1
|
Barthels DA, House RV, Gelhaus HC. The immune response to Francisella tularensis. Front Microbiol 2025; 16:1549343. [PMID: 40351308 PMCID: PMC12062900 DOI: 10.3389/fmicb.2025.1549343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Francisella tularensis (Ft) is a Gram negative intracellular bacterial pathogen, commonly transmitted via arthropod bites, but is most lethal when contracted via inhalation. The nature of a Gram-negative intracellular pathogen presents unique challenges to the mammalian immune response, unlike more common viral pathogens and extracellular bacterial pathogens. The current literature on Ft involves numerous variables, including the use of differing research strains and variation in animal models. This review aims to consolidate much of the recent literature on Ft to suggest promising research to better understand the complex immune response to this bacterium.
Collapse
Affiliation(s)
- Derek A. Barthels
- Department of Biology, Life Sciences Research Center, United States Air Force Academy, Colorado Springs, CO, United States
- National Research Council Research Associateships Program, Washington, DC, United States
| | - Robert V. House
- Dr. RV House LLC, Harpers Ferry, WV, United States
- Appili Therapeutics, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
3
|
Mohammadi N, Lindgren H, Yamamoto M, Martin A, Henry T, Sjöstedt A. Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to Francisella tularensis. Front Cell Infect Microbiol 2022; 11:784101. [PMID: 35004352 PMCID: PMC8738097 DOI: 10.3389/fcimb.2021.784101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the etiological agent of tularemia, a zoonotic disease. Infection of monocytic cells by F. tularensis can be controlled after activation with IFN-γ; however, the molecular mechanisms whereby the control is executed are incompletely understood. Recently, a key role has been attributed to the Guanylate-binding proteins (GBPs), interferon-inducible proteins involved in the cell-specific immunity against various intracellular pathogens. Here, we assessed the responses of bone marrow-derived murine macrophages (BMDM) and GBP-deficient BMDM to F. tularensis strains of variable virulence; the highly virulent SCHU S4 strain, the human live vaccine strain (LVS), or the widely used surrogate for F. tularensis, the low virulent F. novicida. Each of the strains multiplied rapidly in BMDM, but after addition of IFN-γ, significant GBP-dependent control of infection was observed for the LVS and F. novicida strains, whereas there was no control of the SCHU S4 infection. However, no differences in GBP transcription or translation were observed in the infected cell cultures. During co-infection with F. novicida and SCHU S4, significant control of both strains was observed. Patterns of 18 cytokines were very distinct between infected cell cultures and high levels were observed for almost all cytokines in F. novicida-infected cultures and very low levels in SCHU S4-infected cultures, whereas levels in co-infected cultures for a majority of cytokines showed intermediate levels, or levels similar to those of F. novicida-infected cultures. We conclude that the control of BMDM infection with F. tularensis LVS or F. novicida is GBP-dependent, whereas SCHU S4 was only controlled during co-infection. Since expression of GBP was similar regardless of infecting agent, the findings imply that SCHU S4 has an inherent ability to evade the GBP-dependent anti-bacterial mechanisms.
Collapse
Affiliation(s)
- Nasibeh Mohammadi
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Amandine Martin
- Inserm, U1111, Centre International de Recherche en Infectiologie, Lyon, France
| | - Thomas Henry
- Inserm, U1111, Centre International de Recherche en Infectiologie, Lyon, France
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Rozas-Serri M, Peña A, Arriagada G, Enríquez R, Maldonado L. Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. JOURNAL OF FISH DISEASES 2018; 41:539-552. [PMID: 29143962 DOI: 10.1111/jfd.12756] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Collapse
Affiliation(s)
- M Rozas-Serri
- Pathovet Laboratory Ltd., Puerto Montt, Chile
- Faculty of Veterinary Sciences, Graduate School, Austral University of Chile, Valdivia, Chile
| | - A Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| | - G Arriagada
- EPI-data Research & Consulting, Santiago, Chile
| | - R Enríquez
- Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - L Maldonado
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| |
Collapse
|
5
|
Dikshit N, Kale SD, Khameneh HJ, Balamuralidhar V, Tang CY, Kumar P, Lim TP, Tan TT, Kwa AL, Mortellaro A, Sukumaran B. NLRP3 inflammasome pathway has a critical role in the host immunity against clinically relevant Acinetobacter baumannii pulmonary infection. Mucosal Immunol 2018; 11:257-272. [PMID: 28612844 DOI: 10.1038/mi.2017.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/15/2017] [Indexed: 02/04/2023]
Abstract
The opportunistic Gram-negative bacterium Acinetobacter baumannii (AB) is a leading cause of life-threatening nosocomial pneumonia. Outbreaks of multidrug resistant (MDR)-AB belonging to international clones (ICs) I and II with limited treatment options are major global health threats. However, the pathogenesis mechanisms of various AB clonal groups are understudied. Although inflammation-associated interleukin-1β (IL-1β) levels and IL-1 receptor antagonist polymorphisms were previously implicated in MDR-AB-related pneumonia in patients, whether inflammasomes has any role in the host defense and/or pathogenesis of clinically relevant A. baumannii infection is unknown. Using a sublethal mouse pneumonia model, we demonstrate that an extensively drug-resistant clinical isolate (ICII) of A. baumannii exhibits reduced/delayed early pulmonary neutrophil recruitment, higher lung persistence, and, most importantly, elicits enhanced IL-1β/IL-18 production and lung damage through NLRP3 inflammasome, in comparison with A. baumannii-type strain. A. baumannii infection-induced IL-1β/IL-18 production is entirely dependent on NLRP3-ASC-caspase-1/caspase-11 pathway. Using Nlrp3-/- mice infection models, we further show that while NLRP3 inflammasome pathway contributes to host defense against A. baumannii clinical isolate, it is dispensable for protection against A. baumannii-type strain. Our study reveals a novel differential role for NLRP3 inflammasome pathway in the immunity against clinically relevant A. baumannii infections, and highlights inflammasome pathway as a potential immunomodulatory target.
Collapse
Affiliation(s)
- N Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - S D Kale
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - H J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - V Balamuralidhar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - C Y Tang
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - P Kumar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - T P Lim
- Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore
| | - T T Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - A L Kwa
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - A Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - B Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Fabrik I, Link M, Putzova D, Plzakova L, Lubovska Z, Philimonenko V, Pavkova I, Rehulka P, Krocova Z, Hozak P, Santic M, Stulik J. The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage. Mol Cell Proteomics 2017; 17:81-94. [PMID: 29046388 DOI: 10.1074/mcp.ra117.000160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.
Collapse
Affiliation(s)
- Ivo Fabrik
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Daniela Putzova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Plzakova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Lubovska
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic
| | - Vlada Philimonenko
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic.,¶Institute of Molecular Genetics ASCR v.v.i., Department of Biology of the Cell Nucleus, 142 20 Prague 4, Czech Republic
| | - Ivona Pavkova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Pavel Rehulka
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Pavel Hozak
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic.,¶Institute of Molecular Genetics ASCR v.v.i., Department of Biology of the Cell Nucleus, 142 20 Prague 4, Czech Republic
| | - Marina Santic
- ‖Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jiri Stulik
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic;
| |
Collapse
|
7
|
Skyberg JA, Lacey CA. Hematopoietic MyD88 and IL-18 are essential for IFN-γ-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 2017; 102:1441-1450. [PMID: 28951422 DOI: 10.1189/jlb.4a0517-179r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the potentially fatal disease tularemia. We used mice with conditional MyD88 deficiencies to investigate cellular and molecular mechanisms by which MyD88 restricts type A F. tularensis infection. F. tularensis-induced weight loss was predominately dependent on MyD88 signaling in nonhematopoietic cells. In contrast, MyD88 signaling in hematopoietic cells, but not in myeloid and dendritic cells, was essential for control of F. tularensis infection in tissue. Myeloid and dendritic cell MyD88 deficiency also did not markedly impair cytokine production during infection. Although the production of IL-12 or -18 was not significantly reduced in hematopoietic MyD88-deficient mice, IFN-γ production was abolished in these animals. In addition, neutralization studies revealed that control of F. tularensis infection mediated by hematopoietic MyD88 was entirely dependent on IFN-γ. Although IL-18 production was not significantly affected by MyD88 deficiency, IL-18 was essential for IFN-γ production and restricted bacterial replication in an IFN-γ-dependent manner. Caspase-1 was also found to be partially necessary for the production of IL-18 and IFN-γ and for control of F. tularensis replication. Our collective data show that the response of leukocytes to caspase-1-dependent IL-18 via MyD88 is critical, whereas MyD88 signaling in myeloid and dendritic cells is dispensable for IFN-γ-dependent control of type A F. tularensis infection.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and .,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and.,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
9
|
Kimmey JM, Campbell JA, Weiss LA, Monte KJ, Lenschow DJ, Stallings CL. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect 2017; 19:249-258. [PMID: 28087453 PMCID: PMC5403610 DOI: 10.1016/j.micinf.2016.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis infection results in 1.5 million deaths annually. Type I interferon (IFN) signaling through its receptor IFNAR correlates with increased severity of disease, although how this increases susceptibility to M. tuberculosis remains uncertain. ISG15 is one of the most highly induced interferon stimulated genes (ISGs) during M. tuberculosis infection. ISG15 functions by conjugation to target proteins (ISGylation), by noncovalent association with intracellular proteins, and by release from the cell. Recent studies indicated that ISG15 can function via conjugation-independent mechanisms to suppress the type I IFN response. These data raised the question of whether ISG15 may have diverse and sometimes opposing functions during M. tuberculosis infection. To address this, we analyzed ISGylation during M. tuberculosis infection and show that ISGylated proteins accumulate following infection in an IFNAR-dependent manner. Type I IFN and ISG15 both play transient roles in promoting bacterial replication. However, as the disease progresses, ISGylation deviates from the overall effect of type I IFN and, ultimately, mice deficient in ISGylation are significantly more susceptible than IFNAR mice. Our data demonstrate that ISGs can both protect against and promote disease and are the first to report a role for ISGylation during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jessica A Campbell
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie A Weiss
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen J Monte
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
10
|
Wyatt EV, Diaz K, Griffin AJ, Rasmussen JA, Crane DD, Jones BD, Bosio CM. Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 196:4227-36. [PMID: 27029588 DOI: 10.4049/jimmunol.1502456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/09/2016] [Indexed: 01/28/2023]
Abstract
A shift in macrophage metabolism from oxidative phosphorylation to aerobic glycolysis is a requirement for activation to effectively combat invading pathogens. Francisella tularensis is a facultative intracellular bacterium that causes an acute, fatal disease called tularemia. Its primary mechanism of virulence is its ability to evade and suppress inflammatory responses while replicating in the cytosol of macrophages. The means by which F. tularensis modulates macrophage activation are not fully elucidated. In this study, we demonstrate that virulent F. tularensis impairs production of inflammatory cytokines in primary macrophages by preventing their shift to aerobic glycolysis, as evidenced by the downregulation of hypoxia inducible factor 1α and failure to upregulate pfkfb3 We also show that Francisella capsule is required for this process. In addition to modulating inflammatory responses, inhibition of glycolysis in host cells is also required for early replication of virulent Francisella Taken together, our data demonstrate that metabolic reprogramming of host cells by F. tularensis is a key component of both inhibition of host defense mechanisms and replication of the bacterium.
Collapse
Affiliation(s)
- Elliott V Wyatt
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Karina Diaz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Amanda J Griffin
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Genetics Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840;
| |
Collapse
|
11
|
Abstract
UNLABELLED Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis. Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. IMPORTANCE Francisella tularensis is a highly pathogenic bacterium with a very low infectious dose in humans. Some mechanisms of bacterial virulence have been elucidated, but the host genetic factors that contribute to host resistance or susceptibility are largely unknown. In this work, we have undertaken a genetic approach to assess what these factors are in mice. Analyzing early interactions of macrophages with the bacteria as well as data on overall susceptibility to infection revealed a locus on chromosome 19 that is associated with both phenotypes. In addition, our work revealed differences in the early macrophage response between macrophages with different genetic backgrounds. Overall, this work suggests some intriguing links between in vitro and in vivo infection models and should aid in further elucidating the genetic circuits behind the host response to Francisella tularensis infection.
Collapse
|
12
|
Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Collapse
|
13
|
Dhariwala MO, Anderson DM. Bacterial programming of host responses: coordination between type I interferon and cell death. Front Microbiol 2014; 5:545. [PMID: 25389418 PMCID: PMC4211556 DOI: 10.3389/fmicb.2014.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
During mammalian infection, bacteria induce cell death from an extracellular or intracellular niche that can protect or hurt the host. Data is accumulating that associate type I interferon (IFN) signaling activated by intracellular bacteria with programmed death of immune effector cells and enhanced virulence. Multiple pathways leading to IFN-dependent host cell death have been described, and in some cases it is becoming clear how these mechanisms contribute to virulence. Yet common mechanisms of IFN-enhanced bacterial pathogenesis are not obvious and no specific interferon stimulated genes have yet been identified that cause sensitivity to pathogen-induced cell death. In this review, we will summarize some bacterial infections caused by facultative intracellular pathogens and what is known about how type I IFN signaling may promote the replication of extracellular bacteria rather than stimulate protection. Each of these pathogens can survive phagocytosis but their intracellular life cycles are very different, they express distinct virulence factors and trigger different pathways of immune activation and crosstalk. These differences likely lead to widely varying amounts of type I IFN expression and a different inflammatory environment, but these may not be important to the pathologic effects on the host. Instead, each pathogen induces programmed cell death of key immune cells that have been sensitized by the activation of the type I IFN response. We will discuss how IFN-dependent host cell death may increase host susceptibility and try to understand common pathways of pathogenesis that lead to IFN-enhanced bacterial virulence.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
14
|
Crane DD, Bauler TJ, Wehrly TD, Bosio CM. Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Front Microbiol 2014; 5:438. [PMID: 25191316 PMCID: PMC4138581 DOI: 10.3389/fmicb.2014.00438] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
Activation of the inflammasome is important for the detection and clearance of cytosolic pathogens. In contrast to avirulent Francisella novicida (Fn), infection with virulent Francisella tularensis ssp tularensis does not trigger activation of the host AIM2 inflammasome. Here we show that differential activation of AIM2 following Francisella infection is due to sensitivity of each isolate to reactive oxygen species (ROS). ROS present at the outset of Fn infection contributes to activation of the AIM2 inflammasome, independent of NLRP3 and NADPH oxidase. Rather, mitochondrial ROS (mROS) is critical for Fn stimulation of the inflammasome. This study represents the first demonstration of the importance of mROS in the activation of the AIM2 inflammasome by bacteria. Our results also demonstrate that bacterial resistance to mROS is a mechanism of virulence for early evasion of detection by the host.
Collapse
Affiliation(s)
- Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Timothy J Bauler
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| |
Collapse
|
15
|
Bauler TJ, Chase JC, Wehrly TD, Bosio CM. Virulent Francisella tularensis destabilize host mRNA to rapidly suppress inflammation. J Innate Immun 2014; 6:793-805. [PMID: 24902499 DOI: 10.1159/000363243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022] Open
Abstract
Highly virulent bacterial pathogens have evolved rapid means to suppress host inflammatory responses by unknown mechanisms. Here, we use virulent Francisella tularensis, the cause of lethal tularemia in humans, as a model to elucidate these mechanisms. We show that following infection of murine macrophages F. tularensis rapidly and selectively destabilizes mRNA containing adenylate-uridylate-rich elements that encode for cytokines and chemokines important in controlling bacterial infection. Degradation of host mRNA encoding interleukin (IL)-1β, IL-6 and CXCL1 did not require viable bacteria or de novo protein synthesis, but did require escape of intracellular organisms from endocytic vesicles into the host cytosol. The specific targeting of host mRNA encoding inflammatory cytokines and chemokines for decay by a bacterial pathogen has not been previously reported. Thus, our findings represent a novel strategy by which a highly virulent pathogen modulates host inflammatory responses critical to the evasion of innate immunity.
Collapse
Affiliation(s)
- Timothy J Bauler
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Mont., USA
| | | | | | | |
Collapse
|
16
|
Gillette DD, Curry HM, Cremer T, Ravneberg D, Fatehchand K, Shah PA, Wewers MD, Schlesinger LS, Butchar JP, Tridandapani S, Gavrilin MA. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes. Front Cell Infect Microbiol 2014; 4:45. [PMID: 24783062 PMCID: PMC3988375 DOI: 10.3389/fcimb.2014.00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. RESULTS A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. CONCLUSION F. tularensis dampens inflammatory response by an active process. SIGNIFICANCE This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Devyn D Gillette
- Integrated Biomedical Graduate Program, The Ohio State University Columbus, OH, USA
| | - Heather M Curry
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA ; Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | - Thomas Cremer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - David Ravneberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Kavin Fatehchand
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Prexy A Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Mark D Wewers
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA ; Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Mikhail A Gavrilin
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| |
Collapse
|
17
|
Lipids derived from virulent Francisella tularensis broadly inhibit pulmonary inflammation via toll-like receptor 2 and peroxisome proliferator-activated receptor α. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1531-40. [PMID: 23925884 DOI: 10.1128/cvi.00319-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses.
Collapse
|
18
|
Fabrik I, Härtlova A, Rehulka P, Stulik J. Serving the new masters - dendritic cells as hosts for stealth intracellular bacteria. Cell Microbiol 2013; 15:1473-83. [PMID: 23795643 DOI: 10.1111/cmi.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) serve as the primers of adaptive immunity, which is indispensable for the control of the majority of infections. Interestingly, some pathogenic intracellular bacteria can subvert DC function and gain the advantage of an ineffective host immune reaction. This scenario appears to be the case particularly with so-called stealth pathogens, which are the causative agents of several under-diagnosed chronic diseases. However, there is no consensus how less explored stealth bacteria like Coxiella, Brucella and Francisella cross-talk with DCs. Therefore, the aim of this review was to explore the issue and to summarize the current knowledge regarding the interaction of above mentioned pathogens with DCs as crucial hosts from an infection strategy view. Evidence indicates that infected DCs are not sufficiently activated, do not undergo maturation and do not produce expected proinflammatory cytokines. In some cases, the infected DCs even display immunosuppressive behaviour that may be directly linked to the induction of tolerogenicity favouring pathogen survival and persistence.
Collapse
Affiliation(s)
- Ivo Fabrik
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
19
|
|
20
|
Ireland R, Wang R, Alinger JB, Small P, Bosio CM. Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8. THE JOURNAL OF IMMUNOLOGY 2013; 191:1276-86. [PMID: 23817430 DOI: 10.4049/jimmunol.1300867] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of innate immunity is essential for host survival of infection. Evasion and inhibition of innate immunity constitute a strategy used by pathogens, such as the highly virulent bacterium Francisella tularensis, to ensure their replication and transmission. The mechanism and bacterial components responsible for this suppression of innate immunity by F. tularensis are not defined. In this article, we demonstrate that lipids enriched from virulent F. tularensis strain SchuS4, but not attenuated live vaccine strain, inhibit inflammatory responses in vitro and in vivo. Suppression of inflammatory responses is associated with IκBα-independent inhibition of NF-κBp65 activation and selective inhibition of activation of IFN regulatory factors. Interference with NF-κBp65 and IFN regulatory factors is also observed following infection with viable SchuS4. Together these data provide novel insight into how highly virulent bacteria selectively modulate the host to interfere with innate immune responses required for survival of infection.
Collapse
Affiliation(s)
- Robin Ireland
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
22
|
Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect Immun 2013; 81:3099-105. [PMID: 23774604 DOI: 10.1128/iai.00203-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.
Collapse
|
23
|
Walters KA, Olsufka R, Kuestner RE, Cho JH, Li H, Zornetzer GA, Wang K, Skerrett SJ, Ozinsky A. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One 2013; 8:e62412. [PMID: 23690939 PMCID: PMC3653966 DOI: 10.1371/journal.pone.0062412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.
Collapse
|
24
|
Crane DD, Griffin AJ, Wehrly TD, Bosio CM. B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2756-66. [PMID: 23378429 DOI: 10.4049/jimmunol.1202697] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B1a cells are an important source of natural Abs, Abs directed against T-independent Ags, and are a primary source of IL-10. Bruton's tyrosine kinase (btk) is a cytoplasmic kinase that is essential for mediating signals from the BCR and is critical for development of B1a cells. Consequentially, animals lacking btk have few B1a cells, minimal Ab responses, and can preferentially generate Th1-type immune responses following infection. B1a cells have been shown to aid in protection against infection with attenuated Francisella tularensis, but their role in infection mediated by fully virulent F. tularensis is not known. Therefore, we used mice with defective btk (CBA/CaHN-Btk(XID)/J [XID mice]) to determine the contribution of B1a cells in defense against the virulent F. tularensis ssp. tularensis strain SchuS4. Surprisingly, XID mice displayed increased resistance to pulmonary infection with F. tularensis. Specifically, XID mice had enhanced clearance of bacteria from the lung and spleen and significantly greater survival of infection compared with wild-type controls. We revealed that resistance to infection in XID mice was associated with decreased numbers of IL-10-producing B1a cells and concomitant increased numbers of IL-12-producing macrophages and IFN-γ-producing NK/NKT cells. Adoptive transfer of wild-type B1a cells into XID mice reversed the control of bacterial replication. Similarly, depletion of NK/NKT cells also increased bacterial burdens in XID mice. Together, our data suggest B cell-NK/NKT cell cross-talk is a critical pivot controlling survival of infection with virulent F. tularensis.
Collapse
Affiliation(s)
- Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
25
|
de Paus RA, van Wengen A, Schmidt I, Visser M, Verdegaal EME, van Dissel JT, van de Vosse E. Inhibition of the type I immune responses of human monocytes by IFN-α and IFN-β. Cytokine 2013; 61:645-55. [PMID: 23299081 DOI: 10.1016/j.cyto.2012.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 11/02/2012] [Accepted: 12/07/2012] [Indexed: 01/20/2023]
Abstract
Interleukin-12 (IL-12), IL-23 and interferon-γ (IFN-γ) are pivotal cytokines acting in concert with tumor necrosis factor (TNF) and IL-1β to shape type I immune responses against bacterial pathogens. Recently, several groups reported that type I immunity can be inhibited by IFN-α/β. Here we show the extent of the inhibitory effects of IFN-α and IFN-β on the responsiveness of human monocytes to Toll like receptor-ligands and IFN-γ. Both IFN-α and IFN-β strongly reduced the production of IL-12p40, IL-1β and TNF and the IFN-γ induced CD54 and CD64 expression. High IFN-γ concentrations could not counterbalance the inhibitions and IFN-α still inhibited monocytes 24h after stimulation in vitro as well as in vivo in patients undergoing IFN-α treatment. Next, we explored the mechanism of inhibition. We confirm that IFN-α/β interferes with the IFN-γR1 expression, by studying the kinetics of IFN-γR1 downregulation. However, IFN-γR1 downregulation occurred only after two hours of IFN-α/β stimulation and was transient, which cannot explain the IFN-γ unresponsiveness observed directly and late after IFN-α/β stimulation. Additional experiments indeed indicate that other mechanisms are involved. IFN-α may interfere with IFN-γ-elicited phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-α may also activate methyltransferases which in turn reduce, at least partly, the TNF and IL-1β production and CD54 expression. IFN-α also induces the protein inhibitor of activated STAT1 (PIAS1). In conclusion, IFN-α and IFN-β strongly inhibit the IFN-γ responsiveness and the production of type I cytokines of monocytes, probably via various mechanisms. Our findings indicate that IFN-α/β play a significant role in the immunopathogenesis of bacterial infections, for example Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Roelof A de Paus
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
27
|
Rockx-Brouwer D, Chong A, Wehrly TD, Child R, Crane DD, Celli J, Bosio CM. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination. PLoS One 2012; 7:e37752. [PMID: 22662210 PMCID: PMC3360632 DOI: 10.1371/journal.pone.0037752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023] Open
Abstract
Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.
Collapse
Affiliation(s)
- Dedeke Rockx-Brouwer
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
| | - Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
| | - Tara D. Wehrly
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert Child
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
| | - Jean Celli
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (JC); (CMB)
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (JC); (CMB)
| |
Collapse
|
28
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crane DD, Scott DP, Bosio CM. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS One 2012; 7:e33349. [PMID: 22428026 PMCID: PMC3299770 DOI: 10.1371/journal.pone.0033349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/12/2012] [Indexed: 01/04/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection.
Collapse
Affiliation(s)
- Deborah D. Crane
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Type I interferons: diversity of sources, production pathways and effects on immune responses. Curr Opin Virol 2011; 1:463-75. [PMID: 22440910 DOI: 10.1016/j.coviro.2011.10.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFN-I) were first described over 50 years ago as factors produced by cells that interfere with virus replication and promote an antiviral state. Innate and adaptive immune responses to viruses are also greatly influenced by IFN-I. In this article we discuss the diversity of cellular sources of IFN-I and the pathways leading to IFN-I production during viral infections. Finally, we discuss the effects of IFN-I on cells of the immune system with emphasis on dendritic cells.
Collapse
|