1
|
Loureiro JP, Vacchini A, Berloffa G, Devan J, Schaefer V, Nosi V, Colombo R, Beshirova A, Montanelli G, Meyer B, Sharpe T, Chancellor A, Recher M, Mori L, De Libero G. Recognition of MR1-antigen complexes by TCR Vγ9Vδ2. Front Immunol 2025; 16:1519128. [PMID: 40040716 PMCID: PMC11876030 DOI: 10.3389/fimmu.2025.1519128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
The TCR-mediated activation of T cells expressing the TCR Vγ9Vδ2 relies on an innate-like mechanism involving the butyrophilin 3A1, 3A2 and 2A1 molecules and phospho-antigens, without the participation of classical antigen-presenting molecules. Whether TCR Vγ9Vδ2 cells also recognize complexes composed of antigens and antigen-presenting molecules in an adaptive-like manner is unknown. Here, we identify MR1-autoreactive cells expressing the TCR Vγ9Vδ2. This MR1-restricted response is antigen- and CDR3δ-dependent and butyrophilin-independent. TCR gene transfer reconstitutes MR1-antigen recognition, and engineered TCR Vγ9Vδ2 tetramers interact with soluble MR1-antigen complexes in an antigen-dependent manner. These cells are present in healthy individuals with low frequency and are mostly CD8+ or CD4-CD8 double negative. We also describe a patient with autoimmune symptoms and TCR γδ lymphocytosis in which ~10% of circulating T cells are MR1-self-reactive and express a TCR Vγ9Vδ2. These cells release pro-inflammatory cytokines, suggesting a possible participation in disease pathogenesis. Thus, MR1-self-antigen complexes can interact with some TCRs Vγ9Vδ2, promoting full cell activation and potentially contributing to diseases.
Collapse
Affiliation(s)
- José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giulia Montanelli
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Benedikt Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | | | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Fritsch N, Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. TOXICS 2024; 12:802. [PMID: 39590982 PMCID: PMC11598016 DOI: 10.3390/toxics12110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024]
Abstract
T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury, co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity, which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood. These include priming and lymphocyte proliferation tests and, most recently, activation-induced marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory risk assessment.
Collapse
Affiliation(s)
- Nele Fritsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Biotechnology, Technical University of Berlin, 10115 Berlin, Germany
| | - Marina Aparicio-Soto
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Caterina Curato
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Franziska Riedel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Hermann-Josef Thierse
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| |
Collapse
|
3
|
Zdinak PM, Trivedi N, Grebinoski S, Torrey J, Martinez EZ, Martinez S, Hicks L, Ranjan R, Makani VKK, Roland MM, Kublo L, Arshad S, Anderson MS, Vignali DAA, Joglekar AV. De novo identification of CD4 + T cell epitopes. Nat Methods 2024; 21:846-856. [PMID: 38658646 PMCID: PMC11093748 DOI: 10.1038/s41592-024-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.
Collapse
Affiliation(s)
- Paul M Zdinak
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nishtha Trivedi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica Torrey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eduardo Zarate Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbiology and Immunology Diversity Scholars Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Salome Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louise Hicks
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashi Ranjan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Venkata Krishna Kanth Makani
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Melissa Roland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lyubov Kublo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Tiwari R, Singh VK, Rajneesh, Kumar A, Gautam V, Kumar R. MHC tetramer technology: Exploring T cell biology in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:327-345. [PMID: 38762273 DOI: 10.1016/bs.apcsb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Major histocompatibility complex (MHC) tetramers stand as formidable tools within T cell biology, facilitating the exploration and comprehension of immune responses. These artificial molecules, comprising four bound MHC molecules, typically with a specified peptide and a fluorescent label, play a pivotal role in characterizing T cell subsets, monitoring clonal expansion, and unraveling T cell dynamics during responses to infections or immunotherapies. Beyond their applications in T cell biology, MHC tetramers prove valuable in investigating a spectrum of diseases such as infectious diseases, autoimmune disorders, and cancers. Their instrumental role extends to vaccine research and development. Notably, when appropriately configured, tetramers transcend T cell biology research and find utility in exploring natural killer T cells and contributing to specific T cell clonal deletions.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
5
|
Kormos J, Veres AJ, Imre L, Mátyus L, Benkő S, Szöllősi J, Jenei A. HLA DQ protein changes the cell surface distribution pattern of HLA proteins as monitored by Förster resonance energy transfer and high-resolution electron microscopy. Cytometry A 2023; 103:978-991. [PMID: 37605541 DOI: 10.1002/cyto.a.24787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Peptide presentation by MHC class I and MHC class II molecules plays important roles in the regulation of the immune response. One factor in these displays is the density of antigen, which must exceed a critical threshold for the effective activation of T cells. Nonrandom distribution of MHC class I and class II has already been detected at the nanometer level and at higher hierarchical levels. It is not clear how the absence and reappearance of some protein molecules can influence the nonrandom distribution. Therefore, we performed experiments on HLA II-deficient bare lymphocyte syndrome (BLS1) cells: we created a stable transfected cell line, tDQ6-BLS-1, and were able to detect the effect of the appearance of HLA-DQ6 molecules on the homo and heteroassociation of different cell surface molecules by comparing Förster resonance energy transfer (FRET) efficiency on transfected cells to that on nontransfected BLS-1 and JY human B-cell lines. Our FRET results show a decrease in homoassociation FRET between HLA I chains in HLA-DQ6-transfected tDQ6-BLS-1 cells compared with the parent BLS-1 cell line and an increase in heteroassociation FRET between HLA I and HLA II (compared with JY cells), suggesting a similar pattern of antigen presentation by the HLA-DQ6 allele. Transmission electron microscopy (TEM) revealed that both HLA class I and class II molecules formed clusters at higher hierarchical levels on the tDQ6-BLS-1 cells, and the de novo synthesized HLA DQ molecules did not intersperse with HLA class I islands. These observations could be important in understanding the fine tuning of the immune response.
Collapse
Affiliation(s)
- József Kormos
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Adrienn J Veres
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group (Eötvös Loránd Research Network-University of Debrecen), Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Jenei
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Hammond EM, Olsen KJ, Ram S, Tran GVV, Hall LS, Bradley JE, Lund FE, Samuels DS, Baumgarth N. Antigen-Specific CD4 T Cell and B Cell Responses to Borrelia burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:994-1005. [PMID: 37556156 PMCID: PMC10530202 DOI: 10.4049/jimmunol.2200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Long-lived T-dependent B cell responses fail to develop during persistent infection of mice with Borrelia burgdorferi, the causative agent of Lyme disease, raising questions about the induction and/or functionality of anti-B. burgdorferi adaptive immune responses. Yet, a lack of reagents has limited investigations into B. burgdorferi-specific T and B cells. We attempted two approaches to track B. burgdorferi-induced CD4 T cells. First, a B. burgdorferi mutant was generated with an influenza hemagglutinin (HA) peptide, HA111-119, inserted into the B. burgdorferi arthritis-related protein (Arp) locus. Although this B. burgdorferi arp::HA strain remained infectious, peptide-specific TCR transgenic CD4 T cells in vitro, or adoptively transferred into B. burgdorferi arp::HA-infected BALB/c mice, did not clonally expand above those of recipients infected with the parental B. burgdorferi strain or a B. burgdorferi mutant containing an irrelevant peptide. Some expansion, however, occurred in B. burgdorferi arp::HA-infected BALB/c SCID mice. Second, a (to our knowledge) newly identified I-Ab-restricted CD4 T cell epitope, Arp152-166, was used to generate Arp MHC class II tetramers. Flow cytometry showed small numbers of Arp-specific CD4 T cells emerging in mice infected with B. burgdorferi but not with Arp-deficient Borrelia afzelii. Although up to 30% of Arp-specific CD4 T cells were ICOS+PD-1+CXCR5+BCL6+ T follicular helper cells, their numbers declined after day 12, before germinal centers (GCs) are prominent. Although some Arp-specific B cells, identified using fluorochrome-labeled rArp proteins, had the phenotype of GC B cells, their frequencies did not correlate with anti-Arp serum IgG. The data suggest a failure not in the induction, but in the maintenance of GC T follicular helper and/or B cells to B. burgdorferi.
Collapse
Affiliation(s)
- Elizabeth M. Hammond
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Kimberly J. Olsen
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Shivneel Ram
- Center for Immunology and Infectious Diseases, University of California Davis
| | - Giang Vu Vi Tran
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana
| | - John E. Bradley
- Department of Microbiology, University of Alabama, Birmingham
| | - Frances E. Lund
- Department of Microbiology, University of Alabama, Birmingham
| | | | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
- Department of Molecular Microbiology and Immunology and Department of Molecular and Comparative Pathobiology, Johns Hopkins University
| |
Collapse
|
7
|
Sharma S, Tan X, Boyer J, Clarke D, Costanzo A, Abe B, Kain L, Holt M, Armstrong A, Rihanek M, Su A, Speake C, Gottlieb P, Gottschalk M, Pettus J, Teyton L. Measuring anti-islet autoimmunity in mouse and human by profiling peripheral blood antigen-specific CD4 T cells. Sci Transl Med 2023; 15:eade3614. [PMID: 37406136 PMCID: PMC10495123 DOI: 10.1126/scitranslmed.ade3614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
The endocrine pancreas is one of the most inaccessible organs of the human body. Its autoimmune attack leads to type 1 diabetes (T1D) in a genetically susceptible population and a lifelong need for exogenous insulin replacement. Monitoring disease progression by sampling peripheral blood would provide key insights into T1D immune-mediated mechanisms and potentially change preclinical diagnosis and the evaluation of therapeutic interventions. This effort has been limited to the measurement of circulating anti-islet antibodies, which despite a recognized diagnostic value, remain poorly predictive at the individual level for a fundamentally CD4 T cell-dependent disease. Here, peptide-major histocompatibility complex tetramers were used to profile blood anti-insulin CD4 T cells in mice and humans. While percentages of these were not directly informative, the state of activation of anti-insulin T cells measured by RNA and protein profiling was able to distinguish the absence of autoimmunity versus disease progression. Activated anti-insulin CD4 T cell were detected not only at time of diagnosis but also in patients with established disease and in some at-risk individuals. These results support the concept that antigen-specific CD4 T cells might be used to monitor autoimmunity in real time. This advance can inform our approach to T1D diagnosis and therapeutic interventions in the preclinical phase of anti-islet autoimmunity.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- School of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Josh Boyer
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Don Clarke
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrienne Armstrong
- Division of Endocrinology, University of California San Diego, San Diego, CA 92123, USA
| | - Marynette Rihanek
- Barbara Davis Center, University of Colorado, Boulder, CO 80045, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA,98101, USA
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Peter Gottlieb
- Barbara Davis Center, University of Colorado, Boulder, CO 80045, USA
| | - Michael Gottschalk
- Division of Pediatric Endocrinology, University of California San Diego, School of Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jeremy Pettus
- Division of Endocrinology, University of California San Diego, San Diego, CA 92123, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
9
|
Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, Paz-Elizur T, Grossman R, Ram Z, Volovitz I. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers (Basel) 2023; 15:574. [PMID: 36765532 PMCID: PMC9913544 DOI: 10.3390/cancers15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.
Collapse
Affiliation(s)
- Meytal Dror Levinsky
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Baruch Brenner
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Institute of Oncology, Davidoff Cancer Center, The Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Michal Yalon
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Pediatric Hematology-Oncology Department, Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zohar Levi
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Gastroenterology Department; The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Zvi Livneh
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zoya Cohen
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Tamar Paz-Elizur
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rachel Grossman
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zvi Ram
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Lewis SA, Peters B. T-cell epitope discovery and single-cell technologies to advance food allergy research. J Allergy Clin Immunol 2023; 151:15-20. [PMID: 36411114 PMCID: PMC9825656 DOI: 10.1016/j.jaci.2022.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
There is good evidence for a role of T cells in food allergy, but there is a lack of mechanistic understanding and phenotypic markers of the specific T cells contributing to pathology. Recent technologic advancements have allowed for a new experimental paradigm where we can find and pull out rare antigen-specific T cells and characterize them at the single-cell level. However, studies in infectious disease and broader allergy have shown that these techniques benefit greatly from precisely defined T-cell epitopes. Food allergens have fewer epitopes currently available, but it is growing and promises to overcome this gap. With growing use of this experimental design, it will be important to unbiasedly map T-cell phenotypes across food allergy and look for commonalities and contrasts to other allergic and infectious diseases. Once a pathologic phenotype for T cells has been established, the frequencies of these cells can be monitored with simpler techniques that could be applied to the clinic and used in diagnosis, prediction of treatment responsiveness, and discovery of targets for new treatments.
Collapse
Affiliation(s)
- Sloan A Lewis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
11
|
Abstract
Accelerated allergy shot schedules for inhalant and venom allergens provide individuals with allergy symptom relief but in a shorter time frame than conventional therapy. Accelerated immunotherapy (IT) protocols allow patients to reach therapeutic doses in a shorter time frame while improving adherence and reducing direct costs (e.g., fewer office visits and medications) and indirect costs (e.g., less travel time, missed work or school). Rush IT and cluster IT are believed to work through mechanisms similar to conventional subcutaneous IT (SCIT). The risk for severe systemic reactions during accelerated IT is low when appropriately administered; however, life-threatening and fatal reactions do occur. To reduce the incidence of systemic allergic reactions during cluster and rush IT protocols, premedication is recommended. It is important to exclude individuals at high risk such as those with poorly controlled asthma or those who are on β-blockers to mitigate the risk for developing systemic allergic reactions. However, accelerated SCIT regimens offer increased convenience, faster improvement in allergy symptoms, and the potential to reduce health-care costs while providing equivalent safety outcomes compared with conventional IT protocols.
Collapse
Affiliation(s)
- Justin Greiwe
- From the Bernstein Allergy Group Inc, Cincinnati, Ohio; and
| | | |
Collapse
|
12
|
Rattan A, White CL, Nelson S, Eismann M, Padilla-Quirarte H, Glover MA, Dileepan T, Marathe BM, Govorkova EA, Webby RJ, Richards KA, Sant AJ. Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens 2022; 11:251. [PMID: 35215193 PMCID: PMC8875387 DOI: 10.3390/pathogens11020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/30/2023] Open
Abstract
The adaptive T cell response to influenza B virus is understudied, relative to influenza A virus, for which there has been considerable attention and progress for many decades. Here, we have developed and utilized the C57BL/6 mouse model of intranasal infection with influenza B (B/Brisbane/60/2008) virus and, using an iterative peptide discovery strategy, have identified a series of robustly elicited individual CD4 T cell peptide specificities. The CD4 T cell repertoire encompassed at least eleven major epitopes distributed across hemagglutinin, nucleoprotein, neuraminidase, and non-structural protein 1 and are readily detected in the draining lymph node, spleen, and lung. Within the lung, the CD4 T cells are localized to both lung vasculature and tissue but are highly enriched in the lung tissue after infection. When studied by flow cytometry and MHC class II: peptide tetramers, CD4 T cells express prototypical markers of tissue residency including CD69, CD103, and high surface levels of CD11a. Collectively, our studies will enable more sophisticated analyses of influenza B virus infection, where the fate and function of the influenza B-specific CD4 T cells elicited by infection and vaccination can be studied as well as the impact of anti-viral reagents and candidate vaccines on the abundance, functionality, and localization of the elicited CD4 T cells.
Collapse
Affiliation(s)
- Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Sean Nelson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Max Eismann
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Herbey Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Patel S, Ramnoruth N, Wehr P, Rossjohn J, Reid HH, Campbell K, Nel HJ, Thomas R. Evaluation of a fit-for-purpose assay to monitor antigen-specific functional CD4+ T-cell subpopulations in rheumatoid arthritis using flow cytometry-based peptide-MHC class-II tetramer staining. Clin Exp Immunol 2022; 207:72-83. [PMID: 35020859 PMCID: PMC8802177 DOI: 10.1093/cei/uxab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterize antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunized HLA-DR1/DR4 humanized mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognizing this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1∗04:01 or ∗01:01-collagen type II (CII)259-273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.
Collapse
Affiliation(s)
- Swati Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nishta Ramnoruth
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pascale Wehr
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hugh H Reid
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Kim Campbell
- Janssen Research & Development, LLC, Spring House, PA, USA
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4 + T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 2021; 38:705-725. [PMID: 32340571 DOI: 10.1146/annurev-immunol-103019-085803] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.
Collapse
Affiliation(s)
- Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| |
Collapse
|
16
|
Saggau C, Scheffold A, Bacher P. Flow Cytometric Characterization of Human Antigen-Reactive T-Helper Cells. Methods Mol Biol 2021; 2285:141-152. [PMID: 33928550 DOI: 10.1007/978-1-0716-1311-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The detection and functional characterization of antigen-reactive T helper (Th) cells has been challenging due to their low frequency and functional heterogeneity. Antigen-reactive T cell enrichment (ARTE) allows the in-depth characterization of antigen-specific Th lymphocytes as a prerequisite for better understanding the role of adaptive immune responses in health and disease. ARTE is based on detection of the activation markers CD154 (CD40L) (expressed on all conventional Th cell subsets, Tcons) and CD137 (4-1BB) (expressed on regulatory T cells, Tregs), which are upregulated on the surface of CD4+ T cells upon short-term (7 h) in vitro stimulation with antigens in the presence of antigen-presenting cells (APCs). To substantially increase the sensitivity for the detection of antigen-specific Th cells, ARTE combines magnetic pre-enrichment of rare antigen-reactive T cells with multiparameter flow cytometry. Using CD154 and CD137 in combination allows the parallel detection of reactive Tcons and Tregs, after stimulation with the antigen. Thus, the ARTE technology now enables to characterize antigen-specific T cells with increased sensitivity of detection allowing even the investigation of antigen-specific Th cells in the naive T cell repertoire and regardless of prior knowledge of MHC alleles or antigenic epitopes.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
- Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
17
|
Wiles TA, Hohenstein A, Landry LG, Dang M, Powell R, Guyer P, James EA, Nakayama M, Haskins K, Delong T, Baker RL. Characterization of Human CD4 T Cells Specific for a C-Peptide/C-Peptide Hybrid Insulin Peptide. Front Immunol 2021; 12:668680. [PMID: 34113344 PMCID: PMC8185328 DOI: 10.3389/fimmu.2021.668680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Hybrid Insulin Peptides (HIPs), which consist of insulin fragments fused to other peptides from β-cell secretory granule proteins, are CD4 T cell autoantigens in type 1 diabetes (T1D). We have studied HIPs and HIP-reactive CD4 T cells extensively in the context of the non-obese diabetic (NOD) mouse model of autoimmune diabetes and have shown that CD4 T cells specific for HIPs are major contributors to disease pathogenesis. Additionally, in the human context, HIP-reactive CD4 T cells can be found in the islets and peripheral blood of T1D patients. Here, we performed an in-depth characterization of the CD4 T cell response to a C-peptide/C-peptide HIP (HIP11) in human T1D. We identified the TCR expressed by the previously-reported HIP11-reactive CD4 T cell clone E2, which was isolated from the peripheral blood of a T1D patient, and determined that it recognizes HIP11 in the context of HLA-DQ2. We also identified a HIP11-specific TCR directly in the islets of a T1D donor and demonstrated that this TCR recognizes a different minimal epitope of HIP11 presented by HLA-DQ8. We generated and tested an HLA-DQ2 tetramer loaded with HIP11 that will enable direct ex vivo interrogation of CD4 T cell responses to HIP11 in human patients and control subjects. Using mass spectrometric analysis, we confirmed that HIP11 is present in human islets. This work represents an important step in characterizing the role of CD4 T cell responses to HIPs in human T1D.
Collapse
Affiliation(s)
- Timothy A. Wiles
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Anita Hohenstein
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mylinh Dang
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Perrin Guyer
- Department of Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Eddie A. James
- Department of Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Rocky L. Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Rocky L. Baker,
| |
Collapse
|
18
|
Mitoma S, Carr BV, Harvey Y, Moffat K, Sekiguchi S, Charleston B, Norimine J, Seago J. The detection of long-lasting memory foot-and-mouth disease (FMD) virus serotype O-specific CD4 + T cells from FMD-vaccinated cattle by bovine major histocompatibility complex class II tetramer. Immunology 2021; 164:266-278. [PMID: 34003490 PMCID: PMC8442236 DOI: 10.1111/imm.13367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious, economically devastating disease of cloven‐hooved animals. The development of long‐lasting effective FMD vaccines would greatly benefit the global FMD control programme. Deep analysis of adaptive immunity in cattle vaccinated against FMD is technically challenging due to the lack of species‐specific tools. In this study, we aimed to identify CD4+ T‐cell epitopes in the FMD virus (FMDV) capsid and to phenotype the CD4+ T cells that recognize them using bovine major histocompatibility complex (BoLA) class II tetramer. A BoLA class II tetramer based on the DRA/DRB3*020:02 allele and FMDV antigen‐stimulated PBMCs from bovine vaccinates were used to successfully identify four epitopes in the FMDV capsid, three of which have not been previously reported; two epitopes were identified in the structural protein VP1, one in VP3 and one in VP4. Specificity of the three novel epitopes was confirmed by proliferation assay. All epitope‐expanded T‐cell populations produced IFN‐γ in vitro, indicating a long‐lasting Th1 cell phenotype after FMD vaccination. VP3‐specific CD4+ T cells exhibited the highest frequency amongst the identified epitopes, comprising >0·004% of the CD4+ T‐cell population. CD45RO+CCR7+ defined central memory CD4+ T‐cell subpopulations were present in higher frequency in FMDV‐specific CD4+ T‐cell populations from FMD‐vaccinated cattle ex vivo. This indicates an important role in maintaining cell adaptive immunity after FMD vaccination. Notably, FMDV epitope‐loaded tetramers detected the presence of FMDV‐specific CD4+ T cells in bovine PBMC more than four years after vaccination. This work contributes to our understanding of vaccine efficacy.
Collapse
Affiliation(s)
- Shuya Mitoma
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Satoshi Sekiguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Junzo Norimine
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
19
|
Falta MT, Crawford JC, Tinega AN, Landry LG, Crawford F, Mack DG, Martin AK, Atif SM, Li L, Santos RG, Nakayama M, Kappler JW, Maier LA, Thomas PG, Pinilla C, Fontenot AP. Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation. J Clin Invest 2021; 131:144864. [PMID: 33630763 PMCID: PMC8087207 DOI: 10.1172/jci144864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy C. Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Li Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John W. Kappler
- Department of Biomedical Research and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa A. Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Sugata K, Matsunaga Y, Yamashita Y, Nakatsugawa M, Guo T, Halabelian L, Ohashi Y, Saso K, Rahman MA, Anczurowski M, Wang CH, Murata K, Saijo H, Kagoya Y, Ly D, Burt BD, Butler MO, Mak TW, Hirano N. Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4 + T cells. Nat Biotechnol 2021; 39:958-967. [PMID: 33649568 DOI: 10.1038/s41587-021-00836-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2021] [Indexed: 01/08/2023]
Abstract
Peptide-major histocompatibility complex (pMHC) multimers enable the detection of antigen-specific T cells in studies ranging from vaccine efficacy to cancer immunotherapy. However, this technology is unreliable when applied to pMHC class II for the detection of CD4+ T cells. Here, using a combination of molecular biological and immunological techniques, we cloned sequences encoding human leukocyte antigen (HLA)-DP, HLA-DQ and HLA-DR molecules with enhanced CD4 binding affinity (with a Kd of 8.9 ± 1.1 µM between CD4 and affinity-matured HLA-DP4) and produced affinity-matured class II dimers that stain antigen-specific T cells better than conventional multimers in both in vitro and ex vivo analyses. Using a comprehensive library of dimers for HLA-DP4, which is the most frequent HLA allele in many ancestry groups, we mapped 103 HLA-DP4-restricted epitopes derived from diverse tumor-associated antigens and cloned the cognate T-cell antigen receptor (TCR) genes from in vitro-stimulated CD4+ T cells. The availability of affinity-matured class II dimers across HLA-DP, HLA-DQ and HLA-DR alleles will aid in the investigation of human CD4+ T-cell responses.
Collapse
Affiliation(s)
- Kenji Sugata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yukiko Matsunaga
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yota Ohashi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hiroshi Saijo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dalam Ly
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian D Burt
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tak W Mak
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Wang HP, Wang ZG, Liu SL. Current status and future trends of vaccine development against viral infection and disease. NEW J CHEM 2021. [DOI: 10.1039/d1nj00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper focuses on the classification and representative studies of viral vaccines and future directions of vaccine design.
Collapse
Affiliation(s)
- Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| |
Collapse
|
22
|
Identification and Characterization of CD4 + T Cell Epitopes after Shingrix Vaccination. J Virol 2020; 94:JVI.01641-20. [PMID: 32999027 DOI: 10.1128/jvi.01641-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infections with varicella-zoster virus (VZV) are associated with a range of clinical manifestations. Primary infection with VZV causes chicken pox. The virus remains latent in neurons, and it can reactivate later in life, causing herpes zoster (HZ). Two different vaccines have been developed to prevent HZ; one is based on a live attenuated VZV strain (Zostavax), and the other is based on adjuvanted gE recombinant protein (Shingrix). While Zostavax efficacy wanes with age, Shingrix protection retains its efficacy in elderly subjects (individuals 80 years of age and older). In this context, it is of much interest to understand if there is a role for T cell immunity in the differential clinical outcome and if there is a correlate of protection between T cell immunity and Shingrix efficacy. In this study, we characterized the Shingrix-specific ex vivo CD4 T cell responses in the context of natural exposure and HZ vaccination using pools of predicted epitopes. We show that T cell reactivity following natural infection and Zostavax vaccination dominantly targets nonstructural (NS) proteins, while Shingrix vaccination redirects dominant reactivity to target gE. We mapped the gE-specific responses following Shingrix vaccination to 89 different gE epitopes, 34 of which accounted for 80% of the response. Using antigen presentation assays and single HLA molecule-transfected lines, we experimentally determined HLA restrictions for 94 different donor/peptide combinations. Finally, we used our results as a training set to assess strategies to predict restrictions based on measured or predicted HLA binding and the corresponding HLA types of the responding subjects.IMPORTANCE Understanding the T cell profile associated with the protection observed in elderly vaccinees following Shingrix vaccination is relevant to the general definition of correlates of vaccine efficacy. Our study enables these future studies by clarifying the patterns of immunodominance associated with Shingrix vaccination, as opposed to natural infection or Zostavax vaccination. Identification of epitopes recognized by Shingrix-induced CD4 T cells and their associated HLA restrictions enables the generation of tetrameric staining reagents and, more broadly, the capability to characterize the specificity, magnitude, and phenotype of VZV-specific T cells.
Collapse
|
23
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
24
|
Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol Lett 2019; 219:1-7. [PMID: 31881234 DOI: 10.1016/j.imlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Identification of antigen specificity of CD4 T cells is instrumental in understanding adaptive immune responses in health and disease. The high diversity of CD4 T cell repertoire combined with the functional heterogeneity of the compartment poses a challenge to the assessment of CD4 T cell responses. In spite of that, multiple technologies allow direct or indirect interrogation of antigen specificity of CD4 T cells. In the last decade, multiple surface proteins have been established as cytokine-independent surrogates of in vitro CD4 T cell activation, and have found applications in the live identification and isolation of antigen-responsive CD4 T cells. Here we review the current knowledge of the surface proteins that permit identification of viable antigen-responsive CD4 T cells with high specificity, including those capable of identifying specialized CD4 T subsets such as germinal center follicular helper T cells and CD4 regulatory T cells.
Collapse
|
25
|
Pastore G, Carraro M, Pettini E, Nolfi E, Medaglini D, Ciabattini A. Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4 + T Cells Combining MHC-II Tetramer and Intracellular Cytokine Staining Technologies. Front Immunol 2019; 10:2304. [PMID: 31649661 PMCID: PMC6794358 DOI: 10.3389/fimmu.2019.02304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of multifunctional CD4+ T cells is fundamental for characterizing the immune responses to vaccination or infection. Major histocompatibility complex (MHC)/peptide tetramers represent a powerful technology for the detection of antigen-specific T cells by specific binding to their T-cell receptor, and their combination with functional assays is fundamental for characterizing the antigen-specific immune response. Here we optimized a protocol for the detection of multiple intracellular cytokines within epitope-specific CD4+ T cells identified by the MHC class II tetramer technology. The optimal procedure for assessing the functional activity of tetramer-binding CD4+ T cells was based on the simultaneous intracellular staining with both MHC tetramers and cytokine-specific antibodies upon in vitro restimulation of cells with the vaccine antigen. The protocol was selected among procedures that differently combine the steps of cellular restimulation and tetramer staining with intracellular cytokine labeling. This method can be applied to better understand the complex functional profile of CD4+ T-cell responses upon vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc 2019; 14:1687-1707. [PMID: 31092913 DOI: 10.1038/s41596-019-0133-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Peptide antigens bound to molecules encoded by the major histocompatibility complex (MHC) and presented on the cell surface form the targets of T lymphocytes. This critical arm of the adaptive immune system facilitates the eradication of pathogen-infected and cancerous cells, as well as the production of antibodies. Methods to identify these peptide antigens are critical to the development of new vaccines, for which the goal is the generation of effective adaptive immune responses and long-lasting immune memory. Here, we describe a robust protocol for the identification of MHC-bound peptides from cell lines and tissues, using nano-ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (nUPLC-MS/MS) and recent improvements in methods for isolation and characterization of these peptides. The protocol starts with the immunoaffinity capture of naturally processed MHC-peptide complexes. The peptides dissociate from the class I human leukocyte antigens (HLAs) upon acid denaturation. This peptide cargo is then extracted and separated into fractions by HPLC, and the peptides in these fractions are identified using nUPLC-MS/MS. With this protocol, several thousand peptides can be identified from a wide variety of cell types, including cancerous and infected cells and those from tissues, with a turnaround time of 2-3 d.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicola Ternette
- The Jenner Institute, Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
28
|
Abstract
The identification and analysis of allergen-specific CD4+ T cells is critical for understanding how these cells contribute to atopic disease and how to subvert their behavior through immune therapy. The advent of fluorescently labeled soluble tetramers of peptide:MHCII complexes (pMHCII tetramers) has provided investigators with an invaluable means to achieve this goal. Although pMHCII tetramers were first developed over two decades ago, their widespread use has been limited by the technical difficulty of generating these reagents. However, the adoption of various technical innovations from several labs over time has contributed greatly to the increased success in tetramer generation today. Here, we describe a comprehensive protocol for generating pMHCII tetramers using as an example a Derp1:I-Ab tetramer used to study allergen-specific CD4+ T cell responses in murine models of airway inflammation and allergic disease.
Collapse
|
29
|
Antigen-specific regulatory T-cell responses against aeroantigens and their role in allergy. Mucosal Immunol 2018; 11:1537-1550. [PMID: 29858582 DOI: 10.1038/s41385-018-0038-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/04/2023]
Abstract
The mucosal immune system of the respiratory tract is specialized to continuously monitor the external environment and to protect against invading pathogens, while maintaining tolerance to innocuous inhaled particles. Allergies result from a loss of tolerance against harmless antigens characterized by formation of allergen-specific Th2 cells and IgE. Tolerance is often described as a balance between harmful Th2 cells and various types of protective "regulatory" T cells. However, the identity of the protective T cells in healthy vs. allergic individuals or following successful allergen-specific therapy is controversially discussed. Recent technological progress enabling the identification of antigen-specific effector and regulatory T cells has significantly contributed to our understanding of tolerance. Here we discuss the experimental evidence for the various tolerance mechanisms described. We try to integrate the partially contradictory data into a new model proposing different mechanism of tolerance depending on the quality and quantity of the antigens as well as the way of antigen exposure. Understanding the basis of tolerance is essential for the rational design of novel and more efficient immunotherapies.
Collapse
|
30
|
Caso F, Costa L, Nucera V, Barilaro G, Masala IF, Talotta R, Caso P, Scarpa R, Sarzi-Puttini P, Atzeni F. From autoinflammation to autoimmunity: old and recent findings. Clin Rheumatol 2018; 37:2305-2321. [PMID: 30014358 DOI: 10.1007/s10067-018-4209-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases and autoinflammatory diseases have a number of similar etiopathogenetic and clinical characteristics, including genetic predisposition and recurrent systemic inflammatory flares. The first phase of ADs involves innate immunity: by means of TLRs, autoantigen presentation, B and T cell recruitment and autoantibody synthesis. The second phase involves adaptive immunity, a self-sustaining process in which immune complexes containing nucleic acids and autoantibodies activate self-directed inflammation. The link between autoimmunity and autoinflammation is IL-1ß, which is crucial in connecting the innate immune response due to NLR activation and the adaptive immune responses of T and B cells. In conclusion, although ADs are still considered adaptive immunity-mediated disorders, there is increasing evidence that innate immunity and inflammasomes are also involved. The aim of this review is to highlight the link between the innate and adaptive immune mechanisms involved in autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Valeria Nucera
- Rheumatology Unit, University of Messina, Messina, Italy
| | - Giuseppe Barilaro
- Department of Internal Medicine, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Rossella Talotta
- Rheumatology Unit, ASST Fatebenefratelli Sacco Buzzi, Milan, Italy
| | - Paolo Caso
- Geriatric Unit, Faculty of Medicine and Psychology, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Pieper J, Dubnovitsky A, Gerstner C, James EA, Rieck M, Kozhukh G, Tandre K, Pellegrino S, Gebe JA, Rönnblom L, Sandalova T, Kwok WW, Klareskog L, Buckner JH, Achour A, Malmström V. Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. J Autoimmun 2018; 92:47-56. [PMID: 29853344 DOI: 10.1016/j.jaut.2018.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/29/2022]
Abstract
ACPA-positive rheumatoid arthritis (RA) is associated with distinct HLA-DR alleles and immune responses to many citrullinated self-antigens. Herein we investigated the T cell epitope confined within α-enolase326-340 in the context of HLA-DRB1*04:01 and assessed the corresponding CD4+ T cells in both the circulation and in the rheumatic joint. Comparative crystallographic analyses were performed for the native and citrullinated α-enolase326-340 peptides in complex with HLA-DRB1*04:01. HLA-tetramers assembled with either the native or citrullinated peptide were used for ex vivo and in vitro assessment of α-enolase-specific T cells in peripheral blood, synovial fluid and synovial tissue by flow cytometry. The native and modified peptides take a completely conserved structural conformation within the peptide-binding cleft of HLA-DRB1*04:01. The citrulline residue-327 was located N-terminally, protruding towards TCRs. The frequencies of T cells recognizing native eno326-340 were similar in synovial fluid and peripheral blood, while in contrast, the frequency of T cells recognizing cit-eno326-340 was significantly elevated in synovial fluid compared to peripheral blood (3.6-fold, p = 0.0150). Additionally, citrulline-specific T cells with a memory phenotype were also significantly increased (1.6-fold, p = 0.0052) in synovial fluid compared to peripheral blood. The native T cell epitope confined within α-enolase326-340 does not appear to lead to complete negative selection of cognate CD4+ T cells. In RA patient samples, only T cells recognizing the citrullinated version of α-enolase326-340 were found at elevated frequencies implicating that neo-antigen formation is critical for breach of tolerance.
Collapse
Affiliation(s)
- Jennifer Pieper
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anatoly Dubnovitsky
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Gerstner
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eddie A James
- Tetramer Core, BRI at Virginia Mason, Seattle, WA, USA
| | - Mary Rieck
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Genadiy Kozhukh
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Tandre
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - John A Gebe
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - William W Kwok
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jane H Buckner
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
32
|
Andargachew R, Martinez RJ, Kolawole EM, Evavold BD. CD4 T Cell Affinity Diversity Is Equally Maintained during Acute and Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:19-30. [PMID: 29777029 DOI: 10.4049/jimmunol.1800295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
TCR affinity for peptide MHC dictates the functional efficiency of T cells and their propensity to differentiate into effectors and form memory. However, in the context of chronic infections, it is unclear what the overall profile of TCR affinity for Ag is and if it differs from acute infections. Using the comprehensive affinity analysis provided by the two-dimensional micropipette adhesion frequency assay and the common indirect affinity evaluation methods of MHC class II tetramer and functional avidity, we tracked IAb GP61-80-specific cells in the mouse model of acute (Armstrong) and chronic (clone 13) lymphocytic choriomeningitis virus infection. In each response, we show CD4 T cell population affinity peaks at the effector phase and declines with memory. Of interest, the range and average relative two-dimensional affinity was equivalent between acute and chronic infection, indicating chronic Ag exposure did not skew TCR affinity. In contrast, functional and tetramer avidity measurements revealed divergent results and lacked a consistent correlation with TCR affinity. Our findings highlight that the immune system maintains a diverse range in TCR affinity even under the pressures of chronic Ag stimulation.
Collapse
Affiliation(s)
- Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Ryan J Martinez
- School of Medicine, Emory University, Atlanta, GA 30322; and
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
33
|
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
35
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
36
|
Shen X, Dojcinovic D, Baldi L, Hacker DL, Luescher IF, Wurm FM. Improved process conditions for increasing expression of MHC class II protein from a stable Drosophila S2 cell line. Biotechnol Lett 2017; 40:85-92. [PMID: 28993910 DOI: 10.1007/s10529-017-2440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate the effects of operational process conditions on expression of MHC class II protein from a stable Drosophila S2 cell line. RESULTS When the Drosophila S2 cells were grown in vented orbitally shaken TubeSpin bioreactor 600 containers, cell growth was improved three-fold and the yield of recombinant major histocompatibility (MHC) class II protein (HLA-DR12xHis) increased four-fold over the levels observed for the same cells cultivated in roller bottles (RB) without vented caps. Culturing in RB with vented caps while increasing the rotation speed from 6 rpm to 18 rpm also improved cell growth five-fold and protein productivity three-fold which is comparable to the levels observed in the orbitally shaken containers. Protein activity was found to be almost identical between the two vessel systems tested. CONCLUSIONS Optimized cell culture conditions and a more efficient vessel type can enhance gas transfer and mixing and lead to substantial improvement of recombinant product yields from S2 cells.
Collapse
Affiliation(s)
- Xiao Shen
- Laboratory of Cellular Biotechnology, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,R&D Department, Cantonbio Co., Ltd, Guangzhou, 510200, China.
| | - Danijel Dojcinovic
- Molecular Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066, Epalinges, Switzerland.,TCMetrix Ltd, 1066, Epalinges, Switzerland.,Covance Central Laboratory Services SA, 1217, Meyrin, Switzerland
| | - Lucia Baldi
- Laboratory of Cellular Biotechnology, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - David L Hacker
- Laboratory of Cellular Biotechnology, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Immanuel F Luescher
- Molecular Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066, Epalinges, Switzerland.,TCMetrix Ltd, 1066, Epalinges, Switzerland
| | - Florian M Wurm
- Laboratory of Cellular Biotechnology, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
37
|
Fan Y. Bait and Trap: Enriching Autoreactive T Cells With β-Cell Antigen-Loading Biomaterial Scaffolds for Early Detection of Type 1 Diabetes. Diabetes 2017; 66:2066-2068. [PMID: 28733307 PMCID: PMC5521872 DOI: 10.2337/dbi17-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA
| |
Collapse
|
38
|
Lawrence MG, Steinke JW, Borish L. Basic science for the clinician: Mechanisms of sublingual and subcutaneous immunotherapy. Ann Allergy Asthma Immunol 2017; 117:138-42. [PMID: 27499541 DOI: 10.1016/j.anai.2016.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To discuss the general immunologic changes that occur during immunotherapy, focusing on the differences between subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). DATA SOURCES PubMed literature review. STUDY SELECTIONS Articles pertaining to SCIT and SLIT, with specific emphasis on those that included immune mechanistic studies. RESULTS Both SCIT and SLIT are characterized by the induction of regulatory B and T cells, decreased allergen-specific T-cell proliferation, a shift from a TH2 to TH1 cytokine milieu and from an IgE to an IgG4/IgA antibody response. These changes are accompanied by clinical improvement in symptoms. CONCLUSION Immunotherapy using allergen extracts administered via both subcutaneous and sublingual approaches have demonstrated efficacy in the treatment of allergic rhinoconjunctivitis and other allergic conditions. There are subtle differences between the approaches, and understanding these differences may help clinicians select a preferred route of therapy for particular patients or allergens, depending on the immune response that is being targeted.
Collapse
Affiliation(s)
- Monica G Lawrence
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; Carter Immunology Center, University of Virginia Health System, Charlottesville, Virginia
| | - Larry Borish
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; Carter Immunology Center, University of Virginia Health System, Charlottesville, Virginia; Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
39
|
Rust BJ, Wambre E. Human Immune Monitoring Techniques during Food Allergen Immunotherapy. Curr Allergy Asthma Rep 2017; 17:22. [PMID: 28361386 DOI: 10.1007/s11882-017-0689-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PURPOSE OF REVIEW Encouraging results from recent food allergen immunotherapy clinical trials indicate that the immune system plays an essential role in peripheral tolerance to food allergen. Thus, the monitoring of changes in immune responses and their possible correlation with clinical outcome in allergic patients receiving immunotherapies could theoretically serve as surrogate markers and be harnessed as rationale for food allergen immunotherapy development. RECENT FINDINGS A shift towards antigen specificity in recent assays has provided a solid foundation for the elucidation of cellular mechanisms involved in food allergen immunotherapy as well as the tracking of allergen-specific immune cells. In this review, we overview the current challenges and technologies used in immune monitoring during immunotherapy in allergic patients with a focus on cell-mediated immunity. We also discuss critical steps involved in some of the cellular immune assays utilized in clinical trials.
Collapse
Affiliation(s)
- Blake J Rust
- Department of Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Erik Wambre
- Department of Translational Immunology, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
40
|
Paul S, Arlehamn CSL, Schulten V, Westernberg L, Sidney J, Peters B, Sette A. Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes. BMC Immunol 2017; 18:20. [PMID: 28681704 PMCID: PMC5499093 DOI: 10.1186/s12865-017-0204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Results Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher’s exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew’s correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Conclusions Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA.
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Veronique Schulten
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| |
Collapse
|
41
|
Using DR52c/Ni 2+ mimotope tetramers to detect Ni 2+ reactive CD4 + T cells in patients with joint replacement failure. Toxicol Appl Pharmacol 2017; 331:69-75. [PMID: 28554661 DOI: 10.1016/j.taap.2017.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
Abstract
T cell mediated hypersensitivity to nickel (Ni2+) is one of the most common causes of allergic contact dermatitis. Ni2+ sensitization may also contribute to the failure of Ni2+ containing joint implants, and revision to non-Ni2+ containing hardware can be costly and debilitating. Previously, we identified Ni2+ mimotope peptides, which are reactive to a CD4+ T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni2+ induced contact dermatitis. Here, we generated DR52c/Ni2+ mimotope tetramers, and used them to test if the same Ni2+ T cell activation mechanism could be generalized to Ni2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni2+ mimotope tetramer detected Ni2+ reactive CD4+ T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni2+ sensitized by patch testing and a positive Ni2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni2+ stimulation induced the expansion of Vβ17 positive CD4+ T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni2+ independent mimotope tetramers may be a useful tool to identify the Ni2+ reactive CD4+ T cells.
Collapse
|
42
|
Archila LLD, Kwok WW. Tetramer-Guided Epitope Mapping: A Rapid Approach to Identify HLA-Restricted T-Cell Epitopes from Composite Allergens. Methods Mol Biol 2017; 1592:199-209. [PMID: 28315222 DOI: 10.1007/978-1-4939-6925-8_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tetramer-guided epitope mapping (TGEM) is a technique in immunology that permits the rapid identification of allergenic epitopes through peptide screening procedures utilizing human lymphocyte antigen (HLA) class II tetramers as staining reagents for detection. The identification of allergenic epitopes is a prerequisite for the accurate characterization of allergen-specific CD4+ T cells without in vitro stimulation. Additionally, these MHC-II/peptide complexes that interact with T-cell receptors (TCR) of pathogenic CD4+ T cells are compatible with a different number of assays like Intracelullar Cytokine Staining (ICS), and Carboxyfluorescein succinimidyl ester (CFSE) making it a robust technology to study the functionality of allergen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Luis L Diego Archila
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA, 98101, USA
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA, 98101, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.vacrep.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Su KY, Watanabe A, Yeh CH, Kelsoe G, Kuraoka M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. THE JOURNAL OF IMMUNOLOGY 2016; 197:4163-4176. [PMID: 27815447 DOI: 10.4049/jimmunol.1502193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B cell culture is the capacity to support mature B cell proliferation. We developed a culture method to support the efficient activation and proliferation of naive and memory human B cells. This culture supports extensive B cell proliferation, with ∼103-fold increases following 8 d in culture and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naive B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved and, when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHC class II, CD80, and CD86. CD B cells act as APCs and present alloantigens and microbial Ags to T cells. We are able to activate and expand Ag-specific memory B cells; these cultured cells are highly effective in presenting Ag to T cells. We characterized the TCR repertoire of rare Ag-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual.
Collapse
Affiliation(s)
- Kuei-Ying Su
- Department of Immunology, Duke University, Durham, NC 27710.,Tzu Chi Medical Center, Hualien 970, Taiwan; and
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710
| | - Chen-Hao Yeh
- Department of Immunology, Duke University, Durham, NC 27710
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710; .,Human Vaccine Institute, Duke University, Durham, NC 27710
| | | |
Collapse
|
45
|
Catrina AI, Joshua V, Klareskog L, Malmström V. Mechanisms involved in triggering rheumatoid arthritis. Immunol Rev 2016; 269:162-74. [PMID: 26683152 DOI: 10.1111/imr.12379] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome with a strong autoimmune component. The autoantigens in RA are neither tissue nor organ-specific, but comprise a broad collection of post-translational modified proteins, such as citrullinated proteins. These modifications are likely to be triggered by innate stimuli. In genetically susceptible hosts, they can lead to a more substantiated secondary autoimmune reaction targeting the joints and precipitating the clinical onset of RA. Both innate and adaptive mechanisms will then closely interplay to promote chronic joint inflammation in the several absence of appropriate treatment. This scenario, is shared with other autoimmune diseases where potentially pathogenic immune responses are present already before disease onset. Better understanding of these processes will allow both earlier diagnosis of RA and identification of those healthy individuals that are at risk of developing disease, opening possibilities for disease prevention. In this review, we discuss the iterative processes of innate and adaptive immunity responsible for the (longitudinal) development of immune reactions that may contribute to the development of RA.
Collapse
Affiliation(s)
- Anca I Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vijay Joshua
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Ghosh MK, Nguyen V, Muller HK, Walker AM. Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus. THE JOURNAL OF IMMUNOLOGY 2016; 197:2290-6. [PMID: 27496970 DOI: 10.4049/jimmunol.1502483] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/12/2016] [Indexed: 11/19/2022]
Abstract
Using multiple murine foster-nursing protocols, thereby eliminating placental transfer and allowing a distinction between dam- and pup-derived cells, we show that foster nursing by an immunized dam results in development of CD8(+) T cells in nonimmunized foster pups that are specific for Ags against which the foster dam was immunized (Mycobacterium tuberculosis or Candida albicans). We have dubbed this process "maternal educational immunity" to distinguish it from passive cellular immunity. Of the variety of maternal immune cells present in milk, only T cells were detected in pup tissues. Maternal T cells, a substantial percentage of which were CD4(+)MHC class II(+), accumulated in the pup thymus and spleen during the nursing period. Further analysis of maternal cells in the pup thymus showed that a proportion was positive for maternal immunogen-specific MHC class II tetramers. To determine the outcome of Ag presentation in the thymus, the maternal or foster pup origin of immunogen-responding CD8(+) cells in foster pup spleens was assessed. Whereas ∼10% were maternally derived in the first few weeks after weaning, all immunogen-responding CD8(+) T cells were pup derived by 12 wk of age. Pup-derived immunogen-responsive CD8(+) cells persisted until at least 1 y of age. Passive cellular immunity is well accepted and has been demonstrated in the human population. In this study, we show an arguably more important role for transferred immune cells: the direction of offspring T cell development. Harnessing maternal educational immunity through prepregnancy immunization programs has potential for improvement of infant immunity.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521; and
| | - Virginia Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521; and
| | - H Konrad Muller
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521; and
| |
Collapse
|
47
|
Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E, Gregg Y, van Rooyen M, Ernst JD, Hatherill M, Hanekom WA, Peters B, Scriba TJ, Sette A. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog 2016; 12:e1005760. [PMID: 27409590 PMCID: PMC4943605 DOI: 10.1371/journal.ppat.1005760] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.
Collapse
Affiliation(s)
- Cecilia S. Lindestam Arlehamn
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Chelsea Carpenter
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edward Makgotlho
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yolande Gregg
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel D. Ernst
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| |
Collapse
|
48
|
Haddad CS, Bhattacharya P, Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Elshabrawy HA, Epstein AL, Prabhakar BS. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice. Autoimmunity 2016; 49:298-311. [PMID: 27245356 DOI: 10.1080/08916934.2016.1183657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Earlier, we have shown that GM-CSF derived bone marrow (BM) dendritic cells (G-BMDCs) can expand Foxp3(+) regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3(+)CD103(+)CD38(-) stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3(+)CD103(-)CD38(+) labile-phenotype Tregs in the thymus and increased autoreactive CD4(+) T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4(+) T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2.
Collapse
Affiliation(s)
- Christine S Haddad
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Palash Bhattacharya
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Khaled Alharshawi
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Alejandra Marinelarena
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Prabhakaran Kumar
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Osama El-Sayed
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Hatem A Elshabrawy
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Alan L Epstein
- b Department of Pathology , University of Southern California Keck School of Medicine , Los Angeles , CA , USA
| | - Bellur S Prabhakar
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| |
Collapse
|
49
|
Nomura T, Suzuki M, Yokota M, Nakamura Y, Ozeki K, Ito Y, Tsuge I, Saitoh S. Effect of Japanese cedar-specific sublingual immunotherapy on allergen-specific TH2 cell counts in blood. Ann Allergy Asthma Immunol 2016; 117:72-78.e4. [PMID: 27156747 DOI: 10.1016/j.anai.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/20/2016] [Accepted: 04/08/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND The contribution of antigen-specific TH cells in peripheral blood to immunologic mechanisms underlying sublingual immunotherapy (SLIT) remains unclear, partly because of the lack of a standardized method for the analysis of this rare lymphocyte subset. OBJECTIVE To clarify the role of antigen-specific TH cells during SLIT using a sensitive method analyzing activation marker CD154-positive TH cells with multicolor flow cytometry. METHODS We assessed antigen-specific TH cells using multicolor flow cytometry based on the expression of the activation marker CD154 and intracellular cytokines in patients with Japanese cedar pollinosis receiving SLIT at baseline and during the first pollen season after the initiation of SLIT. RESULTS A total of 18 patients between 12 and 44 years of age were enrolled in the present study. Of these, 8 patients received SLIT (SLIT group) and 10 patients received symptomatic treatment only (control group). Although seasonal pollen exposure significantly increased the number of Japanese cedar-specific interleukin 5- and interleukin 4-producing TH cells in the control group (P < .01 for both), SLIT ameliorated this increase in the SLIT group (P = .64 and P = .84, respectively). CONCLUSION The present study indicates that allergen-specific TH2 cells in peripheral blood are involved in mechanisms underlying SLIT. The analysis of antigen-specific TH cells using multicolor flow cytometry based on the expression of the activation marker CD154 represents a sensitive and relatively simple, standardized method for monitoring peripheral antigen-specific TH cells during allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Takayasu Nomura
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Motohiko Suzuki
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Yokota
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshihisa Nakamura
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuyoshi Ozeki
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ikuya Tsuge
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
50
|
Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N, Elso CM, DeNicola M, Bottino R, Powers AC, Harlan DM, Kent SC, Mannering SI, Haskins K. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 2016; 351:711-4. [PMID: 26912858 DOI: 10.1126/science.aad2791] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T cell-mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.
Collapse
Affiliation(s)
- Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael Armstrong
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Roger L Powell
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nitesh Kumar
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Megan DeNicola
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA. VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David M Harlan
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sally C Kent
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|