1
|
Chen ST, Jheng CY, Lee YC, Huang WC, Lee SY, Chen YH. Intermittent hypoxia-reoxygenation-induced miRNAs inhibit expression of IRF and interferon genes but activate NF-κB and expression of pulmonary fibrosis markers in human small airway epithelial cells. Life Sci 2025; 370:123569. [PMID: 40120975 DOI: 10.1016/j.lfs.2025.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
AIM Intermittent hypoxia-reoxygenation (H/R) has been demonstrated to be associated with aviation and various respiratory diseases, and hence it is of interest to unravel the regulatory mechanisms underlying the H/R-induced innate immune and inflammatory responses in both healthy and COPD-diseased human small airway epithelial cells (SAECs). MAIN METHODS The normal healthy and COPD-diseased SAECs (i.e., N-SAECs and D-SAECs) were purchased from PromoCell biotechnology company and respectively cultured under normoxia (21 % O2) or 12/12-h cycles of H/R (i.e., 1 % O2 and 21 % O2 alternately) for 6 days in total for 2D cultures and 21 days in total for the air-liquid interface 3D cultures, followed by qPCR analyses, miRNA fluorescence in situ hybridization, luciferase reporter assays, and immunofluorescence staining. KEY FINDINGS Human SAECs cultured under 12/12-h cycles of H/R showed dramatically increased expression of HIF1A and the H/R-inducible miRNAs miR-129-1-3p, miR-1290 and miR-193b-5p, with miR-129-1-3p and miR-193b-5p targeting and inhibiting IRF5 and IRF7 mRNAs, hence downregulating both the type I and II interferon genes in SAECs cultured under H/R. In addition, miR-129-1-3p, miR-1290 and miR-193b-5p all targeted and inhibited SOCS3 mRNA, hence upregulating transactivation of NF-κB and in turn inducing expression of the inflammatory chemokine genes and pulmonary fibrosis-associated marker genes. SIGNIFICANCE We show for the first time that intermittent H/R upregulates the NF-κB-induced proinflammatory and fibrosis marker genes whereas downregulates the IRF5/7-induced type I/II interferon expression in human SAECs through distinct HIF1A-inducible miRNAs miR-129-1-3p, miR-193b-5p and miR-1290, which may serve as promising therapeutic targets for airway inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Shiuan-Ting Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Cheng-Yu Jheng
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Chun Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Wei-Chen Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|
2
|
Wang Q, Wang S, Cui L, Zhang Y, Waterhouse GIN, Sun-Waterhouse D, Ma C, Kang W. Flammulina velutipes polysaccharide exerts immunomodulatory function involving RSAD2 to regulate the NF-κB/MAPK signaling pathway in RAW264.7 macrophage cells and in mouse spleen cells. Int J Biol Macromol 2025; 309:142985. [PMID: 40210026 DOI: 10.1016/j.ijbiomac.2025.142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
There are ongoing efforts to explore the potential of natural bioactive substances including polysaccharides in immunological regulation and understand the mechanisms under their immune-regulating function. In this study, a polysaccharide from Flammulina velutipes (FVP-1) exhibited immunomodulatory in RAW264.7 macrophage cells and mouse spleen cells. FVP-1 increased the secretion of cytokines (like TNF-α, IL-6 and IL-1β) and their mRNA expression, upregulated the transcription and translation expression of COX-2 and iNOS, and enhanced the release of reactive oxygen species the phagocytic activity in macrophages, thereby promoting the maturation and transformation of certain lymphocytes. All these functions of FVP-1 depended to some extent on its concentration. The RSAD2 effector was involved in the immunomodulatory function of FVP-1 towards macrophages and mouse splenocytes, through mediating FVP-1's activation and regulation of the NF-κB/MAPK signaling pathway. These findings indicate the potential of FVP-1 as a natural immunomodulator and approach for improving immune function.
Collapse
Affiliation(s)
- Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Senye Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yu Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Geoffrey I N Waterhouse
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; School of Chemical Sciences, the University of Auckland, Auckland 1142, New Zealand
| | - Dongxiao Sun-Waterhouse
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; School of Chemical Sciences, the University of Auckland, Auckland 1142, New Zealand.
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Zinellu A, Mangoni AA. sCD40 and sCD40L as candidate biomarkers of rheumatic diseases: a systematic review and meta-analysis with meta-regression. Front Immunol 2025; 16:1479904. [PMID: 40176806 PMCID: PMC11962221 DOI: 10.3389/fimmu.2025.1479904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
There is an ongoing search for novel biomarkers to enhance diagnosing and monitoring patients with rheumatic diseases (RDs). We conducted a systematic review and meta-analysis to investigate the potential role of the soluble cluster of differentiation 40 (sCD40) and sCD40 ligand (sCD40L), involved in humoral and cellular immune response, as candidate biomarkers of RDs. We searched PubMed, Web of Science, and Scopus from inception to 30 June 2024 for studies investigating circulating sCD40 and sCD40L concentrations in RD patients and healthy controls. We assessed the risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist for analytical studies and the certainty of evidence using the Grades of Recommendation, Assessment, Development and Evaluation Working Group system. Compared to controls, RD patients had significantly higher sCD40L (31 studies; standard mean difference, SMD=0.87, 95% CI 0.60 to 1.13, p<0.001; low certainty of evidence) and sCD40 (five studies; SMD=1.32, 95% CI 0.45 to 2.18, p=0.003; very low certainty of evidence) concentrations. In meta-regression and subgroup analysis, the effect size of the between-group differences in sCD40L was significantly associated with sample size, mean RD duration, specific RD, biological matrix assessed, and analytical method used. By contrast, there were no associations with age, sex, C-reactive protein, erythrocyte sedimentation rate, use of disease-modifying antirheumatic drugs or glucocorticoids, or geographical location. There were no significant differences in sCD40L concentrations between RD patients with and without active disease (eight studies; SMD=0.12, 95% CI -0.09 to 0.33, p=0.26; very low certainty). By contrast, sCD40 concentrations were significantly higher in RD patients with active disease (three studies; SMD=0.36, 95% CI 0.08 to 0.84, p=0.013; very low certainty). Our systematic review and meta-analysis suggests the potential role of sCD40 and sCD40L as candidate biomarkers to detect the presence of RDs (sCD40 and sCD40L) and monitor disease activity (sCD40). Large, appropriately designed prospective studies in a wide range of RDs are warranted to investigate whether measuring sCD40 and sCD40L can significantly improve the performance of currently available diagnostic criteria and serological biomarkers. (PROSPERO registration number: CRD42024577430). Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024577430, identifier PROSPERO CRD42024577430.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
5
|
Liang Y, Liang Y, Wang Q, Li Q, Huang Y, Li R, Pan X, Lie L, Xu H, Han Z, Liu H, Wen Q, Zhou C, Ma L, Zhou X. Viperin inhibits interferon-γ production to promote Mycobacterium tuberculosis survival by disrupting TBK1-IKKε-IRF3-axis and JAK-STAT signaling. Inflamm Res 2024; 73:897-913. [PMID: 38625657 PMCID: PMC11106103 DOI: 10.1007/s00011-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES AND DESIGN As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.
Collapse
Affiliation(s)
- Yao Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yun Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qi Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qianna Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Rong Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Xiaoxin Pan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
6
|
Bisimwa PN, Ongus JR, Tonui R, Bisimwa EB, Steinaa L. Resistance to African swine fever virus among African domestic pigs appears to be associated with a distinct polymorphic signature in the RelA gene and upregulation of RelA transcription. Virol J 2024; 21:93. [PMID: 38658979 PMCID: PMC11041040 DOI: 10.1186/s12985-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo.
- Institut Supérieur de Dévelopement Rural de Kaziba, Kaziba, Democratic Republic of Congo.
| | - Juliette R Ongus
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Biotechnology Laboratory, Departement of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Ronald Tonui
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Espoir B Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
7
|
Todorović-Raković N, Whitfield JR. Therapeutic implications of the interplay between interferons and ER in breast cancer. Cytokine Growth Factor Rev 2024; 75:119-125. [PMID: 38296759 DOI: 10.1016/j.cytogfr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
The involvement of interferons (IFNs) in various diseases, including breast cancer, has sparked controversy due to their diverse roles in immunity and significant impact on pathological mechanisms. In the context of breast cancer, the heightened expression of endogenous IFNs has been linked to anti-tumor activity and a favorable prognosis for patients. Within the tumor tissue and microenvironment, IFNs initiate a cascade of molecular events involving numerous factors, which can lead to either cooperative or repressive interactions. The specific functions of IFNs in breast cancer vary depending on the two major disease phenotypes: hormone dependent (or responsive) and hormone independent (or unresponsive) breast cancer. Hormone dependence is determined by the presence of estrogen receptors (ERs). The interplay between the IFN and ER signaling pathways, and the involvement of intermediate factors such as NFκB, are areas that have been somewhat under-researched, but that hold potential importance for the understanding and treatment of breast cancer. This review aims to provide a comprehensive overview of the actions of IFNs in breast cancer, particularly in relation to the different breast cancer phenotypes and the significance of comprehending the underlying mechanisms. Furthermore, the use of IFN-based therapies in cancer treatment remains a topic of debate and has not yet gained widespread acceptance. However, emerging discoveries may redirect focus towards the potential of IFN-based therapies.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Carrer Natzaret 115, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain.
| |
Collapse
|
8
|
Yan H, Lin G, Liu Z, Gu F, Zhang Y. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles. Acta Biomater 2023; 161:213-225. [PMID: 36858163 DOI: 10.1016/j.actbio.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Immunostimulatory cues play an important role in priming antitumor immunity and promoting the efficacy of subunit cancer vaccines. However, the clinical use of many immunostimulatory agents is often hampered by their inefficient in vivo delivery which may decrease immune response to the vaccination. To promote vaccine efficacy, we develop vaccine formulations which integrate three key elements: (1) a nano-adjuvant formulated by conjugating an agonistic anti-CD40 monoclonal antibody (αCD40) to the surface of a polyIC-loaded lipid nanoparticle, (2) a peptide amphiphile containing an optimized CD8+ T-cell epitope that derived from a melanoma antigen gp100, (3) an agonistic anti-4-1BB monoclonal antibody (α4-1BB) that boosts the efficacy of vaccinations. In a syngeneic mouse model of melanoma, the vaccine formulations enhanced innate immunity and activated multiple innate immune signaling pathways within draining lymph nodes, as well as promoted antigen-specific immune responses and reduced immunosuppression in the tumor microenvironment, leading to profound tumor growth inhibition and prolonged survival. Thus, our vaccine formulations represent an attractive strategy to stimulate antitumor immunity and control tumor progression. STATEMENT OF SIGNIFICANCE: The clinical use of many immunostimulatory agents is often hampered by their inefficient in vivo delivery which may decrease immune response to the vaccination. To promote the antitumor immunity of subunit vaccines, we develop novel vaccine formulations that integrate multifunctional modalities including (1) a nano-adjuvant containing anti-CD40 monoclonal antibody (αCD40) and TLR3 agonist which activate innate immunity through diverse signaling pathways, (2) a peptide amphiphile containing an optimized CD8+ T-cell epitope from tumor antigen, (3) an anti-4-1BB monoclonal antibody (α4-1BB) that boosts the efficacy of vaccinations. In this study, our vaccine formulations stimulate superior antitumor immunity and control tumor progression. The above nano-engineered platform and immunogenic biomacromolecules can be further applied to other T-cell-inducing vaccines.
Collapse
Affiliation(s)
- Huan Yan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhanyan Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Fei Gu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Kwak JS, Kim KH. Effect of CRISPR/Cas9-mediated knockout of either IRF-3 or IRF-5 gene in Epithelioma papulosum cyprini cells on type I interferon response and NF-κB activity. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108463. [PMID: 36455778 DOI: 10.1016/j.fsi.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Transcription factors related to the activation of type I interferons (IFNs) and nuclear factor-kappa B (NF-κB) are known to be critical in innate immune responses. Interferon regulatory factors (IRFs) are a family of transcription factors. IRF-3 is known to act as the primary regulator in type I IFN signaling in response to viral infections, and the upregulation of IRF5 by virus infection has been reported in various fish species. One of the ways to know the functional role of certain genes is the production of target gene(s) knockout cells or organisms. In the present study, we produced either IRF3 or IRF5 gene knockout Epithelioma papulosum cyprini (EPC) cells using a CRISPR/Cas9 system, and investigated the effect of IRF3 gene and IRF5 gene knockout on polyinosinic:polycytidylic acid (ploly (I:C))-mediated and viral hemorrhagic septicemia virus (VHSV) infection-mediated type I IFN response and NF-κB activation. Both IRF3 knockout and IRF5 knockout EPC cells showed severely decreased type I IFN responses measured by ISRE activity and the expression of Mx1 and ISG15 genes when stimulated with poly (I:C), while the decreased level of type I IFN responses was not high as by poly (I:C) stimulation when infected with VHSV. Different from type I IFN response, NF-κB activities in IRF3 and IRF5 knockout cells were not highly different between poly (I:C) stimulated cells and VHSV-infected cells. Further studies are needed to elucidate pathways responsible for the type I IFN responses and NF-κB activation by VHSV infection.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Norway
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
10
|
Reslan A, Haddad JG, Desprès P, Bascands JL, Gadea G. High Glucose Induces in HK2 Kidney Cells an IFN–Dependent ZIKV Antiviral Status Fueled by Viperin. Biomedicines 2022; 10:biomedicines10071577. [PMID: 35884880 PMCID: PMC9313244 DOI: 10.3390/biomedicines10071577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that rapidly became a major medical concern worldwide. We have recently reported that a high glucose level decreases the rate of Zika virus (ZIKV) replication with an impact on human kidney HK-2 cell survival. However, the mechanisms by which cells cultured in a high glucose medium inhibit ZIKV growth remain unclear. Viperin belongs to interferon-stimulated genes (ISG) and its expression is highly up-regulated upon viral infection, leading to antiviral activity against a variety of viruses, including flaviviruses. As such, viperin has been shown to be a major actor involved in the innate immune response against Zika virus (ZIKV). Our present study aims to further characterize the involvement of viperin in ZIKV growth inhibition under high glucose concentration (HK-2HGC). We show for the first time that endogenous viperin is over-expressed in HK-2 cells cultured under high glucose concentration (HK-2HGC), which is associated with ZIKV growth inhibition. Viperin knockdown in HK-2HGC rescues ZIKV growth. In addition, our results emphasize that up-regulated viperin in HK-2HGC leads to ZIKV growth inhibition through the stimulation of IFN-β production. In summary, our work provides new insights into the ZIKV growth inhibition mechanism observed in HK-2 cells cultured in a high glucose environment.
Collapse
Affiliation(s)
- Alawiya Reslan
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
- Unité Mixte Diabète Athérothrombose Thérapies Réunion Océan Indien, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1188, 94791 Sainte Clotilde, La Réunion, France
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
| | - Jean-Loup Bascands
- Unité Mixte Diabète Athérothrombose Thérapies Réunion Océan Indien, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1188, 94791 Sainte Clotilde, La Réunion, France
- Correspondence: (J.-L.B.); (G.G.); Tel.: +262-262-938-806 (G.G.)
| | - Gilles Gadea
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, IRCM, F-34298 Montpellier, France
- Correspondence: (J.-L.B.); (G.G.); Tel.: +262-262-938-806 (G.G.)
| |
Collapse
|
11
|
Knockdown of RSAD2 attenuates B cell hyperactivity in patients with primary Sjögren's syndrome (pSS) via suppressing NF-κb signaling pathway. Mol Cell Biochem 2021; 476:2029-2037. [PMID: 33512636 DOI: 10.1007/s11010-021-04070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is mainly characterized as abnormal activation of B cells. It is reported that radical s-adenosyl methionine domain-containing 2 (RSAD2) is overexpressed in CD19+ B cells of pSS patients, but its role in pSS B cells remains unknown. Herein, RSAD2 expression was upregulated in CD19+ B cells of pSS patients and positively correlated with the expression of interleukin-10 (IL-10) in serum. After CD40L stimulation, knockdown of RSAD2 significantly attenuated cell viability, the production levels of immunoglobins and the expression of IL-10, while promoted cell apoptosis of pSS CD19+ B cells. Mechanistically, knockdown of RSAD2 negatively regulated nuclear factor kappa-b (NF-κb) signaling pathway. In addition, overexpression of p65 prominently alleviated the inhibitory effect of RSAD2 knockdown on proliferation, immunoglobin production and IL-10 expression in CD40L-induced CD19+ B cells. Our study indicated that silencing RSAD2 attenuated pSS B cell hyperactivity via suppressing NF-κb signaling pathway, which might provide a potential therapeutic target for pSS treatment.
Collapse
|
12
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020; 7:578964. [PMID: 33134318 PMCID: PMC7579428 DOI: 10.3389/fmolb.2020.578964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Pagliari
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Grazia Marafioti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Geraldine Genard
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Luca Tirinato
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
14
|
Green R, Ireton RC, Gale M. Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 2018; 29:593-602. [PMID: 29982912 DOI: 10.1007/s00335-018-9755-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Interferon-stimulated genes (ISGs) are the effectors of interferon (IFN) actions and play major roles in innate immune defense against microbial infection. During virus infection, ISGs impart antiviral actions to control virus replication and spread but can also contribute to disease pathology if their expression is unchecked. Antiviral ISGs have been identified by a variety of biochemical, genetic, and virologic methods. New computational approaches are expanding and redefining ISGs as responders to a variety of stimuli beyond IFNs, including virus infection, stress, and other events that induce cytokines. These studies reveal that the expression of ISG subsets link to interferon regulatory factors (IRF)s, NF-kB, and other transcription factors that impart gene expression in specific cell types independently of IFNs, including stem cells and other cell types where ISGs are constitutively expressed. Here, we provide a broad overview of ISGs, define virus-induced genes (VSG)s, and discuss the application of computational approaches and bioinformatics platforms to evaluate the functional role of ISGs in epigenetics, immune programming, and vaccine responses.
Collapse
Affiliation(s)
- Richard Green
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA.
| | - Reneé C Ireton
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Roca H, Jones JD, Purica MC, Weidner S, Koh AJ, Kuo R, Wilkinson JE, Wang Y, Daignault-Newton S, Pienta KJ, Morgan TM, Keller ET, Nör JE, Shea LD, McCauley LK. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. J Clin Invest 2017; 128:248-266. [PMID: 29202471 DOI: 10.1172/jci92466] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.
Collapse
Affiliation(s)
- Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Jacqueline D Jones
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marta C Purica
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Savannah Weidner
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yugang Wang
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephanie Daignault-Newton
- Department of Biostatistics, Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Bhat SA, Goel R, Shukla R, Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension. Brain Behav Immun 2017; 59:173-189. [PMID: 27658543 DOI: 10.1016/j.bbi.2016.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022] Open
Abstract
Studies have demonstrated separately that hypertension is associated with platelet activation in the periphery (resulting in accumulation and localized inflammatory response) and glial activation in the brain. We investigated the contribution of platelets in brain inflammation, particularly glial activation in vitro and in a rat model of hypertension. We found that HTN increased the expression of adhesion molecules like JAM-1, ICAM-1, and VCAM-1 on brain endothelium and resulted in the deposition of platelets in the brain. Platelet deposition in hypertensive rats was associated with augmented CD40 and CD40L and activation of astrocytes (GFAP expression) and microglia (Iba-1 expression) in the brain. Platelets isolated from hypertensive rats had significantly higher sCD40L levels and induced more prominent glial activation than platelets from normotensive rats. Activation of platelets with ADP induced sCD40L release and activation of astrocytes and microglia. Moreover, CD40L induced glial (astrocytes and microglia) activation, NFкB and MAPK inflammatory signaling, culminating in neuroinflammation and neuronal injury (increased apoptotic cells). Importantly, injection of ADP-activated platelets into normotensive rats strongly induced activation of astrocytes and microglia and increased plasma sCD40L levels compared with control platelets. On the contrary, inhibition of platelet activation by Clopidogrel or disruption of CD40 signaling prevented astrocyte and microglial activation and provided neuroprotection in both in vivo and in vitro conditions. Thus, we have identified platelet CD40L as a key inflammatory molecule for the induction of astrocyte and microglia activation, the major contributors to inflammation-mediated injury in the brain.
Collapse
Affiliation(s)
- Shahnawaz Ali Bhat
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Ruby Goel
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Rakesh Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; National Institute of Pharmaceutical Education and Research, Rae Bareli, India.
| |
Collapse
|
17
|
Increased CD40 Expression Enhances Early STING-Mediated Type I Interferon Response and Host Survival in a Rodent Malaria Model. PLoS Pathog 2016; 12:e1005930. [PMID: 27716849 PMCID: PMC5055354 DOI: 10.1371/journal.ppat.1005930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023] Open
Abstract
Both type I interferon (IFN-I) and CD40 play a significant role in various infectious diseases, including malaria and autoimmune disorders. CD40 is mostly known to function in adaptive immunity, but previous observations of elevated CD40 levels early after malaria infection of mice led us to investigate its roles in innate IFN-I responses and disease control. Using a Plasmodium yoelii nigeriensis N67 and C57BL/6 mouse model, we showed that infected CD40-/- mice had reduced STING and serum IFN-β levels day-2 post infection, higher day-4 parasitemia, and earlier deaths. CD40 could greatly enhance STING-stimulated luciferase signals driven by the IFN-β promoter in vitro, which was mediated by increased STING protein levels. The ability of CD40 to influence STING expression was confirmed in CD40-/- mice after malaria infection. Substitutions at CD40 TRAF binding domains significantly decreased the IFN-β signals and STING protein level, which was likely mediated by changes in STING ubiquitination and degradation. Increased levels of CD40, STING, and ISRE driven luciferase signal in RAW Lucia were observed after phagocytosis of N67-infected red blood cells (iRBCs), stimulation with parasite DNA/RNA, or with selected TLR ligands [LPS, poly(I:C), and Pam3CSK4]. The results suggest stimulation of CD40 expression by parasite materials through TLR signaling pathways, which was further confirmed in bone marrow derived dendritic cells/macrophages (BMDCs/BMDMs) and splenic DCs from CD40-/-, TLR3-/- TLR4-/-, TRIF-/-, and MyD88-/- mice after iRBC stimulation or parasite infection. Our data connect several signaling pathways consisting of phagocytosis of iRBCs, recognition of parasite DNA/RNA (possibly GPI) by TLRs, elevated levels of CD40 and STING proteins, increased IFN-I production, and longer host survival time. This study reveals previously unrecognized CD40 function in innate IFN-I responses and protective pathways in infections with malaria strains that induce a strong IFN-I response, which may provide important information for better understanding and management of malaria.
Collapse
|
18
|
Iwanaszko M, Kimmel M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics 2015; 16:307. [PMID: 25888367 PMCID: PMC4430024 DOI: 10.1186/s12864-015-1511-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background The NF-κB and IRF transcription factor families are major players in inflammation and antiviral response and act as two major effectors of the innate immune response (IIR). The regulatory mechanisms of activation of these two pathways and their interactions during the IIR are only partially known. Results Our in silico findings report that there is cross-regulation between both pathways at the level of gene transcription regulation, mediated by the presence of binding sites for both factors in promoters of genes essential for these pathways. These findings agree with recent experimental data reporting crosstalk between pathways activated by RIG-I and TLR3 receptors in response to pathogens. Conclusions We present an extended crosstalk diagram of the IRF - NF-κB pathways. We conclude that members of the NF-κB family may directly impact regulation of IRF family, while IRF members impact regulation of NF-κB family rather indirectly, via other transcription factors such as AP-1 and SP1. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1511-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Iwanaszko
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland. .,Department of Statistics, Rice University, Houston, TX, USA. .,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Marek Kimmel
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland. .,Department of Statistics, Rice University, Houston, TX, USA.
| |
Collapse
|
19
|
Wang W, Meng M, Zhang Y, Wei C, Xie Y, Jiang L, Wang C, Yang F, Tang W, Jin X, Chen D, Zong J, Hou Z, Li R. Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor. BMC Med Genomics 2014; 7:49. [PMID: 25108500 PMCID: PMC4134122 DOI: 10.1186/1755-8794-7-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Background Cytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet. Methods CIKIL-2 and CIKIL-15 were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation. Results The results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIKIL-2. However, CIKIL-2 has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIKIL-2 and CIKIL-15. A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIKIL-15 and 199 up-regulated genes in CIKIL-2. Among DEGs in CIKIL-15, Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIKIL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIKIL-15, while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIKIL-2. Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIKIL-2 through type I interferon signaling. Conclusions Through our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIKIL-15 and CIKIL-2. Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zongliu Hou
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China.
| | | |
Collapse
|
20
|
Helbig KJ, Beard MR. The role of viperin in the innate antiviral response. J Mol Biol 2013; 426:1210-9. [PMID: 24157441 DOI: 10.1016/j.jmb.2013.10.019] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Viral infection of the cell is able to initiate a signaling cascade of events that ultimately attempts to limit viral replication and prevent escalating infection through expression of host antiviral proteins. Recent work has highlighted the importance of the host antiviral protein viperin in this process, with its ability to limit a large variety of viral infections as well as play a role in the production of type I interferon and the modulation of a number of transcription factor binding sites. Viperin appears to have the ability to modulate varying conditions within the cell and to interfere with proviral host proteins in its attempts to create an unfavorable environment for viral replication. The study of the mechanistic actions of viperin has come a long way in recent years, describing important functional domains of the protein for its antiviral and immune modulator actions as well as demonstrating its role as a member of the radical SAM enzyme family. However, despite the rapid expansion of knowledge regarding the functions of this highly conserved and ancient antiviral protein, there still remains large gaps in our understanding of the precise mechanisms at play for viperin to exert such a wide variety of roles within the cell.
Collapse
Affiliation(s)
- Karla J Helbig
- School of Molecular and Biomedical Science and the Institute for Molecular Pathology, The University of Adelaide, South Australia 5005, Australia; Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5001, Australia
| | - Michael R Beard
- School of Molecular and Biomedical Science and the Institute for Molecular Pathology, The University of Adelaide, South Australia 5005, Australia; Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
21
|
Zhao Y, Tian B, Edeh CB, Brasier AR. Quantitation of the dynamic profiles of the innate immune response using multiplex selected reaction monitoring-mass spectrometry. Mol Cell Proteomics 2013; 12:1513-29. [PMID: 23418394 PMCID: PMC3675810 DOI: 10.1074/mcp.m112.023465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/23/2013] [Indexed: 11/06/2022] Open
Abstract
The innate immune response (IIR) is a coordinated intracellular signaling network activated by the presence of pathogen-associated molecular patterns that limits pathogen spread and induces adaptive immunity. Although the precise temporal activation of the various arms of the IIR is a critical factor in the outcome of a disease, currently there are no quantitative multiplex methods for its measurement. In this study, we investigate the temporal activation pattern of the IIR in response to intracellular double-stranded RNA stimulation using a quantitative 10-plex stable isotope dilution-selected reaction monitoring-MS assay. We were able to observe rapid activation of both NF-κB and IRF3 signaling arms, with IRF3 demonstrating a transient response, whereas NF-κB underwent a delayed secondary amplification phase. Our measurements of the NF-κB-IκBα negative feedback loop indicate that about 20% of IκBα in the unstimulated cell is located within the nucleus and represents a population that is rapidly degraded in response to double-stranded RNA. Later in the time course of stimulation, the nuclear IκBα pool is repopulated first prior to its cytoplasmic accumulation. Examination of the IRF3 pathway components shows that double-stranded RNA induces initial consumption of the RIG-I PRR and the IRF3 kinase (TBK1). Stable isotope dilution-selected reaction monitoring-MS measurements after siRNA-mediated IRF3 or RelA knockdown suggests that a low nuclear threshold of NF-κB is required for inducing target gene expression, and that there is cross-inhibition of the NF-κB and IRF3 signaling arms. Finally, we were able to measure delayed noncanonical NF-κB activation by quantifying the abundance of the processed (52 kDa) NF-κB2 subunit in the nucleus. We conclude that quantitative proteomics measurement of the individual signaling arms of the IIR in response to system perturbations is significantly enabled by stable isotope dilution-selected reaction monitoring-MS-based quantification, and that this technique will reveal novel insights into the dynamics and connectivity of the IIR.
Collapse
Affiliation(s)
- Yingxin Zhao
- From the ‡Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555
- §Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
- ¶Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Bing Tian
- ¶Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chukwudi B. Edeh
- ¶Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Allan R. Brasier
- From the ‡Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555
- §Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
- ¶Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
22
|
Lagos LX, Iliev DB, Helland R, Rosemblatt M, Jørgensen JB. CD40L--a costimulatory molecule involved in the maturation of antigen presenting cells in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:416-430. [PMID: 22889889 DOI: 10.1016/j.dci.2012.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
The CD40L/CD40 signalling pathway is critically involved in the final stage of the maturation of DCs. This paper reports the identification and functional characterization of CD40L and CD40 from Atlantic salmon (Salmo salar). Salmon CD40L is a type II membrane-bound protein with a TNF homology domain in its extracellular C-terminal region, while CD40 is a type I membrane-bound receptor with a sequence pattern of four cysteine-rich domains in its extracellular N-terminal region. The salmon CD40L and CD40 were widely expressed, particularly in immune tissues, and while CD40L expression was induced by in vitro stimulation of HKLs with PHA and ConA, CpG increased CD40 expression. A CD40L construct was overexpressed in the CHSE-214 cell line and co-cultivation of the CD40L-CHSE transfectants with HKL induced a rapid and long-lasting upregulation of important costimulatory molecules like CD40, CD83, B7-H1 and the cytokines IL-12p40, IL-10, IL-1β and IFNs, which all are involved in T-helper cell responses. Furthermore, the CD40L transfected cells increased the percentage of HKLs expressing surface MHCIIβ but unlike other APC maturation stimuli, like CpG, they did not reduce the capacity to internalise antigen. Our results provide the first evidence for the existence of a functional CD40L mediated costimulatory pathway in Atlantic salmon.
Collapse
Affiliation(s)
- Leidy X Lagos
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|