1
|
Prabakaran P, Gupta A, Rao SP, Rajpal D, Wendt M, Qiu Y, Chowdhury PS. Unveiling inverted D genes and D-D fusions in human antibody repertoires unlocks novel antibody diversity. Commun Biol 2025; 8:133. [PMID: 39875530 PMCID: PMC11775173 DOI: 10.1038/s42003-024-07441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination. We identified 25 unique inverted D genes (InvDs) in both naive and memory B cells from antibody repertoires of 13 healthy donors. These InvDs utilize all three reading frames during translation, producing distinct amino acid profiles enriched in histidine, proline, and lysine in CDR-H3s of antibodies with potential functional diversity. Notably, our analysis revealed a broader range of D-D fusions, including D-D, D-InvD, InvD-D, and InvD-InvD configurations, opening new perspectives for antibody engineering and therapeutic development.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Large Molecules Research, Sanofi, Cambridge, MA, USA.
- PMJ Technology Solutions, Frederick, MD, USA.
| | - Abhinav Gupta
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Sambasiva P Rao
- Large Molecules Research, Sanofi, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Deepak Rajpal
- Translational Science, Sanofi, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Maria Wendt
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Yu Qiu
- Large Molecules Research, Sanofi, Cambridge, MA, USA.
| | - Partha S Chowdhury
- Large Molecules Research, Sanofi, Cambridge, MA, USA.
- Johnson & Johnson R&D Center, Spring House, PA, USA.
| |
Collapse
|
2
|
Ataca S, Sangesland M, de Paiva Fróes Rocha R, Torrents de la Peña A, Ronsard L, Boyoglu-Barnum S, Gillespie RA, Tsybovsky Y, Stephens T, Moin SM, Lederhofer J, Creanga A, Andrews SF, Barnes RM, Rohrer D, Lonberg N, Graham BS, Ward AB, Lingwood D, Kanekiyo M. Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem. Cell Rep 2024; 43:114990. [PMID: 39580804 PMCID: PMC11672684 DOI: 10.1016/j.celrep.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses.
Collapse
Affiliation(s)
- Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Di Y, Cai S, Zheng S, Huang J, Du L, Song Y, Zhang M, Wang Z, Yu G, Ren L, Han H, Zhao Y. Reshaping the murine immunoglobulin heavy chain repertoire with bovine DH genes. Immunology 2021; 165:74-87. [PMID: 34428313 DOI: 10.1111/imm.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Having a limited number of VH segments, cattle rely on uniquely long DH gene segments to generate CDRH3 length variation (3-70 aa) far greater than that in humans or mice. Bovine antibodies with ultralong CDRH3s (>50 aa) possess unusual structures and abilities to bind to special antigens. In this study, we replaced most murine endogenous DH segments with bovine DH genes, generating a mouse line termed B-DH. The use of bovine DH genes significantly increased the length variation of CDRH3 and consequently the Ig heavy chain repertoire in B-DH mice. However, no ultralong CDRH3 was observed in B-DH mice, suggesting that other factors, in addition to long DH genes, are also involved in the formation of ultralong CDRH3. The B-DH mice mounted a normal humoral immune response to various antigens, although the B-cell developmental paradigm was obviously altered compared with wild-type mice. Additionally, B-DH mice are not predisposed to the generation of autoantibodies despite the interspecies DH gene replacement. The B-DH mice reported in this study provide a unique model to answer basic questions regarding the synergistic evolution of DH and VH genes, VDJ recombination and BCR selection in B-cell development.
Collapse
Affiliation(s)
- Yu Di
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyi Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Prabakaran P, Chowdhury PS. Landscape of Non-canonical Cysteines in Human V H Repertoire Revealed by Immunogenetic Analysis. Cell Rep 2021; 31:107831. [PMID: 32610132 PMCID: PMC7326410 DOI: 10.1016/j.celrep.2020.107831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Human antibody repertoire data captured through next-generation sequencing (NGS) has enabled deeper insights into B cell immunogenetics and paratope diversity. By analyzing large public NGS datasets, we map the landscape of non-canonical cysteines in human variable heavy-chain domains (VHs) at the repertoire level. We identify remarkable usage of non-canonical cysteines within the heavy-chain complementarity-determining region 3 (CDR-H3) and other CDRs and framework regions. Furthermore, our study reveals the diversity and location of non-canonical cysteines and their associated motifs in human VHs, which are reminiscent of and more complex than those found in other non-human species such as chicken, camel, llama, shark, and cow. These results explain how non-canonical cysteines strategically occur in the human antibodyome to expand its paratope space. This study will guide the design of human antibodies harboring disulfide-stabilized long CDR-H3s to access difficult-to-target epitopes and influence a paradigm shift in developability involving non-canonical cysteines. NGS-based non-canonical cysteine landscape in human VHs 1 to 8 non-canonical cysteines and up to 30% in long CDR-H3s An array of potential disulfide motifs adds paratope diversity Non-canonical cysteines in human VHs are reminiscent of lower animals
Collapse
|
5
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
6
|
Abstract
The origins of the various elements in the human antibody repertoire have been and still are subject to considerable uncertainty. Uncertainty in respect of whether the various elements have always served a specific defense function or whether they were co-opted from other organismal roles to form a crude naïve repertoire that then became more complex as combinatorial mechanisms were added. Estimates of the current size of the human antibody naïve repertoire are also widely debated with numbers anywhere from 10 million members, based on experimentally derived numbers, to in excess of one thousand trillion members or more, based on the different sequences derived from theoretical combinatorial calculations. There are questions that are relevant at both ends of this number spectrum. At the lower bound it could be questioned whether this is an insufficient repertoire size to counter all the potential antigen-bearing pathogens. At the upper bound the question is rather simpler: How can any individual interrogate such an astronomical number of antibody-bearing B cells in a timeframe that is meaningful? This review evaluates the evolutionary aspects of the adaptive immune system, the calculations that lead to the large repertoire estimates, some of the experimental evidence pointing to a more restricted repertoire whose variation appears to derive from convergent 'structure and specificity features', and includes a theoretical model that seems to support it. Finally, a solution that may reconcile the size difference anomaly, which is still a hot subject of debate, is suggested.
Collapse
|
7
|
Abstract
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given datasets. This procedure is well developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper, we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency but also discrete objects such as B-cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective, the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B-cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Collapse
Affiliation(s)
- Branden Olson
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| | - Frederick A. Matsen
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| |
Collapse
|
8
|
Imkeller K, Wardemann H. Assessing human B cell repertoire diversity and convergence. Immunol Rev 2018; 284:51-66. [DOI: 10.1111/imr.12670] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hedda Wardemann
- German Cancer Research Center; B Cell Immunology; Heidelberg Germany
| |
Collapse
|
9
|
Toledano A, Elhanati Y, Benichou JIC, Walczak AM, Mora T, Louzoun Y. Evidence for Shaping of Light Chain Repertoire by Structural Selection. Front Immunol 2018; 9:1307. [PMID: 29988361 PMCID: PMC6023962 DOI: 10.3389/fimmu.2018.01307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
The naïve immunoglobulin (IG) repertoire in the blood differs from the direct output of the rearrangement process. These differences stem from selection that affects the germline gene usage and the junctional nucleotides. A major complication obscuring the details of the selection mechanism in the heavy chain is the failure to properly identify the D germline and determine the nucleotide addition and deletion in the junction region. The selection affecting junctional diversity can, however, be studied in the light chain that has no D gene. We use probabilistic and deterministic models to infer and disentangle generation and selection of the light chain, using large samples of light chains sequenced from healthy donors and transgenic mice. We have previously used similar models for the beta chain of T-cell receptors and the heavy chain of IGs. Selection is observed mainly in the CDR3. The CDR3 length and mass distributions are narrower after selection than before, indicating stabilizing selection for mid-range values. Within the CDR3, proline and cysteine undergo negative selection, while glycine undergoes positive selection. The results presented here suggest structural selection maintaining the size of the CDR3 within a limited range, and preventing turns in the CDR3 region.
Collapse
Affiliation(s)
- Adar Toledano
- Department of Mathematics, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Elhanati
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, United States
| | - Jennifer I C Benichou
- Department of Mathematics, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure, Paris, France
| | - Thierry Mora
- Laboratoire de physique statistique, UMR8550, CNRS, UPMC and Ecole normale supérieure, Paris, France
| | - Yoram Louzoun
- Department of Mathematics, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Abstract
Methods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting. Conventional methods based on RT-PCR amplification and Sanger sequencing are also available where mpNGS is not accessible. Each method offers distinct advantages. Conventional methods for IGV gene sequencing are readily adaptable to most laboratories and provide an ease of analysis to capture salient features of B-cell use. This chapter describes two methods in detail for analysis of IGV genes, mpNGS and conventional RT-PCR with Sanger sequencing.
Collapse
|
11
|
D'Angelo S, Ferrara F, Naranjo L, Erasmus MF, Hraber P, Bradbury ARM. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol 2018; 9:395. [PMID: 29568296 PMCID: PMC5852061 DOI: 10.3389/fimmu.2018.00395] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.
Collapse
Affiliation(s)
| | | | | | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | |
Collapse
|
12
|
On being the right size: antibody repertoire formation in the mouse and human. Immunogenetics 2017; 70:143-158. [DOI: 10.1007/s00251-017-1049-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
13
|
DeFalco J, Harbell M, Manning-Bog A, Baia G, Scholz A, Millare B, Sumi M, Zhang D, Chu F, Dowd C, Zuno-Mitchell P, Kim D, Leung Y, Jiang S, Tang X, Williamson KS, Chen X, Carroll SM, Espiritu Santo G, Haaser N, Nguyen N, Giladi E, Minor D, Tan YC, Sokolove JB, Steinman L, Serafini TA, Cavet G, Greenberg NM, Glanville J, Volkmuth W, Emerling DE, Robinson WH. Non-progressing cancer patients have persistent B cell responses expressing shared antibody paratopes that target public tumor antigens. Clin Immunol 2017; 187:37-45. [PMID: 29031828 DOI: 10.1016/j.clim.2017.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/07/2017] [Indexed: 12/16/2022]
Abstract
There is significant debate regarding whether B cells and their antibodies contribute to effective anti-cancer immune responses. Here we show that patients with metastatic but non-progressing melanoma, lung adenocarcinoma, or renal cell carcinoma exhibited increased levels of blood plasmablasts. We used a cell-barcoding technology to sequence their plasmablast antibody repertoires, revealing clonal families of affinity matured B cells that exhibit progressive class switching and persistence over time. Anti-CTLA4 and other treatments were associated with further increases in somatic hypermutation and clonal family size. Recombinant antibodies from clonal families bound non-autologous tumor tissue and cell lines, and families possessing immunoglobulin paratope sequence motifs shared across patients exhibited increased rates of binding. We identified antibodies that caused regression of, and durable immunity toward, heterologous syngeneic tumors in mice. Our findings demonstrate convergent functional anti-tumor antibody responses targeting public tumor antigens, and provide an approach to identify antibodies with diagnostic or therapeutic utility.
Collapse
Affiliation(s)
- Jeff DeFalco
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | | | - Gilson Baia
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | | | - May Sumi
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Danhui Zhang
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Felix Chu
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Christine Dowd
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | - Dongkyoon Kim
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Yvonne Leung
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Shuwei Jiang
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Xiaobin Tang
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | - Xiaomu Chen
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Sean M Carroll
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | - Nicole Haaser
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Ngan Nguyen
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - Eldar Giladi
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | - David Minor
- California Pacific Medical Center Research Institute, 2200 Webster St., San Francisco, CA 94115, USA
| | - Yann Chong Tan
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA; Division of Immunology and Rheumatology, Stanford University, 269 Campus Dr., Stanford, CA 94305, USA
| | - Jeremy B Sokolove
- Division of Immunology and Rheumatology, Stanford University, 269 Campus Dr., Stanford, CA 94305, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, 279 Campus Dr., Stanford, CA 94305, USA
| | | | - Guy Cavet
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | - Jacob Glanville
- Department of Microbiology and Immunology, Stanford University, 279 Campus Dr., Stanford, CA 94305, USA
| | - Wayne Volkmuth
- Atreca, Inc., 500 Saginaw Dr., Redwood City, CA 94063, USA
| | | | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, 269 Campus Dr., Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Benichou JIC, van Heijst JWJ, Glanville J, Louzoun Y. Converging evolution leads to near maximal junction diversity through parallel mechanisms in B and T cell receptors. Phys Biol 2017; 14:045003. [PMID: 28510537 DOI: 10.1088/1478-3975/aa7366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T and B cell receptor (TCR and BCR) complementarity determining region 3 (CDR3) genetic diversity is produced through multiple diversification and selection stages. Potential holes in the CDR3 repertoire were argued to be linked to immunodeficiencies and diseases. In contrast with BCRs, TCRs have practically no Dβ germline genetic diversity, and the question emerges as to whether they can produce a diverse CDR3 repertoire. In order to address the genetic diversity of the adaptive immune system, appropriate quantitative measures for diversity and large-scale sequencing are required. Such a diversity method should incorporate the complex diversification mechanisms of the adaptive immune response and the BCR and TCR loci structure. We combined large-scale sequencing and diversity measures to show that TCRs have a near maximal CDR3 genetic diversity. Specifically, TCR have a larger junctional and V germline diversity, which starts more 5' in Vβ than BCRs. Selection decreases the TCR repertoire diversity, but does not affect BCR repertoire. As a result, TCR is as diverse as BCR repertoire, with a biased CDR3 length toward short TCRs and long BCRs. These differences suggest parallel converging evolutionary tracks to reach the required diversity to avoid holes in the CDR3 repertoire.
Collapse
|
15
|
Hershberg U, Luning Prak ET. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0239. [PMID: 26194753 PMCID: PMC4528416 DOI: 10.1098/rstb.2014.0239] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clones are the fundamental building blocks of immune repertoires. The number of different clones relates to the diversity of the repertoire, whereas their size and sequence diversity are linked to selective pressures. Selective pressures act both between clones and within different sequence variants of a clone. Understanding how clonal selection shapes the immune repertoire is one of the most basic questions in all of immunology. But how are individual clones defined? Here we discuss different approaches for defining clones, starting with how antibodies are diversified during different stages of B cell development. Next, we discuss how clones are defined using different experimental methods. We focus on high-throughput sequencing datasets, and the computational challenges and opportunities that these data have for mining the antibody repertoire landscape. We discuss methods that visualize sequence variants within the same clone and allow us to consider collections of shared mutations to determine which sequences share a common ancestry. Finally, we comment on features of frequently encountered expanded B cell clones that may be of particular interest in the setting of autoimmunity and other chronic conditions.
Collapse
Affiliation(s)
- Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA Department of Immunology and Microbiology, College of Medicine, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 405B Stellar Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
B cell development in chromosome 22q11.2 deletion syndrome. Clin Immunol 2016; 163:1-9. [DOI: 10.1016/j.clim.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
17
|
Ralph DK, Matsen FA. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation. PLoS Comput Biol 2016; 12:e1004409. [PMID: 26751373 PMCID: PMC4709141 DOI: 10.1371/journal.pcbi.1004409] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/20/2015] [Indexed: 11/18/2022] Open
Abstract
VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.
Collapse
Affiliation(s)
- Duncan K. Ralph
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Liberman G, Benichou JIC, Maman Y, Glanville J, Alter I, Louzoun Y. Estimate of within population incremental selection through branch imbalance in lineage trees. Nucleic Acids Res 2015; 44:e46. [PMID: 26586802 PMCID: PMC4797263 DOI: 10.1093/nar/gkv1198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/18/2015] [Indexed: 01/09/2023] Open
Abstract
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens.
Collapse
Affiliation(s)
- Gilad Liberman
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | | | - Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA Howard Hughes Medical Institute, New Haven, CT 06519, USA
| | - Jacob Glanville
- Program in Computational and Systems Immunology, Stanford University, Stanford, CA 94305, USA Department of Pathology, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA Program in Immunology, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA Distributed Bio, San Francisco, CA 94080, USA
| | - Idan Alter
- Department of Mathematics, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yoram Louzoun
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel Department of Mathematics, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
19
|
Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 2014; 24:112-20. [PMID: 25461729 DOI: 10.1016/j.cbpa.2014.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).
Collapse
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Andrew P Horton
- Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA.
| |
Collapse
|
20
|
Prabakaran P, Chen W, Dimitrov DS. The Antibody Germline/Maturation Hypothesis, Elicitation of Broadly Neutralizing Antibodies Against HIV-1 and Cord Blood IgM Repertoires. Front Immunol 2014; 5:398. [PMID: 25221552 PMCID: PMC4147355 DOI: 10.3389/fimmu.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/05/2014] [Indexed: 11/22/2022] Open
Abstract
We have previously observed that all known potent broadly neutralizing antibodies (bnAbs) against HIV-1 are highly divergent from their putative germline predecessors in contrast to bnAbs against viruses causing acute infections such as henipaviruses and SARS CoV, which are much less divergent from their germline counterparts. Consequently, we have hypothesized that germline antibodies may not bind to the HIV-1 envelope glycoprotein (Env) because they are so different compared to the highly somatically mutated HIV-1-specific bnAbs. We have further hypothesized that the immunogenicity of highly conserved epitopes on the HIV-1 envelope glycoproteins (Envs) may be reduced or eliminated by their very weak or absent interactions with germline antibodies and immune responses leading to the elicitation of bnAbs may not be initiated and/or sustained. Even if such responses are initiated, the maturation pathways are so extraordinarily complex that prolonged periods of time may be required for elicitation of bnAbs with defined unique sequences. We provided the initial evidence supporting this antibody germline/maturation hypothesis, which prompted a number of studies to design vaccine immunogens that could bind putative germline predecessors of known bnAbs and to explore complex B cell lineages. However, guiding the immune system through the exceptionally complex antibody maturation pathways to elicit known bnAbs remains a major challenge. Here, we discuss studies exploring the antibody germline/maturation hypothesis as related to elicitation of bnAbs against HIV-1 and present our recent data demonstrating the existence of germline-like precursors of VRC01 antibodies in a human cord blood IgM library.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Weizao Chen
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
21
|
Galson JD, Pollard AJ, Trück J, Kelly DF. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol 2014; 35:319-31. [PMID: 24856924 DOI: 10.1016/j.it.2014.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 12/25/2022]
Abstract
Nearly all licensed vaccines have been developed to confer protection against infectious diseases by stimulating the production of antibodies by B cells, but the nature of a successful antibody response has been difficult to capture. Recent advances in next-generation sequencing (NGS) technology have allowed high-resolution characterization of the antibody repertoire, and of the changes that occur following vaccination. These approaches have yielded important insights into the B cell response, and have raised the possibility of using specific antibody sequences as measures of vaccine immunogenicity. Here, we review recent findings based on antibody repertoire sequencing, and discuss potential applications of these new technologies and of the analyses of the increasing volume of antibody sequence data in the context of vaccine development.
Collapse
Affiliation(s)
- Jacob D Galson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
22
|
The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 2014; 32:158-68. [PMID: 24441474 PMCID: PMC4113560 DOI: 10.1038/nbt.2782] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/04/2013] [Indexed: 12/16/2022]
Abstract
Georgiou and colleagues discuss rapidly evolving methods for high-throughput sequencing of the antibody repertoire, and how the resulting data may be applied to answer basic and translational research questions. Efforts to determine the antibody repertoire encoded by B cells in the blood or lymphoid organs using high-throughput DNA sequencing technologies have been advancing at an extremely rapid pace and are transforming our understanding of humoral immune responses. Information gained from high-throughput DNA sequencing of immunoglobulin genes (Ig-seq) can be applied to detect B-cell malignancies with high sensitivity, to discover antibodies specific for antigens of interest, to guide vaccine development and to understand autoimmunity. Rapid progress in the development of experimental protocols and informatics analysis tools is helping to reduce sequencing artifacts, to achieve more precise quantification of clonal diversity and to extract the most pertinent biological information. That said, broader application of Ig-seq, especially in clinical settings, will require the development of a standardized experimental design framework that will enable the sharing and meta-analysis of sequencing data generated by different laboratories.
Collapse
|
23
|
Liberman G, Benichou J, Tsaban L, Glanville J, Louzoun Y. Multi Step Selection in Ig H Chains is Initially Focused on CDR3 and Then on Other CDR Regions. Front Immunol 2013; 4:274. [PMID: 24062742 PMCID: PMC3775539 DOI: 10.3389/fimmu.2013.00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/28/2013] [Indexed: 11/13/2022] Open
Abstract
AFFINITY MATURATION OCCURS THROUGH TWO SELECTION PROCESSES the choice of appropriate clones (clonal selection), and the internal evolution within clones, induced by somatic hyper-mutations, where high affinity mutants are selected for. When a final population of immunoglobulin sequences is observed, the genetic composition of this population is affected by a combination of these two processes. Different immune induced diseases can result from the failure of regulation of clonal selection or of the regulation of the within clone affinity maturation. In order to understand each of these processes separately, we propose a mixed lineage tree/sequence based method to detect within clone selection as defined by the effect of mutations on the average number of offspring. Specifically, we measure the imbalance in the number of leaves in lineage trees branches following synonymous and non-synonymous (NS) mutations. If a mutation is positively selected, we expect the number of leaves in the sub-tree below this mutation to be larger than in the parallel sub-tree without the mutation. The ratio between the number of leaves in such branches following NS mutations can be used to measure selection within a clone. We apply this method to the sampled Ig repertoire from multiple healthy volunteers and show that within clone selection is positive in the CDR2 region and either positive or negative in the CDR3 and FWR3 regions. Selection occurs already at the IgM isotype level mainly in the DH gene region, with a strong negative selection in the join region. This is followed in the later memory stages in the CDR2 region. We have not studied here the FWR1 and CDR1 regions. An important advantage of this method is that it is very weakly affected by the baseline mutation model or by sampling biases, as are most synonymous to NS mutations ratio based methods.
Collapse
Affiliation(s)
- Gilad Liberman
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan , Israel
| | | | | | | | | |
Collapse
|
24
|
Jackson KJL, Kidd MJ, Wang Y, Collins AM. The shape of the lymphocyte receptor repertoire: lessons from the B cell receptor. Front Immunol 2013; 4:263. [PMID: 24032032 PMCID: PMC3759170 DOI: 10.3389/fimmu.2013.00263] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Both the B cell receptor (BCR) and the T cell receptor (TCR) repertoires are generated through essentially identical processes of V(D)J recombination, exonuclease trimming of germline genes, and the random addition of non-template encoded nucleotides. The naïve TCR repertoire is constrained by thymic selection, and TCR repertoire studies have therefore focused strongly on the diversity of MHC-binding complementarity determining region (CDR) CDR3. The process of somatic point mutations has given B cell studies a major focus on variable (IGHV, IGLV, and IGKV) genes. This in turn has influenced how both the naïve and memory BCR repertoires have been studied. Diversity (D) genes are also more easily identified in BCR VDJ rearrangements than in TCR VDJ rearrangements, and this has allowed the processes and elements that contribute to the incredible diversity of the immunoglobulin heavy chain CDR3 to be analyzed in detail. This diversity can be contrasted with that of the light chain where a small number of polypeptide sequences dominate the repertoire. Biases in the use of different germline genes, in gene processing, and in the addition of non-template encoded nucleotides appear to be intrinsic to the recombination process, imparting "shape" to the repertoire of rearranged genes as a result of differences spanning many orders of magnitude in the probabilities that different BCRs will be generated. This may function to increase the precursor frequency of naïve B cells with important specificities, and the likely emergence of such B cell lineages upon antigen exposure is discussed with reference to public and private T cell clonotypes.
Collapse
Affiliation(s)
- Katherine J. L. Jackson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marie J. Kidd
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yan Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|