1 signalling abrogated their development in vitro. Inhibition of CysLTR1 by montelukast suppressed EAE development in both a prophylactic and therapeutic manner and inhibited myelin loss in EAE mice. Similarly, the in vivo results showed that montelukast inhibited Th17 response in EAE mice and that Th17 cells treated with montelukast had reduced encephalitogenic in adoptive EAE. Our findings strongly suggest that targeting Th17 response by inhibiting CysLTR1 signalling could be a promising therapeutic strategy for the treatment of MS and CNS inflammatory diseases.
Collapse
Affiliation(s)
- Bing Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan-Yan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yun Xiao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Su-Min Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Yue Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
17
|
Chen F, Fang S, Du Y, Ghosh A, Reed MN, Long Y, Suppiramaniam V, Tang S, Hong H. CRISPR/Cas9-mediated CysLT1R deletion reverses synaptic failure, amyloidosis and cognitive impairment in APP/PS1 mice. Aging (Albany NY) 2021; 13:6634-6661. [PMID: 33591941 PMCID: PMC7993729 DOI: 10.18632/aging.202501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022]
Abstract
As a major pathological hallmark of Alzheimer's disease (AD), amyloid-β (Aβ) is regarded as a causative factor for cognitive impairment. Extensive studies have found Aβ induces a series of pathophysiological responses, finally leading to memory loss in AD. Our previous results demonstrated that cysteinyl leukotrienes receptor 1 (CysLT1R) antagonists improved exogenous Aβ-induced memory impairment. But the role of CysLT1R in AD and its underlying mechanisms still remain elusive. In this study, we investigated CysLT1R levels in AD patients and APP/PS1 mice. We also generated APP/PS1-CysLT1R-/- mice by clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated CysLT1R deletion in APP/PS1 mice and studied the effect of CysLT1R knockout on amyloidogenesis, synapse structure and plasticity, cognition, neuroinflammation, and kynurenine pathway. These attributes were also studied after lentivirus-mediated knockdown of CysLT1R gene in APP/PS1 mice. We found that CysLT1R knockout or knockdown could conserve synaptic structure and plasticity, and improve cognition in APP/PS1 mice. These effects were associated with concurrent decreases in amyloid processing, reduced neuroinflammation and suppression of the kynurenine pathway. Our study demonstrates that CysLT1R deficiency can mediate several beneficial effects against AD pathogenesis, and genetic/pharmacological ablation of this protein could be a potential therapeutic option for AD.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shunchang Fang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yifeng Du
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Arijit Ghosh
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Miranda N. Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Susu Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Aigner L, Pietrantonio F, Bessa de Sousa DM, Michael J, Schuster D, Reitsamer HA, Zerbe H, Studnicka M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front Mol Biosci 2020; 7:610132. [PMID: 33392263 PMCID: PMC7773944 DOI: 10.3389/fmolb.2020.610132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence and global impact of COVID-19 has focused the scientific and medical community on the pivotal influential role of respiratory viruses as causes of severe pneumonia, on the understanding of the underlying pathomechanisms, and on potential treatment for COVID-19. The latter concentrates on four different strategies: (i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii) anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19 associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19 associated lung injury. Ideally, effective COVID-19 treatment should target as many of these mechanisms as possible arguing for the search of common denominators as potential drug targets. Leukotrienes and their receptors qualify as such targets: they are lipid mediators of inflammation and tissue damage and well-established targets in respiratory diseases like asthma. Besides their role in inflammation, they are involved in various other aspects of lung pathologies like vascular damage, thrombosis, and fibrotic response, in brain and retinal damages, and in cardiovascular disease. In consequence, leukotriene receptor antagonists might be potential candidates for COVID-19 therapeutics. This review summarizes the current knowledge on the potential involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene receptor antagonist montelukast as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, University Clinic Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program of Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Michael Studnicka
- Department of Pulmonary Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
Hoxha M, Spahiu E, Prendi E, Zappacosta B. A Systematic Review on the Role of Arachidonic Acid Pathway in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:160-187. [PMID: 32842948 DOI: 10.2174/1871527319666200825164123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by destruction of oligodendrocytes, immune cell infiltration and demyelination. Inflammation plays a significant role in MS, and the inflammatory mediators such as eicosanoids, leukotrienes, superoxide radicals are involved in pro-inflammatory responses in MS. In this systematic review we tried to define and discuss all the findings of in vivo animal studies and human clinical trials on the potential association between arachidonic acid (AA) pathway and multiple sclerosis. METHODS A systematic literature search across Pubmed, Scopus, Embase and Cochrane database was conducted. This systematic review was performed according to PRISMA guidelines. RESULTS A total of 146 studies were included, of which 34 were conducted in animals, 58 in humans, and 60 studies reported the role of different compounds that target AA mediators or their corresponding enzymes/ receptors, and can have a therapeutic effect in MS. These results suggest that eicosanoids have significant roles in experimental autoimmune encephalomyelitis (EAE) and MS. The data from animal and human studies elucidated that PGI2, PGF2α, PGD2, isoprostanes, PGE2, PLA2, LTs are increased in MS. PLA2 inhibition modulates the progression of the disease. PGE1 analogues can be a useful option in the treatment of MS. CONCLUSIONS All studies reported the beneficial effects of COX and LOX inhibitors in MS. The hybrid compounds, such as COX-2 inhibitors/TP antagonists and 5-LOX inhibitors can be an innovative approach for multiple sclerosis treatment. Future work in MS should shed light in synthesizing new compounds targeting arachidonic acid pathway.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| | | | - Emanuela Prendi
- Catholic University Our Lady of Good Counsel, Department of Biomedical Sciences, Rruga Dritan Hoxha, Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| |
Collapse
|
20
|
Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Front Immunol 2020; 11:1356. [PMID: 32714332 PMCID: PMC7344291 DOI: 10.3389/fimmu.2020.01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis, asthma, allergic rhinitis and many other disorders related to an aberrant immune response have a higher incidence and severity in women than in men. Emerging evidences from scientific studies indicate that the activity of the immune system is superior in females and that androgens may act as “immunosuppressive” molecules with inhibitory effects on inflammatory reactions. Among the multiple factors that contribute to the inflammatory response, lipid mediators (LM), produced from polyunsaturated fatty acids, represent a class of bioactive small molecules with pivotal roles in the onset, maintenance and resolution of inflammation. LM encompass pro-inflammatory eicosanoids and specialized pro-resolving mediators (SPM) that coexist in a tightly regulated balance necessary for the return to homeostasis. Innate immune cells including neutrophils, monocytes and macrophages possess high capacities to generate distinct LM. In the last decades it became more and more evident that sex represents an important variable in the regulation of inflammation where sex hormones play crucial roles. Recent findings showed that the biosynthesis of inflammation-related LM is sex-biased and that androgens impact LM formation with consequences not only for pathophysiology but also for pharmacotherapy. Here, we review the modulation of the inflammatory response by sex and androgens with a specific focus on LM pathways. In particular, we highlight the impact of androgens on the biosynthetic pathway of inflammation-related eicosanoids in innate immune cells.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
21
|
Kubick N, Pajares M, Enache I, Manda G, Mickael ME. Repurposing Zileuton as a Depression Drug Using an AI and In Vitro Approach. Molecules 2020; 25:molecules25092155. [PMID: 32380663 PMCID: PMC7249014 DOI: 10.3390/molecules25092155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Repurposing drugs to target M1 macrophages inflammatory response in depression constitutes a bright alternative for commonly used antidepressants. Depression is a significant type of mood disorder, where patients suffer from pathological disturbances associated with a proinflammatory M1 macrophage phenotype. Presently, the most commonly used antidepressants such as Zoloft and Citalopram can reduce inflammation, but suffer from dangerous side effects without offering specificity toward macrophages. We employed a new strategy for drug repurposing based on the integration of RNA-seq analysis and text mining using deep neural networks. Our system employs a Google semantic AI universal encoder to compute sentences embedding. Sentences similarity is calculated using a sorting function to identify drug compounds. Then sentence relevance is computed using a custom-built convolution differential network. Our system highlighted the NRF2 pathway as a critical drug target to reprogram M1 macrophage response toward an anti-inflammatory profile (M2). Using our approach, we were also able to predict that lipoxygenase inhibitor drug zileuton could modulate NRF2 pathway in vitro. Taken together, our results indicate that reorienting zileuton usage to modulate M1 macrophages could be a novel and safer therapeutic option for treating depression.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biochemistry and Molecular Cell Biology (IBMZ), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Marta Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain;
| | - Ioana Enache
- Department of radiology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (I.E.); (G.M.)
| | - Gina Manda
- Department of radiology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (I.E.); (G.M.)
| | - Michel-Edwar Mickael
- PM forskningscentret, 17854 Ekerö Stockholm, Sweden
- Neuroimmunology group, Department of experimental Genomics, Institute of Animal Breeding and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Garbatka, Poland
- Correspondence: ; Tel.: +1-205-52-73297
| |
Collapse
|
22
|
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24:505-516. [DOI: 10.1016/j.drudis.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
|
23
|
Zhou J, Lai W, Yang W, Pan J, Shen H, Cai Y, Yang C, Ma N, Zhang Y, Zhang R, Xie X, Dong Z, Gao Y, Du C. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis. Cell Mol Immunol 2018; 15:1047-1056. [PMID: 29670278 PMCID: PMC6269524 DOI: 10.1038/s41423-018-0030-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Leukotriene B4 (LTB4) synthesis is enhanced in the colonic mucosa in patients with inflammatory bowel disease (IBD). BLT1, a high-affinity receptor for LTB4, exhibits no effect on the progression of dextran sodium sulfate (DSS)-induced colitis, which mostly relies on innate immunity. Here, we reported that BLT1 regulates trinitrobenzene sulfonic acid (TNBS)-induced colitis, which reflects CD4+ T-cell-dependent adaptive immune mechanisms of IBD. We found that BLT1 signaling enhanced the progression of colitis through controlling the production of proinflammatory cytokines by dendritic cells (DCs) and modulating the differentiation of Th1 and Th17. BLT1-/- mice displayed an alleviated severity of TNBS-induced colitis with reduced body weight loss and infiltrating cells in the lamina propria. BLT1 deficiency in DCs led to reduced production of proinflammatory cytokines, including IL-6, TNF-α, and IL-12, and these results were further confirmed via treatment with a BLT1 antagonist. The impaired cytokine production by BLT1-/- DCs subsequently led to reduced Th1 and Th17 differentiation both in vitro and in vivo. We further performed a conditional DC reconstitution experiment to assess whether BLT1 in DCs plays a major role in regulating the pathogenesis of TNBS-induced colitis, and the results indicate that BLT1 deficiency in DCs also significantly reduces disease severity. The mechanistic study demonstrated that BLT1-regulated proinflammatory cytokine production through the Gαi βγ subunit-phospholipase Cβ (PLCβ)-PKC pathway. Notably, we found that treatment with the BLT1 antagonist also reduced the production of proinflammatory cytokines by human peripheral blood DCs. Our findings reveal the critical role of BLT1 in regulating adaptive immunity and TNBS-induced colitis, which further supports BLT1 as a potential drug target for adaptive immunity-mediated IBD.
Collapse
Affiliation(s)
- Jinfeng Zhou
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weiming Lai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wanjie Yang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Juping Pan
- Tongji Hospital of Tongji University branch, Tongji University, Shanghai, 200092, China
| | - Hu Shen
- Tongji Hospital of Tongji University branch, Tongji University, Shanghai, 200092, China
| | - Yingying Cai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cuixia Yang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ningjia Ma
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100086, China
| | - Yuan Gao
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Changsheng Du
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
24
|
Wang J, Wang X, Chen X, Lu S, Kuang Y, Fei J, Wang Z. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:666-675. [PMID: 29860267 DOI: 10.1093/abbs/gmy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis and its primary animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by immune-mediated demyelination and neurodegeneration that may be mediated by inhibition of the nuclear factor-κB (NF-κB) signaling pathway. Gpr97, encoded by Adgrg3, has been reported to regulate the activity of NF-κB. In this study, using a previously established Adgrg3-knockout mouse model, we investigated the roles of Gpr97 in the development of autoimmune CNS disease in mice. We found a marked increase in the expression of Adgrg3 in spinal cords of mice with EAE. Adgrg3-deficient (Adgrg3-/-) mice with EAE exhibited increases in peak severity and the cumulative disease score compared with littermate controls, followed by a notable increase of leukocyte infiltration and more extensive demyelination. The percentages of Th1/Th17 cells in the CNS were significantly increased in Adgrg3-/- mice and accompanied by high levels of interleukin (IL)-6, interferon-γ, tumor necrosis factor-α, and IL-17. An in vitro culture assay verified that Gpr97 regulated proinflammatory cytokine production. Taken together, our results show that Gpr97 plays an important role in the development of EAE and may have a therapeutic potential for the treatment of CNS autoimmunity.
Collapse
Affiliation(s)
- Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiyi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuejiao Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| |
Collapse
|
25
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
26
|
Xu M, Hong R, Zhang X, Zou H, Zhang Y, Hou Z, Wang L. CysLT1 receptor antagonist alleviates pathogenesis of collagen-induced arthritis mouse model. Oncotarget 2017; 8:108418-108429. [PMID: 29312540 PMCID: PMC5752453 DOI: 10.18632/oncotarget.22664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) play a key role in inflammatory diseases such as asthma and their receptors’ antagonists are currently used as anti-asthmatic drugs. CysLTs have also been found to participate in other inflammatory reactions. Here, we reported that in rheumatoid arthritis (RA) animals model, collagen-induced arthritis, (CIA), CysLT1, a receptor for CysLTs, was up-regulated in hind paw and lymph node, while CysLTs levels in the blood were also higher than normal mice. Montelukast, a drug targeting CysLT1, has been shown to effectively reduce the CIA incidence, peak severity, and cumulative disease scores. Further study indicated that CysLT1 signaling did not affect the differentiation of pathogenic T helper cells. We conclude that montelukast may play important roles in the pathogenesis of CIA, mainly by inducing infiltration of pathogenic T cells, increasing IL-17A secretion and expression of IL-17A, while these effects can be blocked by CysLT1 antagonists. Our findings indicate that antagonist of CysLT1 receptor may be used to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Minwen Xu
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ruiyun Hong
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zhang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Hailin Zou
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Yi Zhang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Zhiping Hou
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Rådmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 2017; 127:3167-3176. [PMID: 28737505 DOI: 10.1172/jci92885] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Carlo Pergola
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Friederike Dehm
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany.,Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Anja M Schaible
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Hinnak Northoff
- Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, and
| | - Stefan Laufer
- Department of Medicinal Chemistry, Pharmaceutical Institute, University Tuebingen, Tuebingen, Germany
| | - Thorsten J Maier
- Aarhus University, Department of Biomedicine and Center for Study and Prevention of Neurodegenerative Inflammation (NEURODIN), Aarhus, Denmark.,Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| |
Collapse
|
28
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
29
|
Cai Y, Shen H, Qin C, Zhou J, Lai W, Pan J, Du C. The Spatio-Temporal Expression Profiles of CD4 + T Cell Differentiation and Function-Related Genes During EAE Pathogenesis. Inflammation 2017; 40:195-204. [PMID: 27882475 DOI: 10.1007/s10753-016-0469-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis is a CD4+ T cell-mediated autoimmune disease of the central nervous system. The unbalance of the cytokines and transcription factors critical for CD4+ T cell differentiation and function is probably the main reason that causes MS. We detected the mRNA expression changes of key cytokines and transcription factors which are critical for Th1, Th2, Th17, and Treg cell differentiation and function in different tissues during EAE pathogenesis. We fund that each gene not only has its own featured expression changes, but also has interaction with one another, which composes a network of immunity. Understanding the roles of key cytokines and transcription factors in these processes will help to understand disease pathogenesis and supply indications for disease therapy.
Collapse
Affiliation(s)
- Yingying Cai
- Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China
| | - Hu Shen
- Tongji Hospital of Tongji University Branch, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China
| | - Chaoyan Qin
- Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China
| | - Jinfeng Zhou
- Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China
| | - Weiming Lai
- Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China
| | - Juping Pan
- Tongji Hospital of Tongji University Branch, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China.
| | - Changsheng Du
- Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Si Ping Road, Shanghai, 200092, China. .,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
30
|
Hippocampal CysLT 1R knockdown or blockade represses LPS-induced depressive behaviors and neuroinflammatory response in mice. Acta Pharmacol Sin 2017; 38:477-487. [PMID: 28112182 DOI: 10.1038/aps.2016.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
Abstract
Evidence suggests that neuroinflammation is involved in depression and that the cysteinyl leukotriene receptor 1 (CysLT1R) plays a potential pathophysiological role in several types of CNS disorders. Our previous study has shown that knockdown of hippocampal CysLT1R in mice prevents the depressive-like phenotype and neuroinflammation induced by chronic mild stress (CMS). Here, we examined the effects of hippocampal CysLT1R knockdown and CysLT1R blockade on LPS-induced depressive-like behavior in mice. We found that injection of LPS (0.5 mg/kg, ip) caused marked increase in hippocampal CysLT1R expression, which was reversed by pretreatment with fluoxetine (20 mg·kg-1·d-1 for 7 d, ig). Knockdown of hippocampal CysLT1R or blockade of CysLT1R by pretreatment with pranlukast (0.5 mg/kg, ip) significantly suppressed LPS-induced depressive behaviors, as evidenced by decreases in mouse immobility time in the forced swimming test (FST) and tail suspension test (TST) and latency to feed in the novelty-suppressed feeding (NSF) test. Moreover, both CysLT1R knockdown and CysLT1R blockade markedly prevented LPS-induced neuroinflammation, as shown by the suppressed activation of microglia and NF-κB signaling as well as the hippocampal levels of TNF-α and IL-1β in mice. Our results suggest that CysLT1R may be involved in LPS-induced depressive-like behaviors and neuroinflammation, and that downregulation of CysLT1R could be a novel and potential therapeutic strategy for the treatment of depression, at least partially due to its role in neuroinflammation.
Collapse
|
31
|
Gαq takes centre stage in multiple sclerosis pathogenesis. Cell Mol Immunol 2017; 14:401-402. [PMID: 28216650 DOI: 10.1038/cmi.2017.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/08/2022] Open
|
32
|
Lai W, Cai Y, Zhou J, Chen S, Qin C, Yang C, Liu J, Xie X, Du C. Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation. Cell Mol Immunol 2017; 14:557-567. [PMID: 28216651 DOI: 10.1038/cmi.2016.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022] Open
Abstract
Many G protein-coupled receptors (GPCRs) are reported to be involved in the pathogenesis of multiple sclerosis (MS), and ~40% of all identified GPCRs rely on the Gαq/11 G protein family to stimulate inositol lipid signaling. However, the function of Gα subunits in MS pathogenesis is still unknown. In this study, we attempted to determine the role of Gαq in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a well-known mouse model of MS. We discovered that compared with wild-type mice, Gαq-knockout mice exhibited less severe EAE symptoms, with lower clinical scores, reduced leukocyte infiltration and less extensive demyelination. Moreover, a significantly lower percentage of Th17 cells, one of the key players in MS pathogenesis, was observed in Gαq-knockout EAE mice. Studies in vitro demonstrated that deficiency of Gαq in CD4+ T cells directly impaired Th17 differentiation. In addition, deficiency of Gαq significantly impaired DC-derived IL-6 production, thus inhibiting Th17 differentiation and the Gαq-PLCβ-PKC and Gαq-MAPKs signaling pathways involved in the reduced IL-6 production by DCs. In summary, our data highlighted the critical role of Gαq in regulating Th17 differentiation and MS pathogenesis.
Collapse
Affiliation(s)
- Weiming Lai
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yingying Cai
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinfeng Zhou
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuai Chen
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoyan Qin
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cuixia Yang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xie
- National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai 201203, China
| | - Changsheng Du
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
33
|
Rozin SI. Case Series Using Montelukast in Patients with Memory Loss and Dementia. Open Neurol J 2017; 11:7-10. [PMID: 28567133 PMCID: PMC5420184 DOI: 10.2174/1874205x01711010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/24/2023] Open
Abstract
Cognitive decline and dementia are a growing problem as the population ages. Effective therapies to prevent and treat these problems are limited. Neuro-inflammation has been suggested as a cause of dementia [1]. Montelukast is a leukotriene receptor antagonist used to treat seasonal allergies and asthma. It acts as a cysteinyl leukotriene (CysLT1) receptor antagonist blocking the action of leukotrienes and decreasing inflammation [2]. Animal studies have shown that administering Montelukast improves memory function [3]. This case series of patients in a private Internal Medicine practice between 2013-2014 used Montelukast in patients with various levels of memory impairment and dementia. Patients were given Montelukast 80 mg daily in 4 divided doses every 2-3 hours. Memory impaired patients had subjective improvement in the memory and recall. Patients with dementia were noted by family members to be less agitated, but had no memory improvement at the doses used. Montelukast may be useful to treat memory impairment and dementia. Long term use might act as a prophylactic to prevent dementia.
Collapse
|
34
|
Montelukast ameliorates streptozotocin-induced cognitive impairment and neurotoxicity in mice. Neurotoxicology 2016; 57:214-222. [DOI: 10.1016/j.neuro.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/24/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022]
|
35
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Kalra J, Kumar P, Majeed ABA, Prakash A. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer's disease in rats. Pharmacol Biochem Behav 2016; 146-147:1-12. [DOI: 10.1016/j.pbb.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
|
37
|
Yu XB, Dong RR, Wang H, Lin JR, An YQ, Du Y, Tang SS, Hu M, Long Y, Sun HB, Kong LY, Hong H. Knockdown of hippocampal cysteinyl leukotriene receptor 1 prevents depressive behavior and neuroinflammation induced by chronic mild stress in mice. Psychopharmacology (Berl) 2016; 233:1739-49. [PMID: 26546369 DOI: 10.1007/s00213-015-4136-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Numerous studies have demonstrated that neuroinflammation is associated with depression-like symptoms and neuropsychological disturbances, and cysteinyl leukotriene receptor 1 (CysLT1R) was reported to be involved in neuroinflammation. The pathophysiological role of CysLT1R has been reported in several types of brain damage. However, the role of CysLT1R in depression remains to be elucidated. OBJECTIVES We aimed to investigate the effect of hippocampal CysLT1R downregulation on depressive behaviors and neuroinflammatory responses in mice exposed to chronic mild stress (CMS). RESULTS We firstly found that expression of hippocampal CysLT1R was gradually increased over CMS exposure, while 3 weeks treatment with fluoxetine reversed the increment of hippocampal CysLT1R expression. Hippocampal CysLT1R knockdown suppressed CMS-induced depressive-like behaviors as evidenced by decreases in immobility time in tail suspension test (TST), decreased latency to feed in novelty-suppressed feeding (NSF) test, and by increase in the number of entries and decrease in time spent in the open arm in elevated plus maze (EPM) test. Increments of hippocampal NF-κB p65, IL-1β, and TNF-α induced by CMS were also prevented by hippocampal CysLT1R knockdown beforehand. CONCLUSIONS Hippocampal CysLT1R participates in depression, and knockdown of hippocampal CysLT1R prevents CMS-induced depressive-like behaviors and neuroinflammation, suggesting that suppression of CysLT1R could prevent the development of depression.
Collapse
Affiliation(s)
- Xu-Ben Yu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Dong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Wang
- Department of Medical Technology, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Jing-Ran Lin
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Qi An
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yong Du
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Su-Su Tang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Mei Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Long
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hong-Bin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Yi Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Chen H, Yang H, Wang Z, Xie X, Nan F. Discovery of 3-Substituted 1H-Indole-2-carboxylic Acid Derivatives as a Novel Class of CysLT1 Selective Antagonists. ACS Med Chem Lett 2016; 7:335-9. [PMID: 26985325 DOI: 10.1021/acsmedchemlett.5b00482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 01/19/2023] Open
Abstract
The indole derivative, 3-((E)-3-((3-((E)-2-(7-chloroquinolin-2yl)vinyl)phenyl)amino)-3-oxoprop-1-en-1-yl)-7-methoxy-1H-indole-2-carboxylic acid (17k), was identified as a novel and highly potent and selective CysLT1 antagonist with IC50 values of 0.0059 ± 0.0011 and 15 ± 4 μM for CysLT1 and CysLT2, respectively.
Collapse
Affiliation(s)
- Huayan Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Yang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
39
|
Marschallinger J, Schäffner I, Klein B, Gelfert R, Rivera FJ, Illes S, Grassner L, Janssen M, Rotheneichner P, Schmuckermair C, Coras R, Boccazzi M, Chishty M, Lagler FB, Renic M, Bauer HC, Singewald N, Blümcke I, Bogdahn U, Couillard-Despres S, Lie DC, Abbracchio MP, Aigner L. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 2015; 6:8466. [PMID: 26506265 PMCID: PMC4639806 DOI: 10.1038/ncomms9466] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/24/2015] [Indexed: 01/19/2023] Open
Abstract
As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood–brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias. The leukotriene receptor antagonist montelukast is an anti-asthmatic drug. Here, the authors show that montelukast reduces neuroinflammation, promotes hippocampal neurogenesis and restores learning and memory in old rats suffering from ageing-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Julia Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Renate Gelfert
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Illes
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Center for Spinal Cord Injuries, BG Trauma Center Murnau, 82418 Murnau am Staffelsee, Germany
| | - Maximilian Janssen
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Rotheneichner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, 6020 Innsbruck, Austria
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marta Boccazzi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | | | - Florian B Lagler
- Department for Paediatrics, Institute for Inborn Errors of Metabolism, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Marija Renic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Hans-Christian Bauer
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, 6020 Innsbruck, Austria
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sebastien Couillard-Despres
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
40
|
Yazdi A, Baharvand H, Javan M. Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY720). Neuroscience 2015; 311:34-44. [PMID: 26475743 DOI: 10.1016/j.neuroscience.2015.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disorder which affects the central nervous system (CNS) and is recognized as the major cause of nervous system disability in young adults. Enhancing myelin repair by stimulating endogenous progenitors is a main goal in efforts for MS treatment. Fingolimod (FTY720) which is administrated as an oral medicine for relapsing-remitting MS has direct effects on neural cells. In this study, we hypothesized if daily treatment with FTY720 enhances endogenous myelin repair in a model of local demyelination induced by lysolecithin (LPC). We examined the response of inflammatory cells as well as resident OPCs and evaluated the number of newly produced myelinating cells in animals which were under daily treatment with FTY720. FTY720 at doses 0.3 and 1mg/kg decreased the inflammation score at the site of LPC injection and decreased the extent of demyelination. FTY720 especially at the lower dose increased the number of remyelinated axons and newly produced myelinating cells. These data indicate that repetitive treatment with FTY720, behind an anti-inflammatory effect, exerts beneficial effects on the process of endogenous repair of demyelinating insults.
Collapse
Affiliation(s)
- A Yazdi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - M Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
41
|
CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 2015; 104:82-93. [PMID: 26453964 DOI: 10.1016/j.neuropharm.2015.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes are the myelin-forming cells in the CNS. They enwrap axons, thus permitting fast impulse transmission and exerting trophic actions on neurons. Demyelination accompanied by neurological deficit is a rather frequent condition that is not only associated with multiple sclerosis but has been also recognized in several other neurodegenerative diseases, including brain trauma and stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Recently, alterations of myelin function have been also reported in neuropsychiatric diseases, like depression and autism. Highly relevant for therapeutic purposes, oligodendrocyte precursor cells (OPCs) still persist in the adult brain and spinal cord. These cells are normally rather quiescent, but under specific circumstances, they can be stimulated to undergo differentiation and generate mature myelinating oligodendrocytes. Thus, approaches aimed at restoring myelin integrity and at fostering a correct oligodendrocyte function are now viewed as novel therapeutic opportunities for both neurodegenerative and neuropsychiatric diseases. Both OPCs and mature oligodendrocytes express purinergic receptors. For some of these receptors, expression is restricted at specific differentiation stages, suggesting key roles in OPCs maturation and myelination. Some of these receptors are altered under demyelinating conditions, suggesting that their dysregulation may contribute to disease development and could represent adequate new targets for remyelinating therapies. Here, we shall describe the current literature available on all these receptors, with special emphasis on the P2Y-like GPR17 receptor, that represents one of the most studied receptor subtypes in these cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2′-Deoxy-N(6)-methyladenosine 3′,5'-bisphosphate ammonium salt (MRS2179)
- 3-(2-carboxy-4,6-dichloro-indol-3-yl)propionic acid (MDL29,951)
- 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680)
- 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261)
- ADP
- ATP
- Adenosine
- Brilliant blue G (BBG)
- Leukotriene D4 (LTD(4))
- Montelukast
- N6-cyclohexyladenosine (CHA)
- Oligodendrocytes
- Oxidized ATP (oxATP)
- Purinergic receptors
- Rapamycin
- Remyelination
- UDP
- UDP-Glucose
Collapse
|
42
|
Cevik B, Solmaz V, Aksoy D, Erbas O. Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med Sci Monit 2015; 21:869-74. [PMID: 25803241 PMCID: PMC4384514 DOI: 10.12659/msm.892932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Montelukast is an antiinflammatory drug with an antioxidant property. In this study, we aimed to reveal whether montelukast has a preventive effect against seizures and post-seizure oxidative stress in pentylenetetrazol (PTZ)-induced seizures in rats. Material/Methods Of the 48 male Sprague-Dawley rats used in the study, 24 were assigned to EEG recordings (group A) and 24 were assigned to behavioral studies (group B). In group A, the electrodes were implanted on dura over the left frontal cortex for EEG recording. After 10 days, in group A, i.p. saline, 25, 50, or 100 mg/kg montelukast+35 mg/kg PTZ was administered to the rats. EEG was recorded and spike percentage was evaluated. In group B, i.p. saline, 25, 50, or 100 mg/kg montelukast+70 mg/kg PTZ was administered to the rats. Racine’s Convulsion Scale (RCS) and onset times of first myoclonic jerk (FMJ) was used to evaluate the seizures. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined in the brain tissue of animals. Results Animals treated with 50 or 100 mg/kg montelukast had significantly lower RCS and significantly increased FMJ onset time compared to the saline-treated animals. Moreover, groups given 25, 50, or 100 mg/kg montelukast had significantly lower MDA and higher SOD levels compared to the saline-treated group. The differences were more pronounced in the 100 mg/kg montelukast-pretreated group (p<0.001). Conclusions Montelukast showed anticonvulsant action and led to amelioration of oxidative stress markers in PTZ-induced seizures in rats.
Collapse
Affiliation(s)
- Betul Cevik
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Volkan Solmaz
- Department of Neurology, Turhal State Hospital, Tokat, Turkey
| | - Durdane Aksoy
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
43
|
Lee W, Su Kim H, Lee GR. Leukotrienes induce the migration of Th17 cells. Immunol Cell Biol 2014; 93:472-9. [PMID: 25512344 DOI: 10.1038/icb.2014.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022]
Abstract
Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells.
Collapse
Affiliation(s)
- Wonyong Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | - Hyeong Su Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
44
|
Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in human disease pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:51-81. [PMID: 25387059 DOI: 10.1146/annurev-pathol-012513-104640] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combinations of leukocyte attractant ligands and cognate heptahelical receptors specify the systemic recruitment of circulating cells by triggering integrin-dependent adhesion to endothelial cells, supporting extravasation, and directing specific intratissue localization via gradient-driven chemotaxis. Chemoattractant receptors also control leukocyte egress from lymphoid organs and peripheral tissues. In this article, we summarize the fundamental mechanics of leukocyte trafficking, from the evolution of multistep models of leukocyte recruitment and navigation to the regulation of chemoattractant availability and function by atypical heptahelical receptors. To provide a more complete picture of the migratory circuits involved in leukocyte trafficking, we integrate a number of nonchemokine chemoattractant receptors into our discussion. Leukocyte chemoattractant receptors play key roles in the pathogenesis of autoimmune diseases, allergy, inflammatory disorders, and cancer. We review recent advances in our understanding of chemoattractant receptors in disease pathogenesis, with a focus on genome-wide association studies in humans and the translational implications of mechanistic studies in animal disease models.
Collapse
Affiliation(s)
- Brian A Zabel
- Palo Alto Veterans Institute for Research and Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304;
| | | | | |
Collapse
|
45
|
Lenz Q, Arroyo D, Temp F, Poersch A, Masson C, Jesse A, Marafiga J, Reschke C, Iribarren P, Mello C. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood–brain barrier dysfunction. Neuroscience 2014; 277:859-71. [DOI: 10.1016/j.neuroscience.2014.07.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
|
46
|
Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014; 171:3551-74. [PMID: 24588652 DOI: 10.1111/bph.12665] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022] Open
Abstract
The endogenous ligands for the LT, lipoxin (LX) and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The LT receptors BLT1 and BLT2 , are activated by LTB4 and the CysLT1 and CysLT2 receptors are activated by the cysteinyl-LTs, whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, LXA4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2). The aim of the present review is to give a state of the field on these receptors, with focus on recent important findings. For example, BLT1 receptor signalling in cancer and the dual role of the BLT2 receptor in pro- and anti-inflammatory actions have added more complexity to lipid mediator signalling. Furthermore, a cross-talk between the CysLT and P2Y receptor systems has been described, and also the presence of novel receptors for cysteinyl-LTs, such as GPR17 and GPR99. Finally, lipoxygenase metabolites derived from ω-3 essential polyunsaturated acids, the resolvins, activate the receptors GPR32 and ChemR23. In conclusion, the receptors for the lipoxygenase products make up a sophisticated and tightly controlled system of endogenous pro- and anti-inflammatory signalling in physiology and pathology.
Collapse
Affiliation(s)
- Magnus Bäck
- Nomenclature Subcommittee for Leukotriene Receptors, International Union of Basic and Clinical Pharmacology, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai J, Mei ZL, Wang H, Hu M, Long Y, Miao MX, Li N, Hong H. Montelukast rescues primary neurons against Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int 2014; 75:26-31. [PMID: 24879954 DOI: 10.1016/j.neuint.2014.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
Abstract
Amyloid-β peptide (Aβ), which can invoke a cascade of inflammatory responses, is considered to play a causal role in the development and progress of Alzheimer's disease (AD). Montelukast, known as a cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is currently used for treatment of inflammatory diseases such as asthma. We have previously reported that CysLT1R activation is involved in Aβ generation. In this study, we investigated rescuing effect of CysLT1R antagonist montelukast on Aβ1-42-induced neurotoxicity in primary neurons. Our data showed that Aβ1-42 elicited a marked increase of CysLT1R expression in primary mouse neurons. This increment of CysLT1R expression was accompanied by increases of inflammatory factors such as NF-κB p65, tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) as well as pro-apoptotic protein Caspase-3 activation and anti-apoptosis protein Bcl-2 reduction. Aβ1-42-mediated increase of CysLT1R expression was associated with Aβ1-42-induced cytotoxicity as measured by MTT reduction assay and lactate dehydrogenase (LDH) release assay. This observation was confirmed with treatment of montelukast, a selective CysLT1R antagonist, which had significant effect on Aβ1-42-induced cytotoxicity. Moreover, blockade of CysLT1R with montelukast reversed Aβ1-42-mediated increase of CysLT1R expression, and concomitant changes of the pro-inflammatory factors and the apoptosis-related proteins. The results demonstrate that montelukast rescued neurons against Aβ1-42-induced neurotoxicity, neuroinflammation and apoptosis by down-regulating CysLT1R-mediated NF-κB signaling, suggesting that CysLT1R may be a potential target for AD, and its antagonist may have beneficial effects for treatment of AD.
Collapse
Affiliation(s)
- Jin'e Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Lin Mei
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Mei Hu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xing Miao
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ning Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
48
|
Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res 2014; 2014:608930. [PMID: 24971371 PMCID: PMC4058211 DOI: 10.1155/2014/608930] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8+ cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5′-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophils in vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies.
Collapse
|
49
|
Involvement of cysteinyl leukotriene receptor 1 in Aβ1–42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging 2014; 35:590-9. [DOI: 10.1016/j.neurobiolaging.2013.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/15/2013] [Accepted: 09/22/2013] [Indexed: 12/22/2022]
|
50
|
Lai J, Hu M, Wang H, Hu M, Long Y, Miao MX, Li JC, Wang XB, Kong LY, Hong H. Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology 2014; 79:707-14. [PMID: 24456746 DOI: 10.1016/j.neuropharm.2014.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/29/2022]
Abstract
Montelukast, known as a cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is currently used for treatment of inflammatory diseases such as asthma. Here, we investigated effects of montelukast on neuroinflammatory, apoptotic responses, and memory performance following intracerebral infusions of amyloid-β (Aβ). The data demonstrated that intracerebroventrical infusions of aggregated Aβ1-42 (410 pmol/mouse) produced deficits in learning ability and memory, as evidenced by increase in escape latency during acquisition trials and decreases in exploratory activities in the probe trial in Morris water maze (MWM) task, and by decrease in the number of correct choices and increase in latency to enter the shock-free compartment in Y-maze test, and caused significant increases in pro-inflammatory cytokines such as NF-κB p65, TNF-α and IL-1β as well as pro-apoptotic molecule caspase-3 activation and anti-apoptotic protein Bcl-2 downregulation in hippocampus and cortex. Interestingly, this treatment resulted in upregulation of protein or mRNA of CysLT1R in both hippocampus and cortex. Blockade of CysLT1R by repeated treatment with montelukast (1 or 2 mg/kg, ig, 4 weeks) reduced Aβ1-42-induced CysLT1R expression and also suppressed Aβ1-42-induced increments of NF-κB p65, TNF-α, IL-1β and caspase-3 activation, and Bcl-2 downregulation in the hippocampus and cortex. Correspondingly, montelukast treatment significantly improved Aβ1-42-induced memory impairment in mice, but had little effect on normal mice. Our results show that montelukast may ameliorate Aβ1-42-induced memory impairment via inhibiting neuroinflammation and apoptosis mediated by CysLT1R signaling, suggesting that CysLT1R antagonism represents a novel treatment strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jin'e Lai
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Meng Hu
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Hao Wang
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Mei Hu
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Ming-xing Miao
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Jia-chang Li
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China
| | - Xiao-bing Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-yi Kong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Tong Jiaxiang, Nanjing 210009, China.
| |
Collapse
|