1
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Naghavian R, Faigle W, Oldrati P, Wang J, Toussaint NC, Qiu Y, Medici G, Wacker M, Freudenmann LK, Bonté PE, Weller M, Regli L, Amigorena S, Rammensee HG, Walz JS, Brugger SD, Mohme M, Zhao Y, Sospedra M, Neidert MC, Martin R. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 2023; 617:807-817. [PMID: 37198490 PMCID: PMC10208956 DOI: 10.1038/s41586-023-06081-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Microbial organisms have key roles in numerous physiological processes in the human body and have recently been shown to modify the response to immune checkpoint inhibitors1,2. Here we aim to address the role of microbial organisms and their potential role in immune reactivity against glioblastoma. We demonstrate that HLA molecules of both glioblastoma tissues and tumour cell lines present bacteria-specific peptides. This finding prompted us to examine whether tumour-infiltrating lymphocytes (TILs) recognize tumour-derived bacterial peptides. Bacterial peptides eluted from HLA class II molecules are recognized by TILs, albeit very weakly. Using an unbiased antigen discovery approach to probe the specificity of a TIL CD4+ T cell clone, we show that it recognizes a broad spectrum of peptides from pathogenic bacteria, commensal gut microbiota and also glioblastoma-related tumour antigens. These peptides were also strongly stimulatory for bulk TILs and peripheral blood memory cells, which then respond to tumour-derived target peptides. Our data hint at how bacterial pathogens and bacterial gut microbiota can be involved in specific immune recognition of tumour antigens. The unbiased identification of microbial target antigens for TILs holds promise for future personalized tumour vaccination approaches.
Collapse
Affiliation(s)
- Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Pietro Oldrati
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Schlieren, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yuhan Qiu
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Gioele Medici
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | | | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Clinical Neuroscience, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sebastian Amigorena
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malte Mohme
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, University of Hamburg, Hamburg, Germany
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Marian C Neidert
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland.
- Cellerys AG, Schlieren, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
- Therapeutic Immune Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Platten M, Grassl N. Vaccines Targeting Gliomas: Antigens Matter. J Clin Oncol 2023; 41:1466-1469. [PMID: 36623232 DOI: 10.1200/jco.22.02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, German Cancer Research Center, Mainz, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Niklas Grassl
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
4
|
San D, Lei J, Liu Y, Jing B, Ye X, Wei P, Paek C, Yang Y, Zhou J, Chen P, Wang H, Chen Y, Yin L. Structural basis of the TCR-pHLA complex provides insights into the unconventional recognition of CDR3β in TCR cross-reactivity and alloreactivity. CELL INSIGHT 2023; 2:100076. [PMID: 37192909 PMCID: PMC10120306 DOI: 10.1016/j.cellin.2022.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 05/18/2023]
Abstract
Evidence shows that some class I human leucocyte antigen (HLA) alleles are related to durable HIV controls. The T18A TCR, which has the alloreactivity between HLA-B∗42:01 and HLA-B∗81:01 and the cross-reactivity with different antigen mutants, can sustain long-term HIV controls. Here the structural basis of the T18A TCR binding to the immunodominant HIV epitope TL9 (TPQDLNTML180-188) presented by HLA-B∗42:01 was determined and compared to T18A TCR binding to the TL9 presented by the allo-HLA-B∗81:01. For differences between HLA-B∗42:01 and HLA-B∗81:01, the CDR1α and CDR3α loops adopt a small rearrangement to accommodate them. For different conformations of the TL9 presented by different HLA alleles, not like the conventional recognition of CDR3s to interact with peptide antigens, CDR3β of the T18A TCR shifts to avoid the peptide antigen but intensively recognizes the HLA only, which is different with other conventional TCR structures. Featured sequence pairs of CDR3β and HLA might account for this and were additionally found in multiple other diseases indicating the popularity of the unconventional recognition pattern which would give insights into the control of diseases with epitope mutating such as HIV.
Collapse
Affiliation(s)
| | | | | | - Baowei Jing
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Ye
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Brito-Sierra CA, Lannan MB, Siegel RW, Malherbe LP. The HLA class-II immunopeptidomes of AAV capsids proteins. Front Immunol 2022; 13:1067399. [PMID: 36605211 PMCID: PMC9807805 DOI: 10.3389/fimmu.2022.1067399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Gene therapies are using Adeno-associated viruses (AAVs) as vectors, but immune responses against the capsids pose challenges to their efficiency and safety. Helper T cell recognition of capsid-derived peptides bound to human leukocyte antigen (HLA) class II molecules is an essential step in the AAV-specific adaptive immunity. Methods Using MHC-associated peptide proteomics, we identified the HLA-DR and HLA-DQ immunopeptidomes of the capsid proteins of three different AAV serotypes (AAV2, AAV6, and AAV9) from a panel of healthy donors selected to represent a majority of allele usage. Results The identified sequences span the capsids of all serotypes, with AAV2 having the highest peptide count. For all the serotypes, multiple promiscuous peptides were identified and displayed by both HLA-DR and -DQ. However, despite high sequence homology, there were few identical peptides among AAV2, AAV6, and AAV9 immunopeptidomes, and none were promiscuous. Discussion Results from this work represent a comprehensive immunopeptidomics research of potential CD4+ T cell epitopes and provide the basis for immunosurveillance efforts for safer and more efficient AAV-based gene therapies.
Collapse
Affiliation(s)
| | | | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
6
|
Rickenbach C, Gericke C. Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Front Neurosci 2022; 15:806260. [PMID: 35126045 PMCID: PMC8812614 DOI: 10.3389/fnins.2021.806260] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
The field of neuroimmunology endorses the involvement of the adaptive immune system in central nervous system (CNS) health, disease, and aging. While immune cell trafficking into the CNS is highly regulated, small numbers of antigen-experienced lymphocytes can still enter the cerebrospinal fluid (CSF)-filled compartments for regular immune surveillance under homeostatic conditions. Meningeal lymphatics facilitate drainage of brain-derived antigens from the CSF to deep cervical lymph nodes to prime potential adaptive immune responses. During aging and CNS disorders, brain barriers and meningeal lymphatic functions are impaired, and immune cell trafficking and antigen efflux are altered. In this context, alterations in the immune cell repertoire of blood and CSF and T and B cells primed against CNS-derived autoantigens have been observed in various CNS disorders. However, for many diseases, a causal relationship between observed immune responses and neuropathological findings is lacking. Here, we review recent discoveries about the association between the adaptive immune system and CNS disorders such as autoimmune neuroinflammatory and neurodegenerative diseases. We focus on the current challenges in identifying specific T cell epitopes in CNS diseases and discuss the potential implications for future diagnostic and treatment options.
Collapse
Affiliation(s)
- Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christoph Gericke
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
7
|
Innovative therapeutic concepts of progressive multifocal leukoencephalopathy. J Neurol 2022; 269:2403-2413. [PMID: 34994851 PMCID: PMC8739669 DOI: 10.1007/s00415-021-10952-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is an opportunistic viral disease of the brain-caused by human polyomavirus 2. It affects patients whose immune system is compromised by a corresponding underlying disease or by drugs. Patients with an underlying lymphoproliferative disease have the worst prognosis with a mortality rate of up to 90%. Several therapeutic strategies have been proposed but failed to show any benefit so far. Therefore, the primary therapeutic strategy aims to reconstitute the impaired immune system to generate an effective endogenous antiviral response. Recently, anti-PD-1 antibodies and application of allogeneic virus-specific T cells demonstrated promising effects on the outcome in individual PML patients. This article aims to provide a detailed overview of the literature with a focus on these two treatment approaches.
Collapse
|
8
|
Martin R, Sospedra M, Eiermann T, Olsson T. Multiple sclerosis: doubling down on MHC. Trends Genet 2021; 37:784-797. [PMID: 34006391 DOI: 10.1016/j.tig.2021.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/12/2023]
Abstract
Human leukocyte antigen (HLA)-encoded surface molecules present antigenic peptides to T lymphocytes and play a key role in adaptive immune responses. Besides their physiological role of defending the host against infectious pathogens, specific alleles serve as genetic risk factors for autoimmune diseases. For multiple sclerosis (MS), an autoimmune disease that affects the brain and spinal cord, an association with the HLA-DR15 haplotype was described in the early 1970s. This short opinion piece discusses the difficulties of disentangling the details of this association and recent observations about the functional involvement of not only one, but also the second gene of the HLA-DR15 haplotype. This information is not only important for understanding the pathomechanism of MS, but also for antigen-specific therapies.
Collapse
Affiliation(s)
- Roland Martin
- Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, Frauenklinikstrasse 26, 8091 Zurich, University Hospital Zurich, University Zurich, Switzerland.
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, Frauenklinikstrasse 26, 8091 Zurich, University Hospital Zurich, University Zurich, Switzerland
| | - Thomas Eiermann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| |
Collapse
|
9
|
Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, Cruciani C, Faigle W, Naghavian R, Foege M, Binder TMC, Eiermann T, Opitz L, Fuentes-Font L, Reynolds R, Kwok WW, Nguyen JT, Lee JH, Lutterotti A, Münz C, Rammensee HG, Hauri-Hohl M, Sospedra M, Stevanovic S, Martin R. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell 2020; 183:1264-1281.e20. [PMID: 33091337 PMCID: PMC7707104 DOI: 10.1016/j.cell.2020.09.054] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS. HLA-DR15 present abundant HLA-DR-derived self-peptides on B cells Autoreactive T cells in MS recognize HLA-DR-derived self-peptides/DR15 complexes Foreign peptides/DR15 complexes trigger potential autoreactive T cells in MS HLA-DR15 shape an autoreactive T cell repertoire by cross-reactivity/restriction
Collapse
Affiliation(s)
- Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lena Mühlenbruch
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Veronika Haunerdinger
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich 8093, Switzerland; Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD 20850, USA
| | - Carolina Cruciani
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Magdalena Foege
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Thomas M C Binder
- HLA Laboratory of the Stefan Morsch Foundation (SMS), Birkenfeld 55765, Germany
| | - Thomas Eiermann
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich 8057, Switzerland
| | - Laura Fuentes-Font
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Julie T Nguyen
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Jar-How Lee
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Andreas Lutterotti
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Stefan Stevanovic
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
10
|
Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, Latorre D, Sallusto F, Sospedra M, Martin R, Ishikawa H, Tenenbaum T, Schroten H, Gosselet F, Engelhardt B. Human CD4 + T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 2020; 17:3. [PMID: 32008573 PMCID: PMC6996191 DOI: 10.1186/s12987-019-0165-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood–brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). Objective Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. Methods Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. Results While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. Conclusions Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.
Collapse
Affiliation(s)
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Adrien Mossu
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Transcure Bioservices, Archamps, France
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Henriette Rudolph
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - William A Muller
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | | |
Collapse
|
11
|
Bertoli D, Sottini A, Capra R, Scarpazza C, Bresciani R, Notarangelo LD, Imberti L. Lack of specific T- and B-cell clonal expansions in multiple sclerosis patients with progressive multifocal leukoencephalopathy. Sci Rep 2019; 9:16605. [PMID: 31719595 PMCID: PMC6851145 DOI: 10.1038/s41598-019-53010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, potentially devastating myelin-degrading disease caused by the JC virus. PML occurs preferentially in patients with compromised immune system, but has been also observed in multiple sclerosis (MS) patients treated with disease-modifying drugs. We characterized T and B cells in 5 MS patients that developed PML, 4 during natalizumab therapy and one after alemtuzumab treatment, and in treated patients who did not develop the disease. Results revealed that: i) thymic and bone marrow output was impaired in 4 out 5 patients at the time of PML development; ii) T-cell repertoire was restricted; iii) clonally expanded T cells were present in all patients. However, common usage or pairings of T-cell receptor beta variable or joining genes, specific clonotypes or obvious “public” T-cell response were not detected at the moment of PML onset. Similarly, common restrictions were not found in the immunoglobulin heavy chain repertoire. The data indicate that no JCV-related specific T- and B-cell expansions were mounted at the time of PML. The current results enhance our understanding of JC virus infection and PML, and should be taken into account when choosing targeted therapies.
Collapse
Affiliation(s)
- Diego Bertoli
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy
| | - Cristina Scarpazza
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy.,Department of General Psychology, University of Padova, Padova, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
12
|
Planas R, Santos R, Tomas-Ojer P, Cruciani C, Lutterotti A, Faigle W, Schaeren-Wiemers N, Espejo C, Eixarch H, Pinilla C, Martin R, Sospedra M. GDP-l-fucose synthase is a CD4 + T cell-specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Sci Transl Med 2019; 10:10/462/eaat4301. [PMID: 30305453 DOI: 10.1126/scitranslmed.aat4301] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. By using a brain-infiltrating CD4+ T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis, we have identified guanosine diphosphate (GDP)-l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid-infiltrating CD4+ T cells from HLA-DRB3*-positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway Port St. Lucie, FL 34987, USA
| | - Paula Tomas-Ojer
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Carolina Cruciani
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Andreas Lutterotti
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Nicole Schaeren-Wiemers
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway Port St. Lucie, FL 34987, USA
| | - Roland Martin
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland.
| |
Collapse
|
13
|
Pawlitzki M, Schneider-Hohendorf T, Rolfes L, Meuth SG, Wiendl H, Schwab N, Grauer OM. Ineffective treatment of PML with pembrolizumab: Exhausted memory T-cell subsets as a clue? NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e627. [PMID: 31597692 PMCID: PMC6812729 DOI: 10.1212/nxi.0000000000000627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Marc Pawlitzki
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Tilman Schneider-Hohendorf
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Leoni Rolfes
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Sven G Meuth
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Nicholas Schwab
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany
| | - Oliver M Grauer
- From the Department of Neurology with Institute of Translational Neurology, University of Muenster, Germany.
| |
Collapse
|
14
|
Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C, Santos R, Hammer C, Ortiz Y, Opitz L, Grönlund H, Rogler G, Boyman O, Reynolds R, Lutterotti A, Khademi M, Olsson T, Piehl F, Sospedra M, Martin R. Memory B Cells Activate Brain-Homing, Autoreactive CD4 + T Cells in Multiple Sclerosis. Cell 2018; 175:85-100.e23. [PMID: 30173916 PMCID: PMC6191934 DOI: 10.1016/j.cell.2018.08.011] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as “autoproliferation” of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies. Autoproliferation of CD4+ T cells and B cells is involved in multiple sclerosis The main genetic factor of MS, HLA-DR15, plays a central role in autoproliferation Memory B cells drive autoproliferation of Th1 brain-homing CD4+ T cells Autoproliferating T cells recognize antigens expressed in B cells and brain lesions
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Faiez Al Nimer
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Verena Lentsch
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Aleksandar Madjovski
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sabrina Ruhrmann
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies (TPIMS), San Diego, CA, USA
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies (TPIMS), Port St. Lucie, FL, USA
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yaneth Ortiz
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andreas Lutterotti
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
15
|
Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren's syndrome patients using single-cell analysis. Clin Immunol 2018; 192:58-67. [PMID: 29679709 DOI: 10.1016/j.clim.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease in which the underlying cause has yet to be elucidated. The main objective of this study was to determine the T cell receptor (TCR) repertoires of individual infiltrating T helper (Th)-1 and 17 cells of pSS patients using single-cell analysis. Single-cell analysis of ex-vivo infiltrating T cells demonstrated that pSS patients had higher frequencies of activated Th17 cells. Single-cell TCR sequencing revealed that TCRβ variable (TRBV)3-1/joint (J)1-2 (CLFLSMSACVW) and TRBV20-1/J1-1 (SVGSTAIPP*T) were expressed by activated Th1 and Th17 cells in both cohorts. Uniquely, TCRα variable (TRAV)8-2/J5 (VVSDTVLETAGE) was expressed by Th1 cells present only in patients and complementarity-determining region (CDR)3α-specific motif (LSTD*E) present in both Th1/Th17 cells. The study demonstrates that both activated Th1 and Th17 cells of pSS patients showed restricted clonal diversities of which two CDR3 motifs were present in controls and patients, with another two motifs unique to pSS.
Collapse
|
16
|
Misbah SA. Progressive multi-focal leucoencephalopathy - driven from rarity to clinical mainstream by iatrogenic immunodeficiency. Clin Exp Immunol 2017; 188:342-352. [PMID: 28245526 PMCID: PMC5422720 DOI: 10.1111/cei.12948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/21/2022] Open
Abstract
Advances in immune-mediated targeted therapies have proved to be a double-edged sword for patients by highlighting the risk of iatrogenic infective complications. This has been exemplified by progressive multi-focal leucoencephalopathy (PML), a hitherto rare devastating viral infection of the brain caused by the neurotrophic JC polyoma virus. While PML achieved prominence during the first two decades of the HIV epidemic, effective anti-retroviral treatment and restitution of T cell function has led to PML being less prominent in this population. HIV infection as a predisposing factor has now been supplanted by T cell immunodeficiency induced by a range of immune-mediated therapies as a major cause of PML. This review focuses on PML in the context of therapeutic immunosuppression and encompasses therapeutic monoclonal antibodies, novel immunomodulatory agents such as Fingolimod and dimethyl fumarate, as well as emerging data on PML in primary immune deficiency.
Collapse
Affiliation(s)
- S A Misbah
- Department of Clinical Immunology, Oxford University Hospitals, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
17
|
Jelcic I, Jelcic I, Kempf C, Largey F, Planas R, Schippling S, Budka H, Sospedra M, Martin R. Mechanisms of immune escape in central nervous system infection with neurotropic JC virus variant. Ann Neurol 2016; 79:404-18. [PMID: 26874214 DOI: 10.1002/ana.24574] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Symptomatic infections of the central nervous system (CNS) with JC polyomavirus (JCV) usually occur as a result of immunocompromise and manifest as progressive multifocal leukoencephalopathy (PML) or granule cell neuronopathy (GCN). After immune reconstitution, some of these cases may show long-term persistence of JCV and delayed clinical improvement despite inflammation. METHODS We followed 4 patients with multiple sclerosis, who developed natalizumab-associated PML or GCN with regard to JC viral load and JCV-specific T-cell responses in the CNS. All of them experienced immune reconstitution inflammatory syndrome (IRIS), but in 2 cases JCV persisted > 21 months after IRIS accompanied by delayed clinical improvement. RESULTS Persistence of JCV was associated with a lack of JCV VP1-specific T-cell responses during immune reconstitution in 1 of the patients. Detailed analysis of the brain infiltrate in another patient with neuronal persistence of JCV revealed strong infiltration of CD8(+) T cells and clonal expansion of activated CD8(+) effector T cells with a CD4(dim) CD8(+) phenotype, both exhibiting exquisite specificity for conserved epitopes of JCV large T antigen. However, clearance of JCV was not efficient, because mutations in the major capsid protein VP1 caused reduced CD4(+) T-cell responses against the identified JCV variant and subsequently resulted in a decline of CD8(+) T-cell responses after IRIS. INTERPRETATION Our findings suggest that efficient CD4(+) T-cell recognition of neurotropic JCV variants is crucial to support CD8(+) T cells in combating JCV infection of the CNS.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Christian Kempf
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Fabienne Largey
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Dubois E, Ruschil C, Bischof F. Low frequencies of central memory CD4 T cells in progressive multifocal leukoencephalopathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e177. [PMID: 26568972 PMCID: PMC4630684 DOI: 10.1212/nxi.0000000000000177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To assess alterations in the composition of peripheral immune cells in acute progressive multifocal leukoencephalopathy (PML). METHODS Fresh blood samples from 5 patients with acute PML and 10 healthy controls were analyzed by flow cytometry for naive, central memory and effector memory CD4 and CD8 T cells, B lymphocytes, plasma cells, memory B cells, plasma blasts, and natural killer (NK) cells. The frequency of central memory CD4 T cells was determined longitudinally during the course of PML in 2 patients. RESULTS The frequencies of naive, central memory and effector memory CD8 T cells, B cells, plasma cells, and NK cells were not altered in patients with PML. In contrast, the frequencies of naive CD4 T cells (p = 0.04) and central memory CD4 T cells (p < 0.00001) were reduced and the frequencies of effector memory CD4 T cells were increased (p = 0.01). Longitudinal analysis showed that this pattern was preserved in a patient with fatal PML outcome and restored in one patient who recovered from PML. CONCLUSIONS These data indicate that PML is associated with reduced frequencies of peripheral central memory helper T cells but not with alterations in the frequencies of cytotoxic T cell populations, B lymphocytes, plasma cells, or NK cells.
Collapse
Affiliation(s)
- Evelyn Dubois
- Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Christoph Ruschil
- Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Felix Bischof
- Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
19
|
Jelcic I, Combaluzier B, Jelcic I, Faigle W, Senn L, Reinhart BJ, Ströh L, Nitsch RM, Stehle T, Sospedra M, Grimm J, Martin R. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Sci Transl Med 2015; 7:306ra150. [PMID: 26400911 DOI: 10.1126/scitranslmed.aac8691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show "recognition holes"; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luzia Senn
- Neurimmune Holding AG, 8952 Schlieren, Switzerland
| | - Brenda J Reinhart
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luisa Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Roger M Nitsch
- Neurimmune Holding AG, 8952 Schlieren, Switzerland. Division of Psychiatry Research, University of Zurich, 8952 Schlieren, Switzerland
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany. Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Grimm
- Neurimmune Holding AG, 8952 Schlieren, Switzerland.
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Planas R, Metz I, Ortiz Y, Vilarrasa N, Jelčić I, Salinas-Riester G, Heesen C, Brück W, Martin R, Sospedra M. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Ann Clin Transl Neurol 2015; 2:875-93. [PMID: 26401510 PMCID: PMC4574806 DOI: 10.1002/acn3.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. METHODS We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. RESULTS We identified clonally expanded CD8(+) but also CD4(+) T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. INTERPRETATION Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Imke Metz
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Yaneth Ortiz
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Nuria Vilarrasa
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Ilijas Jelčić
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University Medical Center GöttingenGöttingen, Germany
| | - Christoph Heesen
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfFalkenried 94, 20251, Hamburg, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| |
Collapse
|
21
|
Jelcic I, Jelcic I, Faigle W, Sospedra M, Martin R. Immunology of progressive multifocal leukoencephalopathy. J Neurovirol 2015; 21:614-22. [PMID: 25740538 DOI: 10.1007/s13365-014-0294-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
The high prevalence of asymptomatic JC polyomavirus (JCV) infection in the general population indicates coexistence with the human host and efficient immune control in healthy individuals. For unknown reasons, kidney-resident archetypic JCV strains can turn into neurotropic JCV strains which in hereditary or acquired states of immunodeficiency cause opportunistic infection and cytolytic destruction of glial cells or granule cell neurons resulting in progressive multifocal demyelination in the central nervous system (CNS) or cerebellar atrophy, respectively. Immunomodulatory or immunosuppressive therapies with specific monoclonal antibodies including natalizumab, efalizumab, and rituximab have increased the risk of progressive multifocal leukoencephalopathy (PML) among treated patients, highlighting that symptomatic JCV infection of the CNS is associated with disturbances of adaptive immunity affecting B cells, antibodies, and CD4(+) and/or CD8(+) T cells. To date, no specific therapy to overcome PML is available and the only way to eliminate the virus from the CNS is to reconstitute global immune function. However, since the identification of JCV as the causative agent of PML 40 years ago, it is still not fully understood which components of the immune system prevent the development of PML and which immune mechanisms are involved in eliminating the virus from the CNS. This review gives an update about adaptive JCV-specific immune responses.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
22
|
Villar LM, Costa-Frossard L, Masterman T, Fernandez O, Montalban X, Casanova B, Izquierdo G, Coret F, Tumani H, Saiz A, Arroyo R, Fink K, Leyva L, Espejo C, Simó-Castelló M, García-Sánchez MI, Lauda F, Llufriú S, Álvarez-Lafuente R, Olascoaga J, Prada A, Oterino A, de Andrés C, Tintoré M, Ramió-Torrentà L, Rodríguez-Martín E, Picón C, Comabella M, Quintana E, Agüera E, Díaz S, Fernandez-Bolaños R, García-Merino JA, Landete L, Menéndez-González M, Navarro L, Pérez D, Sánchez-López F, Serrano-Castro PJ, Tuñón A, Espiño M, Muriel A, Bar-Or A, Álvarez-Cermeño JC. Lipid-specific immunoglobulin M bands in cerebrospinal fluid are associated with a reduced risk of developing progressive multifocal leukoencephalopathy during treatment with natalizumab. Ann Neurol 2015; 77:447-457. [PMID: 25581547 DOI: 10.1002/ana.24345] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Progressive multifocal leukoencephalopathy (PML) is a serious side effect associated with natalizumab treatment in multiple sclerosis (MS). PML risk increases in individuals seropositive for anti-John Cunningham virus (JC) antibodies, with prolonged duration of natalizumab treatment, and with prior exposure to immunosuppressants. We explored whether the presence of lipid-specific immunoglobulin M oligoclonal bands in cerebrospinal fluid (CSF; IgM bands), a recognized marker of highly inflammatory MS, may identify individuals better able to counteract the potential immunosuppressive effect of natalizumab and hence be associated with a reduced risk of developing PML. METHODS We studied 24 MS patients who developed PML and another 343 who did not suffer this opportunistic infection during natalizumab treatment. Patients were recruited at 25 university hospitals. IgM bands were studied by isoelectric focusing and immunodetection. CSF lymphocyte counts were explored in 151 MS patients recruited at Ramon y Cajal Hospital in Madrid, Spain. RESULTS IgM bands were independently associated with decreased PML risk (odds ratio [OR] = 45.9, 95% confidence interval [CI] = 5.9-339.3, p < 0.0001) in patients treated with natalizumab. They were also associated with significantly higher CSF CD4, CD8, and B-cell numbers. Patients positive for IgM bands and anti-JC antibodies had similar levels of reduced PML risk to those who were anti-JC negative (OR = 1.55, 95% CI = 0.09-25.2, p = 1.0). Higher risk was observed in patients positive for anti-JC antibodies and negative for IgM bands (19% of the total cohort, OR = 59.71, 95% CI = 13.6-262.2). INTERPRETATION The presence of IgM bands reflects a process that may diminish the risk of PML by counteracting the excess of immunosuppression that may occur during natalizumab therapy.
Collapse
Affiliation(s)
- Luisa M Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramon y Cajal for Biomedical Research, Madrid, Spain; Spanish Network for the Research in Multiple Sclerosis, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Frost EL, Lukacher AE. The importance of mouse models to define immunovirologic determinants of progressive multifocal leukoencephalopathy. Front Immunol 2015; 5:646. [PMID: 25601860 PMCID: PMC4283601 DOI: 10.3389/fimmu.2014.00646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 12/02/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severely debilitating and often fatal demyelinating disease of the central nervous system (CNS) in immunosuppressed individuals caused by JC polyomavirus (JCV), a ubiquitous human pathogen. Demyelination results from lytically infected oligodendrocytes, whose clearance is impaired in the setting of depressed JCV-specific T cell-mediated CNS surveillance. Although mutations in the viral capsid and genomic rearrangements in the viral non-coding region appear to set the stage for PML in the immunosuppressed population, mechanisms of demyelination and CNS antiviral immunity are poorly understood in large part due to absence of a tractable animal model that mimics PML neuropathology in humans. Early studies using mouse polyomavirus (MPyV) in T cell-deficient mice demonstrated productive viral replication in the CNS and demyelination; however, these findings were confounded by spinal cord compression by virus-induced vertebral bone tumors. Here, we review current literature regarding animal models of PML, focusing on current trends in antiviral T cell immunity in non-lymphoid organs, including the CNS. Advances in our understanding of polyomavirus lifecycles, viral and host determinants of persistent infection, and T cell-mediated immunity to viral infections in the CNS warrant revisiting polyomavirus CNS infection in the mouse as a bona fide animal model for JCV-PML.
Collapse
Affiliation(s)
- Elizabeth L Frost
- Immunology and Molecular Pathogenesis Graduate Program, Emory University , Atlanta, GA , USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| |
Collapse
|
24
|
Antsiferova O, Müller A, Rämer PC, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH, Delecluse HJ, Münz C. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 2014; 10:e1004333. [PMID: 25165855 PMCID: PMC4148450 DOI: 10.1371/journal.ppat.1004333] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/29/2023] Open
Abstract
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development. Epstein Barr virus persistently infects more than 90% of the human adult population. While fortunately carried as an asymptomatic chronic infection in most individuals, it causes B cell lymphomas and carcinomas in some patients. Symptomatic primary EBV infection, called infectious mononucleosis, predisposes for some of these malignancies and is characterized by massive expansions of cytotoxic T cells, which are mostly directed against lytic EBV antigens that are expressed during virus particle production. Therefore, we investigated the protective role of lytic EBV antigen specific T cells during EBV infection and the contribution of lytic EBV infection to virus-associated tumor formation. We found that lytic EBV antigen specific T cells kill B cells with lytic virus replication and might thereby transiently control EBV infection in mice with human immune system components. Furthermore, we observed that EBV associated B cell tumors outside secondary lymphoid organs may require lytic replication for efficient formation. Thus, we suggest that lytic EBV antigens should be explored for vaccination against symptomatic EBV infection and EBV associated extra-lymphoid tumors.
Collapse
Affiliation(s)
- Olga Antsiferova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick C. Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Raykova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Raquel Planas
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Anatoliy Shumilov
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ming-Han Tsai
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Commandeur S, Coppola M, Dijkman K, Friggen AH, van Meijgaarden KE, van den Eeden SJF, Wilson L, van der Ploeg-van Schip JJ, Franken KLMC, Geluk A, Ottenhoff THM. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method. PLoS One 2014; 9:e99203. [PMID: 24905579 PMCID: PMC4048274 DOI: 10.1371/journal.pone.0099203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/12/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB) which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB) antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L), which represents a new method for selecting antigen-specific (low frequency) T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107) in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.
Collapse
Affiliation(s)
- Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Dijkman
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke H. Friggen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Beltrami S, Gordon J. Immune surveillance and response to JC virus infection and PML. J Neurovirol 2013; 20:137-49. [PMID: 24297501 DOI: 10.1007/s13365-013-0222-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023]
Abstract
The ubiquitous human polyomavirus JC virus (JCV) is the established etiological agent of the debilitating and often fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Most healthy individuals have been infected with JCV and generate an immune response to the virus, yet remain persistently infected at subclinical levels. The onset of PML is rare in the general population, but has become an increasing concern in immunocompromised patients, where reactivation of JCV leads to uncontrolled replication in the CNS. Understanding viral persistence and the normal immune response to JCV provides insight into the circumstances which could lead to viral resurgence. Further, clues on the potential mechanisms of reactivation may be gleaned from the crosstalk among JCV and HIV-1, as well as the impact of monoclonal antibody therapies used for the treatment of autoimmune disorders, including multiple sclerosis, on the development of PML. In this review, we will discuss what is known about viral persistence and the immune response to JCV replication in immunocompromised individuals to elucidate the deficiencies in viral containment that permit viral reactivation and spread.
Collapse
Affiliation(s)
- Sarah Beltrami
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | | |
Collapse
|
27
|
Qiao SW, Christophersen A, Lundin KEA, Sollid LM. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int Immunol 2013; 26:13-9. [PMID: 24038601 DOI: 10.1093/intimm/dxt037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4⁺ T cells that recognize dietary gluten antigens presented by the disease-associated HLA-DQ2 or DQ8 molecules are central players in coeliac disease. Unbiased sequencing of the human TCRα variable (TRAV) and humanTCRβ variable (TRBV) genes of 68 HLA-DQ2.5-glia-α2-specific T cells from coeliac disease patients confirmed previous reports of over-usage of the TRBV7-2 gene segment, a conserved Arg residue in the complementarity-determining region (CDR) 3β loop and prevalent usage of the canonical ASSxRxTDTQY CDR3β loop among T cells with this specificity. In 30 clones that had the canonical TCRβ chain, we found a strict usage of the TRAV26-1 gene segment in the TCRα chain. There was variable usage of the TRAJ genes and diverse CDR3α sequences with no apparent conserved motifs. This study extends previous reports on biased TCR usage in both HLA-DQ2.5- and DQ8-restricted gluten-specific TCRs and provides data for further studies on TRAV and TRBV pairing.
Collapse
Affiliation(s)
- Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital - Rikshospitalet, 0372 Oslo, Norway
| | | | | | | |
Collapse
|
28
|
Mohme M, Hotz C, Stevanovic S, Binder T, Lee JH, Okoniewski M, Eiermann T, Sospedra M, Rammensee HG, Martin R. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. ACTA ACUST UNITED AC 2013; 136:1783-98. [PMID: 23739916 DOI: 10.1093/brain/awt108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HLA-DR15 haplotype confers the largest part of the genetic risk to develop multiple sclerosis, a prototypic CD4+ T cell-mediated autoimmune disease. The mechanisms how certain HLA-class II molecules functionally contribute to autoimmune diseases are still poorly understood, but probably involve shaping an autoimmune-prone T cell repertoire during central tolerance in the thymus and subsequently maintaining or even expanding it in the peripheral immune system. Self-peptides that are presented by disease-associated HLA-class II molecules most likely play important roles during both processes. Here, we examined the functional involvement of the HLA-DR15 haplotype in autologous proliferation in multiple sclerosis and the contribution of HLA-DR15 haplotype-derived self-peptides in an in vitro system. We observe increased autologous T cell proliferation in patients with multiple sclerosis in relation to the multiple sclerosis risk-associated HLA-DR15 haplotype. Assuming that the spectrum of self-peptides that is presented by the two HLA-DR15 allelic products is important for sustaining autologous proliferation we performed peptide elution and identification experiments from the multiple sclerosis-associated DR15 molecules and a systematic analysis of a DR15 haplotype-derived self-peptide library. We identify HLA-derived self-peptides as potential mediators of altered autologous proliferation. Our data provide novel insights about perturbed T cell repertoire dynamics and the functional involvement of the major genetic risk factor, the HLA-DR15 haplotype, in multiple sclerosis.
Collapse
Affiliation(s)
- Malte Mohme
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Centre for Molecular Neurobiology Hamburg, University Medical Centre Eppendorf, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|