1
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
2
|
Shen S, Fang X, Zhang H, Lang T, Fu F, Du Y, Xu T, Jin H, Tong P, Wu C, Hu C, Ruan H. Systemic Lupus Erythematosus Stimulates Chondrocyte Pyroptosis to Aggravate Arthritis via Suppression of NRF-2/KEAP-1 and NF-κB Pathway. J Inflamm Res 2025; 18:4233-4250. [PMID: 40129871 PMCID: PMC11932136 DOI: 10.2147/jir.s502800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by diverse clinical manifestations, including joint symptoms. Arthritis represents one of the earliest manifestations of SLE, profoundly affecting the quality of life for affected individuals, yet the underlying mechanisms of SLE-associated arthritis remain insufficiently investigated. The study aimed to investigate the impact of SLE exacerbation on arthritis using the MRL/lpr mouse model, which closely mimics human SLE manifestations. Methods In the present study, we evaluated the impact of SLE onset on knee joint degeneration by comparing arthritic phenotype and complex molecular alterations between 6 female 14-week-old MRL/lpr mice, which manifest SLE, and MRL/MpJ mice, which remain unaffected. Results Our results demonstrated that MRL/lpr mice exhibited a more severe arthritic phenotype compared to MRL/MpJ mice, characterized by elevated Osteoarthritis Research Society International (OARSI) scores (P < 0.01), disrupted extracellular matrix metabolism, impaired chondrocyte proliferation and increased apoptosis. Notably, inflammatory cytokines proteins such as IL-1β and TNF-α (both P < 0.01), IL-18 and IL-6 (both P < 0.05), were significantly increased in articular cartilage of MRL/lpr mice, accompanied by increased expression of calcitonin gene-related peptide (CGRP) (P < 0.05), NETRIN-1, and NESTIN (both P < 0.01), indicating that SLE promotes inflammation response and sensory nerve ingrowth in the knee joint, contributing to the progression of arthritis. Mechanistic analysis revealed that SLE exacerbation intensified chondrocyte pyroptosis by upregulating pyroptotic-related proteins, including NLRP3, CASPASE-1, and gasdermin D (all P < 0.01), through the regulation of the nuclear factor erythroid 2-related factor (NRF-2)/KEAP-1 and nuclear factor kappa-B (NF-κB) pathway. Conclusion Collectively, our findings underscore the mechanistic connection between chondrocyte pyroptosis and arthritis exacerbation in SLE, suggesting potential therapeutic targets for mitigating arthritis progression in the context of SLE.
Collapse
Affiliation(s)
- Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Helou Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Tingting Lang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yu Du
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Taotao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Peijian Tong
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
3
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
4
|
Pisetsky DS. Unique Interplay Between Antinuclear Antibodies and Nuclear Molecules in the Pathogenesis of Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:1334-1343. [PMID: 38622070 PMCID: PMC11349482 DOI: 10.1002/art.42863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that primarily affects young women and causes a wide range of inflammatory manifestations. The hallmark of SLE is the production of antibodies to components of the cell nucleus (antinuclear antibodies [ANAs]). These antibodies can bind to DNA, RNA, and protein complexes with nucleic acids. Among ANAs, antibodies to DNA (anti-DNA) are markers for classification and disease activity, waxing and waning disease activity in many patients. In the blood, anti-DNA antibodies can bind to DNA to form immune complexes with two distinct roles in pathogenesis: (1) renal deposition to provoke nephritis and (2) stimulation of cytokine production following uptake into innate immune cells and interaction with internal nucleic acid sensors. These sensors are part of an internal host defense system in the cell cytoplasm that can respond to DNA from infecting organisms; during cell stress, DNA from nuclear and mitochondrial sources can also trigger these sensors. The formation of immune complexes requires a source of extracellular DNA in an immunologically accessible form. As shown in in vivo and in vitro systems, extracellular DNA can emerge from dead and dying cells in both a free and a particulate form. Neutrophils undergoing the process of NETosis can release DNA in mesh-like structures called neutrophil extracellular traps. In SLE, therefore, the combination of ANAs and immunologically active DNA can create new structures that can promote inflammation throughout the body as well as drive organ inflammation and damage.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center and Durham Veterans Administration Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Akhil A, Bansal R, Ankita A, Kaur H, Monika M, Bhatnagar A. Disturbance in communication between mitochondrial redox processes and the AMPK/PGC-1α/SIRT-1 axis influences diverse organ symptoms in lupus-affected mice. Mitochondrion 2024; 78:101930. [PMID: 39025320 DOI: 10.1016/j.mito.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Mechanisms behind multiple organ involvement in lupus, is still an enigma for researchers. Mitochondrial dysfunction and oxidative stress are known to be important aspects in lupus etiology however, their role in lupus organ manifestation is yet to be understood. The present study is based on the understanding of interplay between AMPK/PGC-1α/SIRT-1 axis, mitochondrial complexes, and anti-oxidants levels, which might be involved in lupus organ pathology. METHODOLOGY Pristane-induced Balb/c mice lupus model (PIL) was utilised and evaluation of anti-oxidants, mitochondrial complexes, pro-inflammatory cytokines levels, biochemical parameters were performed by standard procedures. Tissues were studied by haematoxylin and eosin staining followed by immunohistochemistry. The AMPK/PGC-1α/SIRT-1 expression was analysed by using qPCR and flowcytometry. Analysis of reactive oxygen species (ROS) among WBCs was performed by using various dyes (DCFDA, Mitosox, JC-1) on flowcytometry. RESULT Significant presence of immune complexes (Tissue sections), ANA (Serum), and pro-inflammatory cytokines (plasma), diminished anti-oxidants and altered biochemical parameters depict the altered pathology in PIL which was accompanied by dysregulated mitochondrial complex activity. Differential expression of the AMPK/PGC-1α/SIRT-1 axis was detected in tissue and correlation with mitochondrial and antioxidant activity emerged as negative in PIL group while positive in controls. Close association was observed between ROS, mitochondrial membrane potential, and AMPK/PGC-1α/SIRT-1 axis in WBCs. CONCLUSION This study concludes that mitochondria play a dual role in lupus organ pathology, contributing to organ damage while also potentially protecting against damage through the regulation of interactions between antioxidants and the AMPK axis expression.
Collapse
Affiliation(s)
- Akhil Akhil
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Rohit Bansal
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Ankita Ankita
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Harsimran Kaur
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Monika Monika
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India.
| |
Collapse
|
6
|
Henedak NT, El-Abhar HS, Soubh AA, Abdallah DM. NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci 2024; 351:122813. [PMID: 38857655 DOI: 10.1016/j.lfs.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1β & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
7
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
8
|
Park HJ, Shin MS, Shin JJ, Kim H, Kang B, Par-Young J, Unlu S, Afinogenova Y, Catanzaro J, Young J, Kim M, Lee SJ, Jeon S, You S, Racke MK, Bucala R, Kang I. IL-1 receptor 1 signaling shapes the development of viral antigen-specific CD4 + T cell responses following COVID-19 mRNA vaccination. EBioMedicine 2024; 103:105114. [PMID: 38640835 PMCID: PMC11041015 DOI: 10.1016/j.ebiom.2024.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1β promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Min Sun Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Junghee J Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hyoungsu Kim
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Hallym University School of Medicine, Chuncheon, Gangwon-do, 24252, South Korea
| | - Byunghyun Kang
- Mucosal Immunology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Jennefer Par-Young
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Serhan Unlu
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuliya Afinogenova
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Juan Young
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sang Jin Lee
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 41944, South Korea
| | - Sangchoon Jeon
- Yale University School of Nursing, West Haven, CT, 06516, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Richard Bucala
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Insoo Kang
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
10
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
11
|
Yu H, Li Q, Zhu H, Liu C, Chen W, Sun L. Mesenchymal stem cells attenuate systemic lupus erythematosus by inhibiting NLRP3 inflammasome activation through Pim-1 kinase. Int Immunopharmacol 2024; 126:111256. [PMID: 37992447 DOI: 10.1016/j.intimp.2023.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The inflammatory response runs through the whole pathogenesis of systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSC) have exhibited a positive therapeutic effect on SLE. This study aimed to ascertain the pathogenic role of inflammasome activation in SLE and whether MSC alleviate SLE by suppressing it. The results showed that the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome was activated in macrophages from MRL/lpr mice and patients with SLE, correlating with disease activity. After MSC transplantation, the disease severity in MRL/lpr mice was alleviated, and NLRP3 inflammasome activation was inhibited with decreased levels of NLRP3 and caspase-1 in macrophages. Furthermore, lower serum levels of interleukin (IL)-1β and IL-18 were observed in patients with SLE who underwent MSC transplantation. In vitro and in vivo studies indicated that MSC suppressed NLRP3 inflammasome activation by inhibiting Pim-1 expression. The findings provide an updated view of inflammasome signaling in SLE. Additionally, MSC ameliorated SLE by inhibiting NLRP3 inflammasome activation, implying a possible molecular mechanism for the clinical application of MSC and a potential therapeutic target in patients with SLE.
Collapse
Affiliation(s)
- Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Rizk SK, Alhosary A, Zahran ES, Awad S, Khalil M. Identification of potential biomarkers for SLE through mRNA expression profiling. J Immunoassay Immunochem 2024; 45:20-37. [PMID: 37807897 DOI: 10.1080/15321819.2023.2266013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that influences numerous body systems. Furin, tristetraprolin (TTP), and NOD, LRR, and pyrin domain-containing protein 3 (NLRP3) contribute in developing autoimmune illnesses. AIM Understandthe role of furin, TTP, and NLRP3 mRNA gene expression in SLE pathogenesis and prognosis. Methods: Total 210 individuals were enrolled, divided in two group: cases and control; 105 participants in each group. Real-time quantitative PCR for furin, TTP,and NLRP3 mRNA gene expression were determined for each subject. RESULTS SLE patients showed significantly higher serum furin [median 20.10 (0.0-162.88) in comparison with control group [median 1.10 (0.33-8.64)] with significant pvalue (p < 0.001), for NLRP3 expression [median 7.03 (0.0-282.97) compared to control group [median 1.0 (0.44-9.48)] with significant p value (p = 0.006)but lower TTP [median 2.37 (0.0-30.13)] in comparison with control group [median 7.90 (1.0-29.29)] with significant p value (p < 0.001) . Elevated levels of Furin and NLRP3 and low levels of TTP were linked to increased illness activity. CONCLUSION Furin and NLRP increase in SLE and higher with illness activity. TTP is lowerin SLE and negatively correlates with disease activity.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Amal Alhosary
- Clinical Pathology, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Enas S Zahran
- Internal Medicine Department, Immunology and Rheumatology Unit, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Samah Awad
- Microbiology and Immunology, Clinical Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Marwa Khalil
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
13
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
14
|
Chen S, Jiang J, Li T, Huang L. PANoptosis: Mechanism and Role in Pulmonary Diseases. Int J Mol Sci 2023; 24:15343. [PMID: 37895022 PMCID: PMC10607352 DOI: 10.3390/ijms242015343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
PANoptosis is a newly defined programmed cell death (PCD) triggered by a series of stimuli, and it engages three well-learned PCD forms (pyroptosis, apoptosis, necroptosis) concomitantly. Normally, cell death is recognized as a strategy to eliminate unnecessary cells, inhibit the proliferation of invaded pathogens and maintain homeostasis; however, vigorous cell death can cause excessive inflammation and tissue damage. Acute lung injury (ALI) and chronic obstructive pulmonary syndrome (COPD) exacerbation is related to several pathogens (e.g., influenza A virus, SARS-CoV-2) known to cause PANoptosis. An understanding of the mechanism and specific regulators may help to address the pathological systems of these diseases. This review presents our understanding of the potential mechanism of PANoptosis and the role of PANoptosis in different pulmonary diseases.
Collapse
Affiliation(s)
| | | | | | - Longshuang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.C.); (J.J.); (T.L.)
| |
Collapse
|
15
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
16
|
Muñoz-García R, Sánchez-Hidalgo M, Alcarranza M, Vazquéz-Román MV, de Sotomayor MA, González-Rodríguez ML, de Andrés MC, Alarcón-de-la-Lastra C. Effects of Dietary Oleacein Treatment on Endothelial Dysfunction and Lupus Nephritis in Balb/C Pristane-Induced Mice. Antioxidants (Basel) 2023; 12:1303. [PMID: 37372034 DOI: 10.3390/antiox12061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-inflammatory disease characterized by multiorgan affectation and lowered self-tolerance. Additionally, epigenetic changes have been described as playing a pivotal role in SLE. This work aims to assess the effects of oleacein (OLA), one of the main extra virgin olive oil secoiridoids, when used to supplement the diet of a murine pristane-induced SLE model. In the study, 12-week-old female BALB/c mice were injected with pristane and fed with an OLA-enriched diet (0.01 % (w/w)) for 24 weeks. The presence of immune complexes was evaluated by immunohistochemistry and immunofluorescence. Endothelial dysfunction was studied in thoracic aortas. Signaling pathways and oxidative-inflammatory-related mediators were evaluated by Western blotting. Moreover, we studied epigenetic changes such as DNA methyltransferase (DNMT-1) and micro(mi)RNAs expression in renal tissue. Nutritional treatment with OLA reduced the deposition of immune complexes, ameliorating kidney damage. These protective effects could be related to the modulation of mitogen-activated protein kinases, the Janus kinase/signal transducer and transcription activator of transcription, nuclear factor kappa, nuclear-factor-erythroid-2-related factor 2, inflammasome signaling pathways, and the regulation of miRNAs (miRNA-126, miRNA-146a, miRNA-24-3p, and miRNA-123) and DNMT-1 expression. Moreover, the OLA-enriched diet normalized endothelial nitric oxide synthase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-1 overexpression. These preliminary results suggest that an OLA-supplemented diet could constitute a new alternative nutraceutical therapy in the management of SLE, supporting this compound as a novel epigenetic modulator of the immunoinflammatory response.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - María Victoria Vazquéz-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
17
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Renal NLRP3 Inflammasome activation is associated with disease activity in lupus nephritis. Clin Immunol 2023; 247:109221. [PMID: 36610524 DOI: 10.1016/j.clim.2022.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The current study was initiated to comprehensively evaluate renal NLRP3 inflammasome pathway activation in lupus nephritis (LN) patients and their clinicopathological significances based on a Chinese LN cohort. We found that the expressions of NLRP3, ASC, caspase-1, IL-1β and IL-18 were all significantly higher in the kidneys of LN patients and were predominantly expressed in glomerular mesangial cells, podocytes, renal tubular epithelial cells and macrophages. The expressions of NLRP3, ASC, caspase-1 and IL-1β were positively correlated to SLEDAI scores and several renal pathological activity indices, while the expression of NLRP3 was negatively associated with chronicity scores. Moreover, the foot process width was positively correlated with glomerular caspase-1 levels, and several podocyte injury markers were decreased significantly in LN patients with higher caspase-1 expression compared with those with lower expression. Our findings indicated that renal NLRP3 inflammasome was activated in LN patients and correlated with disease activity, which needs further explorations.
Collapse
|
19
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
20
|
Inhibition of CEBPB Attenuates Lupus Nephritis via Regulating Pim-1 Signaling. Mediators Inflamm 2022; 2022:2298865. [PMID: 36248187 PMCID: PMC9553452 DOI: 10.1155/2022/2298865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease leading to inflammatory damage in multiple target organs, and lupus nephritis (LN) is one of the most life-threatening organ manifestations. CCAAT/enhancer-binding protein β (CEBPB) regulates the NLRP3 inflammasome and is involved in the pathogenesis of SLE. However, the role and mechanism of CEBPB in LN remains unclear. MRL/lpr mice and lipopolysaccharides (LPS) combined with adenosine triphosphate- (ATP-) treated glomerular podocytes were used as models of LN in vivo and in vitro, respectively. In vivo, we investigated the expressions of CEBPB during the development of MRL/lpr mice. Then we assessed the effect of CEBPB inhibition on renal structure and function through injecting shCEBPB lentivirus into MRL/lpr mice. In vitro, glomerular podocytes were treated with Pim-1-OE and siCEBPB to explore the relation between CEBPB and Pim-1. The progression of LN in mice was associated with the increased level of CEBPB, and the inhibition of CEBPB ameliorated renal structure impairments and improved renal function damage associated with LN. Knockdown of CEBPB could suppress the activation of NLRP3 inflammasome and the secretion of IL-1β and IL-6. Furthermore, the knockdown of CEBPB could inhibit NLRP3 inflammasome activation and pyroptosis via binding to Pim-1 promoter to downregulate its expression, and the overexpression of Pim-1 reversed the effects of CEBPB deficiency. The regulation of CEBPB on Pim-1 facilitated pyroptosis by activating NLRP3 inflammasome, thereby promoting the development of LN.
Collapse
|
21
|
Kessler N, Viehmann SF, Krollmann C, Mai K, Kirschner KM, Luksch H, Kotagiri P, Böhner AM, Huugen D, de Oliveira Mann CC, Otten S, Weiss SA, Zillinger T, Dobrikova K, Jenne DE, Behrendt R, Ablasser A, Bartok E, Hartmann G, Hopfner KP, Lyons PA, Boor P, Rösen-Wolff A, Teichmann LL, Heeringa P, Kurts C, Garbi N. Monocyte-derived macrophages aggravate pulmonary vasculitis via cGAS/STING/IFN-mediated nucleic acid sensing. J Exp Med 2022; 219:213416. [PMID: 35997679 PMCID: PMC9402992 DOI: 10.1084/jem.20220759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-β, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-β-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.
Collapse
Affiliation(s)
- Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Nina Kessler:
| | - Susanne F. Viehmann
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Calvin Krollmann
- Medical Clinic and Polyclinic III, University Hospital Bonn, Bonn, Germany
| | - Karola Mai
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katharina M. Kirschner
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hella Luksch
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Prasanti Kotagiri
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Alexander M.C. Böhner
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Dennis Huugen
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, University of Maastricht, Maastricht, Netherlands
| | | | - Simon Otten
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefanie A.I. Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kristiyana Dobrikova
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany,Max Planck Institute of Neurobiology, Planegg-Martinsried, Planegg, Germany
| | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Paul A. Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Lino L. Teichmann
- Medical Clinic and Polyclinic III, University Hospital Bonn, Bonn, Germany
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Correspondence to Natalio Garbi:
| |
Collapse
|
22
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
23
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Mähönen K, Hau A, Bondet V, Duffy D, Eklund KK, Panelius J, Ranki A. Activation of NLRP3 Inflammasome in the Skin of Patients with Systemic and Cutaneous Lupus Erythematosus. Acta Derm Venereol 2022; 102:adv00708. [PMID: 35356994 DOI: 10.2340/actadv.v102.2293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NLRP3 inflammasome is suggested to contribute to the complex pathogenesis of systemic lupus erythematosus, but its role in cutaneous lupus erythematosus has not been addressed. This study investigated the expression of NLRP3 inflammasome components and levels of type I interferons in the skin of 20 patients with cutaneous lupus erythematosus. Expression of NLRP1/3, adaptor protein ASC (apoptosis-associated speck-like protein), caspase-1, interferon-α (IFN-α), myxovirus resistance protein (MxA), and interferon-induced proteins 1 and 2 (IFIT 1/2) in the skin was assessed using reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and immunohistochemistry. Serum interferon-α protein levels from 12 patients were measured using digital enzyme-linked immunoassay (ELISA). Interleukin-1β expression was significantly upregulated in the lesional skin of patients with cutaneous lupus erythematosus compared with their uninvolved skin. However, NLRP1/3, ASC and caspase-1 were not significantly upregulated compared with the skin of control persons. IFN-α and IFN-induced proteins MxA and IFIT1/2 were strongly expressed in cutaneous lupus erythematosus skin. Variability in the expression of NLRP3 inflammasome components among patients suggests heterogeneity of pathological pathways in cutaneous lupus erythematosus.
Collapse
Affiliation(s)
- Katariina Mähönen
- Department of Dermatology and Allergology, Skin and Allergy Hospital, P.O. Box 160, FIN-00029 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
25
|
The Role of NLRP3 Inflammasome in Lupus Nephritis. Int J Mol Sci 2021; 22:ijms222212476. [PMID: 34830358 PMCID: PMC8625721 DOI: 10.3390/ijms222212476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Lupus nephritis (LN) is the most frequent and severe of systemic lupus erythematosus (SLE) clinical manifestations and contributes to the increase of morbidity and mortality of patients due to chronic kidney disease. The NLRP3 (NLR pyrin domain containing 3) is a member of the NLR (NOD-like receptors), and its activation results in the production of pro-inflammatory cytokines, which can contribute to the pathogenesis of LN. In this review manuscript, we approach the relation between the NLRP3 inflammasome, SLE, and LN, highlighting the influence of genetic susceptibility of NLRP3 polymorphisms in the disease; the main functional studies using cellular and animal models of NLRP3 activation; and finally, some mechanisms of NLRP3 inhibition for the development of possible therapeutic drugs for LN.
Collapse
|
26
|
Chen L, Cao SQ, Lin ZM, He SJ, Zuo JP. NOD-like receptors in autoimmune diseases. Acta Pharmacol Sin 2021; 42:1742-1756. [PMID: 33589796 PMCID: PMC8564530 DOI: 10.1038/s41401-020-00603-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Li Chen
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shi-qi Cao
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ze-min Lin
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Shi-jun He
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian-ping Zuo
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.412540.60000 0001 2372 7462Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
27
|
Zhang Y, Yang W, Li W, Zhao Y. NLRP3 Inflammasome: Checkpoint Connecting Innate and Adaptive Immunity in Autoimmune Diseases. Front Immunol 2021; 12:732933. [PMID: 34707607 PMCID: PMC8542789 DOI: 10.3389/fimmu.2021.732933] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are a broad spectrum of human diseases that are characterized by the breakdown of immune tolerance and the production of autoantibodies. Recently, dysfunction of innate and adaptive immunity is considered to be a key step in the initiation and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect exogenous pathogen irritants and endogenous danger signals. The main function of NLRP3 inflammasome is to promote secretion of interleukin (IL)-1β and IL-18, and pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive immunity, aberrant activation and regulation of NLRP3 inflammasome plays an important role in the pathogenesis of autoimmune diseases. This paper reviewed the roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3 inflammasome may be a potential target for autoimmune diseases deserved further study.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, Kuang H. Role of NLRP3 Inflammasome in Lupus Nephritis and Therapeutic Targeting by Phytochemicals. Front Pharmacol 2021; 12:621300. [PMID: 34489689 PMCID: PMC8417800 DOI: 10.3389/fphar.2021.621300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune inflammatory condition that affects multiple organs and provokes extensive and severe clinical manifestations. Lupus nephritis (LN) is one of the main clinical manifestations of SLE. It refers to the deposition of immune complexes in the glomeruli, which cause kidney inflammation. Although LN seriously affects prognosis and represents a key factor of disability and death in SLE patients, its mechanism remains unclear. The NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NLRP3) inflammasome regulates IL-1β and IL-18 secretion and gasdermin D-mediated pyroptosis and plays a key role in innate immunity. There is increasing evidence that aberrant activation of the NLRP3 inflammasome and downstream inflammatory pathways play an important part in the pathogenesis of multiple autoimmune diseases, including LN. This review summarizes research progress on the elucidation of NLRP3 activation, regulation, and recent clinical trials and experimental studies implicating the NLRP3 inflammasome in the pathophysiology of LN. Current treatments fail to provide durable remission and provoke several sides effects, mainly due to their broad immunosuppressive effects. Therefore, the identification of a safe and effective therapeutic approach for LN is of great significance. Phytochemicals are found in many herbs, fruits, and vegetables and are secondary metabolites of plants. Evidence suggests that phytochemicals have broad biological activities and have good prospects in a variety of diseases, including LN. Therefore, this review reports on current research evaluating phytochemicals for targeting NLRP3 inflammasome pathways in LN therapy.
Collapse
Affiliation(s)
- Dantong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Laboratory Diagnostics, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianjie Ai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sisi Chen
- Department of Rheumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
de Souza JG, Starobinas N, Ibañez OCM. Unknown/enigmatic functions of extracellular ASC. Immunology 2021; 163:377-388. [PMID: 34042182 DOI: 10.1111/imm.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), encoded by PYCARD gene, is a 22 kDa small molecule, which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra- and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies, and can induce the maturation of cytokines promoting the modelling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here, we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Immunology Catalyst, GlaxoSmithKline, Stevenag, UK
| | - Nancy Starobinas
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Olga Celia Martinez Ibañez
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
30
|
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of Photosensitivity in Autoimmunity. J Invest Dermatol 2021; 142:849-856. [PMID: 34167786 DOI: 10.1016/j.jid.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
31
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|
32
|
Yang F, Yang Y, Zeng W. Blockade of anti-dsDNA ameliorates systemic lupus erythematosus in MRL/Faslpr mice through ameliorating inflammation via the PKCδ-NLRC4 axis. Biochem Cell Biol 2020; 99:313-321. [PMID: 33064961 DOI: 10.1139/bcb-2020-0265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anti-double-stranded DNA (anti-dsDNA) is closely associated with the inflammatory burden in the brain after ischemic stroke. Here, we studied the inflammatory cascade and investigated the mechanisms behind the pro-inflammatory role of dsDNA in systemic lupus erythematosus (SLE). The serum levels of interleukin-1beta (IL-1β) and IL-6 in SLE patients and the corresponding controls were evaluated using ELISA, and the expression level of caspase-1 was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). We found that the serum levels of IL-1β and IL-6 were increased in the SLE patients. The expression of caspase-1 was upregulated and positively correlated with the levels of pro-inflammatory factors. The level of anti-dsDNA was also elevated and positively correlated with the results for the mean fluorescence intensity (MFI) of caspase-1. Additionally, we evaluated the functions of PRKCD encoding protein kinase c delta (PKCδ) and NLRC4, in vivo, in MRL/Faslpr mice. We found that renal injury was aggravated, and the levels of pro-inflammatory factors were increased in the MRL/Faslpr mice. We also found that increased levels of NLRC4 in the mice exacerbated renal injury and increased the levels of pro-inflammatory factors, whereas inhibition of PKCδ had the opposite results. These findings provide unique perspectives on pathogenesis of SLE and indicate that inhibition of anti-dsDNA could attenuate renal inflammatory burden, representing a promising therapeutic opportunity for SLE.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, P.R. China.,Department of Plastic Surgery and Burns, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Yinhui Yang
- Department of Plastic Surgery and Burns, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Weihui Zeng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, P.R. China
| |
Collapse
|
33
|
Yang SR, Hsu WH, Wu CY, Shang HS, Liu FC, Chen A, Hua KF, Ka SM. Accelerated, severe lupus nephritis benefits from treatment with honokiol by immunoregulation and differentially regulating NF-κB/NLRP3 inflammasome and sirtuin 1/autophagy axis. FASEB J 2020; 34:13284-13299. [PMID: 32813287 DOI: 10.1096/fj.202001326r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Using honokiol (HNK), a major anti-inflammatory bioactive compound in Magnolia officinalis, we show a potent therapeutic outcome against an accelerated, severe form of lupus nephritis (ASLN). The latter may follow infectious insults that act as environmental triggers in the patients. In the current study, an ASLN model in NZB/W F1 mice was treated with HNK by daily gavage after onset of the disease. We show that HNK ameliorated the ASLN by improving renal function, albuminuria, and renal pathology, especially reducing cellular crescents, neutrophil influx, fibrinoid necrosis in glomeruli, and glomerulonephritis activity scores. Meanwhile, HNK differentially regulated T cell functions, reduced serum anti-dsDNA autoantibodies, and inhibited NLRP3 inflammasome activation in the mice. The latter involved: (a) suppressed production of reactive oxygen species and NF-κB activation-mediated priming signal of the inflammasome, (b) reduced mitochondrial damage, and (c) enhanced sirtuin 1 (SIRT1)/autophagy axis activation. In conclusion, HNK represents a new drug candidate for acute, severe episodes of LN capable of alleviating renal lesions in ASLN mice by negatively regulating T cell functions and by enhancing SIRT1/autophagy axis-lessened NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Han Hsu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
34
|
Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 2020; 130:110542. [PMID: 32738636 DOI: 10.1016/j.biopha.2020.110542] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
NOD-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular receptor that senses foreign pathogens and endogenous danger signals. It assembles with apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 to form a multimeric protein called the NLRP3 inflammasome. Among its various functions, the NLRP3 inflammasome can induce the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 while also promoting gasdermin D (GSDMD)-mediated pyroptosis. Previous studies have established a vital role for the NLRP3 inflammasome in innate and adaptive immune system as well as its contribution to several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), systemic sclerosis (SSc), and ankylosing spondylitis (AS). In this review, we briefly introduce the biological features of the NLRP3 inflammasome and present the mechanisms underlying its activation and regulation. We also summarize recent studies that have reported on the roles of NLRP3 inflammasome in the immune system and several autoimmune diseases, with a focus on therapeutic and clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jialong Guo
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
35
|
Tang L, Zhou F. Inflammasomes in Common Immune-Related Skin Diseases. Front Immunol 2020; 11:882. [PMID: 32528469 PMCID: PMC7247819 DOI: 10.3389/fimmu.2020.00882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is an important protein complex that cleaves the proinflammatory cytokines pro-IL-1β and pro-IL-18 into their active forms. Owing to its critical role in eliciting innate immune responses, IL-1β has been suggested to contribute to various skin diseases, including psoriasis, vitiligo, systemic lupus erythematosus (SLE), and atopic dermatitis (AD). Recently, several types of activators and inhibitors of different inflammasomes, as well as inflammasome-related genes and genetic susceptibility loci, have been identified in these immune-related common skin diseases. In particular, inflammasome activators and inhibitors presented highly cell-type-specific activity, suggesting that the inflammasome might perform different functions in different cell types. Moreover, most of these findings were based on experimental disease models, and the clinical features of the models partly resemble the typical symptoms of the diseases. In this review, from the perspective of activators and inhibitors, we collected evidence from the widely-studied inflammasomes, NLRP3, AIM2, and NLRP1, in psoriasis, vitiligo, SLE, and AD. Importantly, some small-molecule inhibitors hold therapeutic promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
36
|
Kim J, Jeong JH, Jung J, Jeon H, Lee S, Lim JS, Go H, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford) 2020; 59:2135-2145. [DOI: 10.1093/rheumatology/keaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Abstract
Objectives
Kidney-infiltrating immune cells can contribute to the pathogenesis of lupus nephritis (LN). We investigated the immunological characteristics of CD11c+ macrophages and their functions associated with the pathogenesis of LN.
Methods
CD11c+ macrophages were examined in the urine samples of patients with LN. Phenotypic markers and pro-inflammatory cytokine expression levels were analysed by flow cytometry. To determine the origin of urinary macrophages, peripheral monocytes were treated with sera from patients with systemic lupus erythematosus (SLE). The pathogenic role of CD11c+ macrophages in tubulointerstitial damage was investigated using SLE sera-treated monocytes and HK-2 cells.
Results
Urinary CD11c+ macrophages expressed pro-inflammatory cytokines, such as IL-6 and IL-1β, and resembled infiltrated monocytes rather than tissue-resident macrophages with respect to surface marker expression. CD11c+ macrophages had high expression levels of the chemokine receptor CXCR3, which were correlated with cognate chemokine IP-10 expression in urinary tubular epithelial cells. When treated with sera from SLE patients, peripheral monocytes acquired the morphological and functional characteristics of urinary CD11c+ macrophages, which was blocked by DNase treatment. Finally, SLE sera-treated monocytes induced fibronectin expression, apoptosis and cell detachment in HK-2 cells via production of IL-6.
Conclusion
CD11c+ macrophages may be involved in the pathogenesis of tubulointerstitial injury in LN.
Collapse
Affiliation(s)
- Jihye Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaehyung Jung
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Seon Oh
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
da Cruz HLA, Cavalcanti CAJ, de Azêvedo Silva J, de Lima CAD, Fragoso TS, Barbosa AD, Dantas AT, de Ataíde Mariz H, Duarte ALBP, Pontillo A, Crovella S, Sandrin-Garcia P. Differential expression of the inflammasome complex genes in systemic lupus erythematosus. Immunogenetics 2020; 72:217-224. [PMID: 32020248 DOI: 10.1007/s00251-020-01158-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder involving heterogeneous clinical manifestations and numerous susceptibility genes. Several findings evidence the critical role of inflammasomes in the predisposition to autoimmune diseases and in SLE. We investigated whether inflammasome polymorphins could affect susceptibility to develop and/or severity SLE. Moreover, differences in inflammasome activation in peripheral blood were also evaluated in SLE patients and controls. The distribution of 13 SNPs in eight inflammasome genes was evaluated. To assess inflammasome priming in peripheral blood monocytes of SLE and controls, differential expression of selected inflammasome genes and IL-1ß production was analyzed in resting condition as well as after LPS and ATP stimulation. Results showed that the gain-of-function variant rs10754558 (NLRP3) was significantly more frequent in SLE patients with nephritis, reinforcing the concept of a key role of NLRP3 inflammasome not only in SLE but also especially in kidney disease. SLE monocytes in resting condition showed a higher level of IL-1ß expression and produced higher levels of IL-1ß when stimulated with LPS+ATP comparing to controls. The stimulation induced a significant expression of NLRP1, AIM2, CASP1, and IL1B genes, suggesting that the NLRP1 inflammasome is responsible for the IL-1ß production observed in monocytes. These data emphasized once more the important contribution of inflammasome in SLE-associated inflammation.
Collapse
Affiliation(s)
| | - Catarina Addobbati Jordão Cavalcanti
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Thiago Sotero Fragoso
- Rheumatology Service, "Clinical Hospital", Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Andréa Tavares Dantas
- Rheumatology Division, "Clinical Hospital", Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Henrique de Ataíde Mariz
- Rheumatology Division, "Clinical Hospital", Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergio Crovella
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paula Sandrin-Garcia
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil. .,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
38
|
Shi L, Song L, Maurer K, Dou Y, Patel VR, Su C, Leonard ME, Lu S, Hodge KM, Torres A, Chesi A, Grant SFA, Wells AD, Zhang Z, Petri MA, Sullivan KE. IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins. THE JOURNAL OF IMMUNOLOGY 2020; 204:1334-1344. [PMID: 31953354 DOI: 10.4049/jimmunol.1900650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023]
Abstract
The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.
Collapse
Affiliation(s)
- Lihua Shi
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Li Song
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly Maurer
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ying Dou
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vishesh R Patel
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Annabel Torres
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
| |
Collapse
|
39
|
Kahlenberg JM, Kang I. Advances in Disease Mechanisms and Translational Technologies: Clinicopathologic Significance of Inflammasome Activation in Autoimmune Diseases. Arthritis Rheumatol 2020; 72:386-395. [PMID: 31562704 DOI: 10.1002/art.41127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases are characterized by dysregulated immune tolerance to self and inflammatory damage to tissues and organs. The development of inflammation involves multiple innate and adaptive immune pathways. Inflammasomes are multimeric cytosolic protein complexes that form to mediate host immune responses upon recognizing pathogen- or damage-associated molecular patterns via pattern-recognition receptors (PRRs). The accelerating pace of inflammasome research has demonstrated important roles for inflammasome activation in many pathologic conditions, including infectious, metabolic, autoinflammatory, and autoimmune diseases. The inflammasome generally comprises a PRR, procaspase 1, and an adaptor molecule connecting the PRR and procaspase 1. Upon inflammasome activation, procaspase 1 becomes active caspase 1 that converts pro-interleukin-1β (proIL-1β) and proIL-18 into mature and active IL-1β and IL-18, respectively. The cytokines IL-1β and IL-18 have multipotent effects on immune and nonimmune cells and induce and promote systemic and local inflammatory responses. Human studies have shown increased levels of these cytokines, altered activation of inflammasome-related molecules, and/or the presence of inflammasome activators in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, crystal-induced arthropathies, and Sjögren's syndrome. Such changes are found in the primary target organs, such as the kidneys, joints, and salivary glands, as well as in the cardiovascular system. In animal models of rheumatic diseases, inflammation and tissue damage improve upon genetic or pharmacologic targeting of the inflammasome, supporting its pathogenic role. Herein, we review the clinicopathologic significance and therapeutic targeting of inflammasome activation in rheumatic diseases and related conditions based on recent findings.
Collapse
|
40
|
Perez-Alamino R, Cuchacovich R, Espinoza LR, Porretta CP, Zea AH. Role of Inflammasome Activation in Systemic Lupus Erythematosus: Are Innate Immune Cells Activated? ACTA ACUST UNITED AC 2020; 17:187-191. [PMID: 31917141 DOI: 10.1016/j.reuma.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is characterized by a wide spectrum of clinical and immunological abnormalities. New data have emerged about the role of inflammasomes in autoimmune diseases. We aimed to investigate whether basal inflammasome activation occurs in SLE patients, and whether a relationship between inflammasome-related-cytokines and disease activity exists. METHODS Fourteen (14) consecutive SLE patients and 13 healthy individuals, matched by sex, age and ethnicity, were included. Demographics, laboratory and clinical data were recorded. Peripheral blood mononuclear cells (PBMCs) from patients and controls were obtained and monocytes were isolated by negative selection. Purified monocytes were stimulated with LPS in the presence or absence of Caspase-1 inhibitor. CD14 and Caspase-1 expression were analyzed by flow cytometry. Cytokine levels were determined in plasma and culture supernatants by ELISA. Student's t test and Mann-Whitney tests were used for statistical analysis. RESULTS The percentage of CD14+/Caspase-1+ was significantly higher in monocytes from SLE patients compared to normal controls (p<0.01). These findings paralleled with higher plasma levels of IL-1β (p<0.05) and IL-18 (p<0.01) in those patients. Purified monocytes from SLE patients displayed a robust inflammatory response after LPS stimulation where Caspase-1, IL-1β and IL-18 were highly expressed. Plasma levels of IL-18 were also significantly higher in SLE patients with active disease (p<0.05). In addition, the production of IL-18 was reduced by 3 fold when Caspase-1 inhibitor was added to the cultures. CONCLUSIONS Monocytes from SLE patients exhibited increased inflammasome activation, characterized by high expression of Caspase-1, IL-1β and IL-18. Caspase-1 specific inhibitor decreased inflammasome activation (in vitro) by suppressing the production of IL-18.
Collapse
Affiliation(s)
- Rodolfo Perez-Alamino
- Section of Rheumatology, Department of Internal Medicine, LSU Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA 70112, USA; Section of Rheumatology, Hospital de Clínicas Nicolás Avellaneda, Tucumán, Argentina, 2000 Catamarca Street, Tucumán, PC 4000, Argentina.
| | - Raquel Cuchacovich
- Section of Rheumatology, Department of Internal Medicine, LSU Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA 70112, USA
| | - Luis R Espinoza
- Section of Rheumatology, Department of Internal Medicine, LSU Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA 70112, USA
| | - Constance P Porretta
- School of Medicine, Comprehensive Alcohol Research Center, 533 Bolivar Street, CSRB304, New Orleans, LA 70112, USA
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Microbiology, Immunology and Parasitology, LSU Health Sciences Center, 533 Bolivar Street, CSRB 305, New Orleans, LA 70112, USA
| |
Collapse
|
41
|
Yang F, He Y, Zhai Z, Sun E. Programmed Cell Death Pathways in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res 2019; 2019:3638562. [PMID: 31871956 PMCID: PMC6913273 DOI: 10.1155/2019/3638562] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/04/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by excessive inflammatory and immune responses and tissue damage. Increasing evidence has demonstrated the important role of programmed cell death in SLE pathogenesis. When apoptosis encounters with defective clearance, accumulated apoptotic cells lead to secondary necrosis. Different forms of lytic cell death, including secondary necrosis after apoptosis, NETosis, necroptosis, and pyroptosis, contribute to the release of damage-associated molecular patterns (DAMPs) and autoantigens, resulting in triggering immunity and tissue damage in SLE. However, the role of autophagy in SLE pathogenesis is in dispute. This review briefly discusses different forms of programmed cell death pathways and lay particular emphasis on inflammatory cell death pathways such as NETosis, pyroptosis, and necroptosis and their roles in the inflammatory and immune responses in SLE.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Yu Y, Fu S, Zhang X, Wang L, Zhao L, Wan W, Xue Y, Lv L. Leptin facilitates the differentiation of Th17 cells from MRL/Mp-Fas lpr lupus mice by activating NLRP3 inflammasome. Innate Immun 2019; 26:294-300. [PMID: 31752571 PMCID: PMC7251789 DOI: 10.1177/1753425919886643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both NLRP3 inflammasome and Th17 cells play important roles in the pathogenesis
of systemic lupus erythematosus (SLE). Here we tried to investigate whether
leptin promotes the differentiation of Th17 cells from lupus mice by activating
the NLRP3 inflammasome. Th17 cells induced from MRL/Mp-Fas lpr mice splenocytes
under Th17 polarizing condition were treated with leptin at scalar doses during
the last 18 h of culture. The mRNA levels of IL-17A, IL-17F, RORγt, IL-1β,
IL-18, NLRP3, ASC, and IL-1R1 were detected by quantitative PCR. IL-17A, IL-17F,
IL-1β, and IL-18 were tested by ELISA, while the activity of caspase-1 and
number of Th17 cells were counted by flow cytometry before/after inhibition of
the NLRP3 inflammasome. We found that leptin pushed up the expression of IL-17A,
IL-17F, NLRP3, and IL-1β and increased the number of Th17 cells in lupus mice,
while the expression of IL-17A, RORγt, and IL-1β and the number of Th17 cells
were decreased after inhibition of the NLRP3 inflammasome. Leptin promoted the
differentiation of Th17 cells from lupus mice by activating the NLRP3
inflammasome.
Collapse
Affiliation(s)
- Yiyun Yu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Sisi Fu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Xianglin Zhang
- Division of Endocrinology, Renhe Hospital, Shanghai, China
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Li Zhao
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| |
Collapse
|
43
|
Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019; 8:cells8111389. [PMID: 31694192 PMCID: PMC6912448 DOI: 10.3390/cells8111389] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) forms an inflammasome with apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspase-1, which is followed by the cleavage of pro-caspase-1 to active caspase-1 and ultimately the activation of IL-1β and IL-18 and induction of pyroptosis in immune cells. NLRP3 activation in kidney diseases aggravates inflammation and subsequent fibrosis, and this effect is abrogated by genetic or pharmacologic deletion of NLRP3. Inflammasome-dependent NLRP3 mediates the progression of kidney diseases by escalating the inflammatory response in immune cells and the cross-talk between immune cells and renal nonimmune cells. However, recent studies have suggested that NLRP3 has several inflammasome-independent functions in the kidney. Inflammasome-independent NLRP3 regulates apoptosis in tubular epithelial cells by interacting with mitochondria and mediating mitochondrial reactive oxygen species production and mitophagy. This review will summarize the mechanisms by which NLRP3 functions in the kidney in both inflammasome-dependent and inflammasome-independent ways and the role of NLRP3 and NLRP3 inhibitors in kidney diseases.
Collapse
Affiliation(s)
- Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ki-Pyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University of Medicine, Incheon 22212, Korea;
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
- Correspondence: ; Tel.: +82-2-440-6262
| |
Collapse
|
44
|
Inoue K, Ishizawa M, Kubota T. Monoclonal anti-dsDNA antibody 2C10 escorts DNA to intracellular DNA sensors in normal mononuclear cells and stimulates secretion of multiple cytokines implicated in lupus pathogenesis. Clin Exp Immunol 2019; 199:150-162. [PMID: 31604370 PMCID: PMC6954677 DOI: 10.1111/cei.13382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 01/11/2023] Open
Abstract
There have been many studies on the mechanisms of internalization of DNA–anti‐DNA immune complexes by cells, including the one used for rheumatoid factor‐expressing mouse B cells. In parallel, studies on the role of intracellular DNA sensors in the pathogenesis of systemic lupus erythematosus (SLE) have been conducted, including the one using a mouse model lacking one of the sensors. These and other data have established a framework for understanding the pathogenic role of anti‐DNA antibodies, but studies on normal cells are limited. Here, we used the monoclonal anti‐dsDNA antibody 2C10, 2‐kbp dsDNA and healthy human peripheral blood mononuclear cells (PBMCs) to test whether and how 2C10 and/or DNA cause pathology in normal cells. We found that on culture with PBMCs, 2C10 preferentially entered monocytes and that DNA enhanced this internalization. In contrast, DNA alone was not significantly internalized by monocytes, but 2C10 facilitated its internalization. This was suppressed by cytochalasin D, but not by methyl‐β‐cyclodextrin, chloroquine or an Fc blocker, suggesting the involvement of macropinocytosis in this process. Internalization of 2C10 and DNA together resulted in production of interferon (IFN)‐α, IFN‐γ, tumor necrosis factor (TNF)‐α, monocyte chemoattractant protein‐1 (MCP‐1), interleukin (IL)‐1β, IL‐6, IL‐10 and IL‐33 by PBMCs. Cytokine production was suppressed by chloroquine and shikonin, but not by RU.521, suggesting dependence on activation of the Toll‐like receptor (TLR)‐9 and absent in melanoma 2 (AIM‐2) pathways. These results established a simple model to demonstrate that anti‐DNA antibodies can cause dysregulation of cytokine network mimicking systemic lupus erythematosus in culture of normal PBMCs, and emphasize again the importance of maintaining anti‐DNA antibodies at low levels by treatment.
Collapse
Affiliation(s)
- K Inoue
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - M Ishizawa
- Department of Immunopathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Kubota
- Department of Immunopathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
45
|
Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol 2019; 107:379-391. [PMID: 31608507 DOI: 10.1002/jlb.3mir0919-191r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are a specialized group of intracellular sensors that are key components of the host innate immune system. Autoinflammatory diseases are disorders of the innate immune system that are characterized by recurrent inflammation and serious complications. Dysregulation of the inflammasome is associated with the onset and progression of several autoinflammatory and autoimmune diseases, including cryopyrin-associated periodic fever syndrome, familial Mediterranean fever, rheumatoid arthritis, and systemic lupus erythematosus. In this review, we discuss the involvement of various inflammasome components in the regulation of autoinflammatory disorders and describe the manifestations of these autoinflammatory diseases caused by inflammasome activation.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
46
|
Lin TJ, Wu CY, Tsai PY, Hsu WH, Hua KF, Chu CL, Lee YC, Chen A, Lee SL, Lin YJ, Hsieh CY, Yang SR, Liu FC, Ka SM. Accelerated and Severe Lupus Nephritis Benefits From M1, an Active Metabolite of Ginsenoside, by Regulating NLRP3 Inflammasome and T Cell Functions in Mice. Front Immunol 2019; 10:1951. [PMID: 31475012 PMCID: PMC6702666 DOI: 10.3389/fimmu.2019.01951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines used in combination have long-term been shown to be mild remedies with “integrated effects.” However, our study provides the first demonstration that M1, an active metabolite of ginsenoside, exerted its dramatic therapeutic effects on accelerated and severe lupus nephritis (ASLN) mice, featuring acute renal function impairment, heavy proteinuria, high serum levels of anti-dsDNA, and high-grade, diffuse proliferative renal lesions. In the present study, NZB/WF1 mice were given injections of lipopolysaccharide to induce the ASLN model. M1 (30 mg/kg) was then administered to the mice by gavage daily, and the mice were sacrificed on week 3 and week 5 after the induction of disease. To identify the potential mechanism of action for the pure compound, levels of NLRP3 inflammasome activation in bone marrow-derived dendritic cells (BMDCs), podocytes and macrophages, and antigen-specific T cell activation in BMDCs were determined in addition to mechanistic experiments in vivo. Treatment with M1 dramatically improved renal function, albuminuria and renal lesions and reduced serum levels of anti-dsDNA in the ASLN mice. These beneficial effects with M1 treatment involved the following cellular and molecular mechanistic events: [1] inhibition of NLRP3 inflammasome associated with autophagy induction, [2] modulation of T help cell activation, and [3] induction of regulatory T cell differentiation. M1 improved the ASLN mice by blunting NLRP3 inflammasome activation and differentially regulating T cell functions, and the results support M1 as a new therapeutic candidate for LN patients with a status of abrupt transformation of lower-grade (mesangial) to higher-grade (diffuse proliferative) nephritis.
Collapse
Affiliation(s)
- Tsai-Jung Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yi Tsai
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ann Chen
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Yi-Jin Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.,Renal Care Joint Foundation, New Taipei City, Taiwan
| | - Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
47
|
Roles of Inflammasomes in Inflammatory Kidney Diseases. Mediators Inflamm 2019; 2019:2923072. [PMID: 31427885 PMCID: PMC6679869 DOI: 10.1155/2019/2923072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system has a central role in eliminating detrimental factors, by frequently launching inflammatory responses towards pathogen infection and inner danger signal outbreak. Acute and chronic inflammatory responses are critical determinants for consequences of kidney diseases, in which inflammasomes were inevitably involved. Inflammasomes are closely linked to many kidney diseases such as acute kidney injury and chronic kidney diseases. Inflammasomes are macromolecules consisting of multiple proteins, and their formation initiates the cleavage of procaspase-1, resulting in the activation of gasdermin D as well as the maturation and release of interleukin-1β and IL-18, leading to pyroptosis. Here, we discuss the mechanism in which inflammasomes occur, as well as their roles in inflammatory kidney diseases, in order to shed light for discovering new therapeutical targets for the prevention and treatment of inflammatory kidney diseases and consequent end-stage renal disease.
Collapse
|
48
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Fu R, Xia Y, Li M, Mao R, Guo C, Zhou M, Tan H, Liu M, Wang S, Yang N, Zhao J. Pim-1 as a Therapeutic Target in Lupus Nephritis. Arthritis Rheumatol 2019; 71:1308-1318. [PMID: 30791224 DOI: 10.1002/art.40863] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Lupus nephritis (LN) is a major determinant of morbidity and mortality in systemic lupus erythematosus (SLE). Pim-1 regulates lymphocyte proliferation and activation. The role of Pim-1 in autoimmune disease remains unclear. This study was undertaken to test the hypothesis that inhibition of Pim-1 would have therapeutic potential in patients with LN. METHODS Pim-1 expression was analyzed in lupus-prone (NZB × NZW)F1 mice (n = 6), human peripheral blood mononuclear cells (PBMCs) from SLE patients (n = 10), and glomeruli from patients with LN (n = 8). The therapeutic effect of the Pim-1 inhibitor AZD1208 was assessed in the same murine lupus model (n = 10 mice per group). In vitro analysis was conducted to explore the mechanisms of action of Pim-1 in mouse and human podocytes after Pim-1 expression had been induced by anti-double-stranded DNA (anti-dsDNA) antibody-positive serum. Finally, MRL/lpr mice were used to confirm the therapeutic effects of Pim-1 inhibition in vivo (n = 10 mice per group). RESULTS Up-regulation of Pim-1 was seen in renal lysates from diseased (NZB × NZW)F1 mice and in PBMCs from patients with SLE and renal biopsy tissue from patients with LN, relative to their control counterparts (each P < 0.05). The Pim-1 inhibitor AZD1208 reduced the severity of proteinuria, glomerulonephritis, renal immune complex deposits, and serum anti-dsDNA antibody levels, concomitant with the suppression of NFATc1 expression and NLRP3 inflammasome activation, in diseased (NZB × NZW)F1 mice (each P < 0.05 versus controls). Moreover, in mouse and human podocytes, Pim-1 knockdown with targeted small interfering RNA (siRNA) suppressed NFATc1 and NLRP3 inflammasome signaling in the presence of anti-dsDNA-positive serum (each P < 0.05 versus control siRNA). Mechanistically, Pim-1 modulated NLRP3 inflammasome activation through intracellular Ca2+ (P < 0.05 versus normal controls). The therapeutic effect of Pim-1 blockade was replicated in MRL/lpr mice. CONCLUSION These data identify Pim-1 as a critical regulator of LN pathogenesis in patients with SLE. Targeting of the Pim-1/NFATc1/NLRP3 pathway might therefore have therapeutic potential in human LN.
Collapse
Affiliation(s)
- Rong Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Xia
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meirong Li
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renxiang Mao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hechang Tan
- Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Meiling Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jijun Zhao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|