1
|
Winefield KC, Larsen DS, Painter GF, Compton BJ. Rapid and Stereoselective Access to 6″-Amino-6″-deoxy-α-GalCer Scaffolds. J Org Chem 2025; 90:3745-3751. [PMID: 40035627 DOI: 10.1021/acs.joc.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This work describes a highly efficient route to an orthogonally protected α-galactosylphytosphingosine (α-GalPhyt) from which 6″-N-modified α-galactosylceramide (α-GalCer) analogues can be synthesized rapidly and on-scale. Key to this route is the use of a d-galactal-derived 1,2-anhydro donor that undergoes an α-selective glycosylation with a sphingoid acceptor. The resulting α-GalPhyt intermediate can be orthogonally deprotected, enabling selective manipulation at either the C-6″ position of the galactose ring or at C-2 of the sphingoid lipid. The utility of this approach was demonstrated by the synthesis of the potent natural killer (NK) T cell agonist, NU-α-GalCer, and a novel 6″-amino-6″-deoxy analogue of another notable agonist, 7DW8-5, both from the same key intermediate.
Collapse
Affiliation(s)
- Kaleb C Winefield
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| |
Collapse
|
2
|
Praveena T, Le Nours J. State of play in the molecular presentation and recognition of anti-tumor lipid-based analogues. Front Immunol 2024; 15:1479382. [PMID: 39669569 PMCID: PMC11635198 DOI: 10.3389/fimmu.2024.1479382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The Natural Killer T cells (NKT) are a unique subset of T lymphocytes that recognize lipid-based antigens that are presented by the monomorphic MHC-I-like molecule, CD1d. Over 30 years ago, the discovery of the glycolipid α-Galactosylceramide (α-GalCer) from the marine sponge Agelas mauritianus, as a potent activator of the invariant Natural Killer T (iNKT) cells, has attracted great attention for its use in cancer immunotherapy. However, α-GalCer can initiate both pro-inflammatory T helper cell 1 (Th1) and anti-inflammatory Th2 type immune responses that can result in either enhanced or suppressed immunity in a somewhat unpredictable manner. Th1 polarized immune response is often correlated with an optimal anti-tumor immunity, and therefore α-GalCer did not fully offer the desired potential as an anti-tumor therapeutic. Over the past decades, considerable efforts have then been invested into the design and development of novel synthetic α-GalCer analogues that will direct a more efficient immune response towards the production of Th1 biased cytokines. In this minireview, we will discuss how subtle modifications in the chemical nature of a number of α-GalCer derivatives varied immune responses. Whilst some of these analogues showed potential in enhancing stability within CD1d and directing favourable immune responses for tumor immunotherapy, their responses in mice also highlighted the need for further research in humanized models to overcome translational challenges and optimize therapeutic efficacy.
Collapse
Affiliation(s)
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Saavedra-Avila NA, Pigni NB, Caldwell DR, Chena-Becerra F, Intano J, Ng TW, Chennamadhavuni D, Porcelli SA, Gascón JA, Howell AR. A Humanized Mouse Model Coupled with Computational Analysis Identifies Potent Glycolipid Agonist of Invariant NKT Cells. ACS Chem Biol 2024; 19:926-937. [PMID: 38477945 PMCID: PMC11075374 DOI: 10.1021/acschembio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Invariant natural killer T (iNKT) cells play an important role in many innate and adaptive immune responses, with potential applications in cancer immunotherapy. The glycolipid KRN7000, an α-galactosylceramide, potently activates iNKT cells but has shown limited anticancer effects in human clinical trials conducted so far. In spite of almost three decades of structure-activity relationship studies, no alternative glycolipid has yet emerged as a superior clinical candidate. One reason for the slow progress in this area is that standard mouse models do not accurately reflect the specific ligand recognition by human iNKT cells and their requirements for activation. Here we evaluated a series of KRN7000 analogues using a recently developed humanized mouse model that expresses a human αTCR chain sequence and human CD1d. In this process, a more stimulatory, previously reported but largely overlooked glycolipid was identified, and its activity was probed and rationalized via molecular simulations.
Collapse
Affiliation(s)
- Noemi A. Saavedra-Avila
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Natalia B. Pigni
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC CONICET-UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | | | - Florencia Chena-Becerra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Jose Intano
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Tony W. Ng
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | | | - Steven A. Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - José A. Gascón
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| |
Collapse
|
4
|
Hu X, Xian MY, Wang XF, Zou GQ, Luo R, Peng H, Liu Z. Conformationally Restricted Analogues of α-Galactosylceramide as Adjuvant in COVID-19 Subunit Vaccine. ACS Med Chem Lett 2023; 14:1647-1655. [PMID: 38116441 PMCID: PMC10726466 DOI: 10.1021/acsmedchemlett.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
iNKT cells are a type of T lymphocyte that recognizes glycolipid antigens presented by CD1d protein. αGC is an agonistic glycolipid that activates iNKT cells and triggers immune modulatory cytokine responses, making it a promising vaccine adjuvant. To find more potent immunostimulating glycolipids, we prepared 4,6-O-galactosyl conformationally restricted analogues of αGC. Mice vaccinated with the SARS-CoV-2 RBD-Fc vaccine adjuvanted with these newly developed glycolipids produced robust anti-RBD antibody responses, comparable to those achieved with αGC. Importantly, we also found that omitting αGC, α-C-GalCer (Th1-type agonist), or C20:2 (Th2-type agonist) from the booster vaccine had negligible impact on antibody and cellular responses, potentially reducing the frequency of adjuvant use required to maintain potent immune responses.
Collapse
Affiliation(s)
- Xing Hu
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Mao-Ying Xian
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Guo-Qing Zou
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Rui Luo
- State
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Hao Peng
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key
Laboratory of Pesticide & Chemical Biology of Ministry of Education,
Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
5
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
7
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
8
|
Saavedra-Avila NA, Keshipeddy S, Guberman-Pfeffer MJ, Pérez-Gallegos A, Saini NK, Schäfer C, Carreño LJ, Gascón JA, Porcelli SA, Howell AR. Amide-Linked C4″-Saccharide Modification of KRN7000 Provides Potent Stimulation of Human Invariant NKT Cells and Anti-Tumor Immunity in a Humanized Mouse Model. ACS Chem Biol 2020; 15:3176-3186. [PMID: 33296161 DOI: 10.1021/acschembio.0c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of invariant natural killer T (iNKT) cells by α-galactosylceramides (α-GalCers) stimulates strong immune responses and potent anti-tumor immunity. Numerous modifications of the glycolipid structure have been assessed to derive activating ligands for these T cells with altered and potentially advantageous properties in the induction of immune responses. Here, we synthesized variants of the prototypical α-GalCer, KRN7000, with amide-linked phenyl alkane substitutions on the C4″-position of the galactose ring. We show that these variants have weak iNKT cell stimulating activity in mouse models but substantially greater activity for human iNKT cells. The most active of the C4″-amides in our study showed strong anti-tumor effects in a partially humanized mouse model for iNKT cell responses. In silico analysis suggested that the tether length and degree of flexibility of the amide substituent affected the recognition by iNKT cell antigen receptors of the C4″-amide substituted glycolipids in complex with their antigen presenting molecule CD1d. Our findings establish the use of stable C4″-amide linked additions to the sugar moiety for further exploration of the immunological effects of structural modifications of iNKT cell activating glycolipids and highlight the critical need for more accurate animal models to assess these compounds for immunotherapeutic potential in humans.
Collapse
Affiliation(s)
| | - Santosh Keshipeddy
- Department of Chemistry, The University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | | | | | | | - Carolina Schäfer
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - José A Gascón
- Department of Chemistry, The University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | | | - Amy R. Howell
- Department of Chemistry, The University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
9
|
Ma J, He P, Zhao C, Ren Q, Dong Z, Qiu J, Jing Y, Liu S, Du Y. A Designed α-GalCer Analog Promotes Considerable Th1 Cytokine Response by Activating the CD1d-iNKT Axis and CD11b-Positive Monocytes/Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000609. [PMID: 32714765 PMCID: PMC7375225 DOI: 10.1002/advs.202000609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Selective helper T cell 1 (Th1) priming agonists are a promising area of investigation for immunotherapeutic treatment of various diseases. α-galactosylceramide (α-GalCer, KRN7000), a well-studied Th1-polarizer, simultaneously induces helper T cell 2 (Th2)-type responses, which is a major drawback for its clinical applications. Based on surflex-docking computation, α-GalCer-diol, with added hydroxyl groups in the acyl chain, is designed and synthesized. Structural analyses reveal stronger affinity between α-GalCer-diol and cluster of differentiation 1d (CD1d), leading to enhanced antigen presentation by dendritic cells (DCs) and self-activation, as reflected by tight binding of the T-cell receptor (TCR)/KRN7000/CD1d ternary complex and elevated production of interleukin 12 (IL-12) and interferon-γ (IFN-γ). Consequently, invariant natural killer T cells (iNKTs) are activated and exhibit an improved Th1-type cytokine profile ex vivo and in vivo. Different from KRN7000, α-GalCer-diol markedly boosts the expansion of the CD11b+ subpopulation and enhances IFN-γ content in CD11b+ cells. These reinforced Th1-type responses collectively endow α-GalCer-diol more robust antitumor activity in a xenograft animal model using B16-F10 melanoma cells. Together, the data demonstrate a new mechanism through which α-GalCer-diol induces stronger Th1-type responses by stimulating CD11b+ leukocyte expansion and DC-conducted CD1d-restricted and TCR-mediated iNKT activation. Hence, this study may facilitate the development of novel Th1 priming agonists.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peng He
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yang Jing
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal UniversityNanchangJiangxi330022China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
10
|
Lai ACY, Chi PY, Thio CLP, Han YC, Kao HN, Hsieh HW, Gervay-Hague J, Chang YJ. α-Lactosylceramide Protects Against iNKT-Mediated Murine Airway Hyperreactivity and Liver Injury Through Competitive Inhibition of Cd1d Binding. Front Chem 2019; 7:811. [PMID: 31850305 PMCID: PMC6893574 DOI: 10.3389/fchem.2019.00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022] Open
Abstract
Invariant natural killer T (iNKT) cells, which are activated by T cell receptor (TCR)-dependent recognition of lipid-based antigens presented by the CD1d molecule, have been shown to participate in the pathogenesis of many diseases, including asthma and liver injury. Previous studies have shown the inhibition of iNKT cell activation using lipid antagonists can attenuate iNKT cell-induced disease pathogenesis. Hence, the development of iNKT cell-targeted glycolipids can facilitate the discovery of new therapeutics. In this study, we synthesized and evaluated α-lactosylceramide (α-LacCer), an α-galactosylceramide (α-GalCer) analog with lactose substitution for the galactose head and a shortened acyl chain in the ceramide tail, toward iNKT cell activation. We demonstrated that α-LacCer was a weak inducer for both mouse and human iNKT cell activation and cytokine production, and the iNKT induction by α-LacCer was CD1d-dependent. However, when co-administered with α-GalCer, α-LacCer inhibited α-GalCer-induced IL-4 and IFN-γ production from iNKT cells. Consequently, α-LacCer also ameliorated both α-GalCer and GSL-1-induced airway hyperreactivity and α-GalCer-induced neutrophilia when co-administered in vivo. Furthermore, we were able to inhibit the increases of ConA-induced AST, ALT and IFN-γ serum levels through α-LacCer pre-treatment, suggesting α-LacCer could protect against ConA-induced liver injury. Mechanistically, we discerned that α-LacCer suppressed α-GalCer-stimulated cytokine production through competing for CD1d binding. Since iNKT cells play a critical role in the development of AHR and liver injury, the inhibition of iNKT cell activation by α-LacCer present a possible new approach in treating iNKT cell-mediated diseases.
Collapse
Affiliation(s)
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Yun-Chiann Han
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsien-Neng Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Wu Hsieh
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | | | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Wang J, Guillaume J, Janssens J, Remesh SG, Ying G, Bitra A, Van Calenbergh S, Zajonc DM. A molecular switch in mouse CD1d modulates natural killer T cell activation by α-galactosylsphingamides. J Biol Chem 2019; 294:14345-14356. [PMID: 31391251 DOI: 10.1074/jbc.ra119.009963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
Type I natural killer T (NKT) cells are a population of innate like T lymphocytes that rapidly respond to α-GalCer presented by CD1d via the production of both pro- and anti-inflammatory cytokines. While developing novel α-GalCer analogs that were meant to be utilized as potential adjuvants because of their production of pro-inflammatory cytokines (Th1 skewers), we generated α-galactosylsphingamides (αGSA). Surprisingly, αGSAs are not potent antigens in vivo despite their strong T-cell receptor (TCR)-binding affinities. Here, using surface plasmon resonance (SPR), antigen presentation assays, and X-ray crystallography (yielding crystal structures of 19 different binary (CD1d-glycolipid) or ternary (CD1d-glycolipid-TCR) complexes at resolutions between 1.67 and 2.85 Å), we characterized the biochemical and structural details of αGSA recognition by murine NKT cells. We identified a molecular switch within murine (m)CD1d that modulates NKT cell activation by αGSAs. We found that the molecular switch involves a hydrogen bond interaction between Tyr-73 of mCD1d and the amide group oxygen of αGSAs. We further established that the length of the acyl chain controls the positioning of the amide group with respect to the molecular switch and works synergistically with Tyr-73 to control NKT cell activity. In conclusion, our findings reveal important mechanistic insights into the presentation and recognition of glycolipids with polar moieties in an otherwise apolar milieu. These observations may inform the development αGSAs as specific NKT cell antagonists to modulate immune responses.
Collapse
Affiliation(s)
- Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jonas Janssens
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Soumya G Remesh
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Ge Ying
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037 .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Suzuki S, Sakurai D, Sakurai T, Yonekura S, Iinuma T, Okuma Y, Ihara F, Arai T, Hanazawa T, Fukuda-Kawaguchi E, Ishii Y, Okamoto Y. Sublingual administration of liposomes enclosing alpha-galactosylceramide as an effective adjuvant of allergen immunotherapy in a murine model of allergic rhinitis. Allergol Int 2019; 68:352-362. [PMID: 30803854 DOI: 10.1016/j.alit.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) is an established efficacious approach for the treatment of allergic rhinitis (AR). However, SLIT requires a long administration period to establish stable and adequate responses. This study investigated the efficacy of the sublingual administration of an allergen with liposomes enclosing α-GalCer (α-GC-liposome) as a potential adjuvant in mice with AR. METHODS Mice with AR induced by OVA received the sublingual administration of OVA, α-GC-liposomes, or OVA plus α-GC-liposomes for 7 days. After nasal re-challenge with OVA, nasal symptoms were evaluated. The serum levels of OVA-specific Ig, the cytokine production of CD4+ T cells in the cultures of cervical lymph node (CLN) cells, and the gene expression of CLNs were analyzed. RESULTS Although IL-4, IL-5 and IL-13 production from CD4+ T cells in CLN cells was significantly inhibited by the sublingual administration of OVA alone in mice with AR induced by OVA, their nasal symptoms were not significantly diminished. However, the combined sublingual administration of α-GC-liposomes and OVA completely suppressed nasal symptoms, downregulated Th2 and Th17 type cytokine production in CD4+ T cells as well as Th2 and Th17 gene expressions, and upregulated Th1 type cytokine production as well as Th1 gene expressions in CLN cells. Additionally, the serum levels of specific IgG2a were promoted, and specific IgE and IgG1 were inhibited. CONCLUSIONS Our findings suggest that the sublingual administration of an allergen with α-GC-liposomes as an adjuvant might increase the therapeutic efficacy and effectiveness of this treatment method.
Collapse
|
13
|
Hu L, Zhao C, Ma J, Jing Y, Du Y. Design, synthesis, and evaluation of α-galactopyranosylceramide mimics promoting Th2 cytokines production. Bioorg Med Chem Lett 2019; 29:1357-1362. [DOI: 10.1016/j.bmcl.2019.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/30/2023]
|
14
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
15
|
Venken K, Favreau M, Gaublomme D, Menu E, Vanderkerken K, Elewaut D. Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function? Mol Immunol 2018; 101:521-526. [PMID: 30153633 DOI: 10.1016/j.molimm.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/22/2018] [Accepted: 08/18/2018] [Indexed: 01/18/2023]
Abstract
Multiple myeloma (MM) is a progressive monoclonal B cell malignancy, for which survival and progression largely relies on the crosstalk of tumor cells with the bone marrow (BM) microenvironment, inducing immune escape, angiogenesis, bone destruction and drug resistance. Despite great therapeutic advances, most of the MM patients still relapse and remain incurable. Over the past years, immunotherapy has emerged as a new field in cancer therapy. Here, the immune cells of the patients themselves are activated to target the tumor cells. In MM, several effector cells of the immune system are present in the BM microenvironment; unfortunately, they are mostly all functionally impaired. In this review, we focus on the role of innate-like T cells in MM, particularly CD1d- and MR1- restricted T cells such as respectively invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells. These cells have the capacity upon activation to rapidly release copious amounts of cytokines affecting a wide range of innate and adaptive immune responses, and could therefore play a key protective role in anti-tumor immunity. We describe recent observations with regard to functional exhaustion of iNKT and MAIT cells in MM pathology and discuss the potential application of checkpoint inhibition as an attractive target for prolonged activation of these immunomodulatory T cells in the treatment of MM.
Collapse
Affiliation(s)
- Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium.
| | - Mérédis Favreau
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Djoere Gaublomme
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Eline Menu
- Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Veerapen N, Kharkwal SS, Jervis P, Bhowruth V, Besra AK, North SJ, Haslam SM, Dell A, Hobrath J, Quaid PJ, Moynihan PJ, Cox LR, Kharkwal H, Zauderer M, Besra GS, Porcelli SA. Photoactivable Glycolipid Antigens Generate Stable Conjugates with CD1d for Invariant Natural Killer T Cell Activation. Bioconjug Chem 2018; 29:3161-3173. [PMID: 30085659 DOI: 10.1021/acs.bioconjchem.8b00484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of invariant natural killer T lymphocytes (iNKT cells) by α-galactosylceramide (α-GC) elicits a range of pro-inflammatory or anti-inflammatory immune responses. We report the synthesis and characterization of a series of α-GC analogues with acyl chains of varying length and a terminal benzophenone. These bound efficiently to the glycolipid antigen presenting protein CD1d, and upon photoactivation formed stable CD1d-glycolipid covalent conjugates. Conjugates of benzophenone α-GCs with soluble or cell-bound CD1d proteins retained potent iNKT cell activating properties, with biologic effects that were modulated by acyl chain length and the resulting affinities of conjugates for iNKT cell antigen receptors. Analysis by mass spectrometry identified a unique covalent attachment site for the glycolipid ligands in the hydrophobic ligand binding pocket of CD1d. The creation of covalent conjugates of CD1d with α-GC provides a new tool for probing the biology of glycolipid antigen presentation, as well as opportunities for developing effective immunotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon J North
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Judith Hobrath
- Drug Discovery Unit, College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , Scotland , United Kingdom
| | | | | | | | | | - Maurice Zauderer
- Vaccinex Inc. , 1895 Mount Hope Avenue , Rochester , New York 14620 , United States
| | | | | |
Collapse
|
17
|
Chennamadhavuni D, Saavedra-Avila NA, Carreño LJ, Guberman-Pfeffer MJ, Arora P, Yongqing T, Pryce R, Koay HF, Godfrey DI, Keshipeddy S, Richardson SK, Sundararaj S, Lo JH, Wen X, Gascón JA, Yuan W, Rossjohn J, Le Nours J, Porcelli SA, Howell AR. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chem Biol 2018; 25:571-584.e8. [PMID: 29576533 PMCID: PMC6025895 DOI: 10.1016/j.chembiol.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents.
Collapse
Affiliation(s)
| | | | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Programa de Inmunologia, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tang Yongqing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Melbourne, Australia
| | - Santosh Keshipeddy
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Stewart K Richardson
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Srinivasan Sundararaj
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José A Gascón
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jérôme Le Nours
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Amy R Howell
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
18
|
Cameron G, Godfrey DI. Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells. Immunol Cell Biol 2018; 96:759-771. [PMID: 29504657 DOI: 10.1111/imcb.12034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/28/2022]
Abstract
Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4+ and are biased toward Vβ8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets.
Collapse
Affiliation(s)
- Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
19
|
Kumar A, Bezbradica JS, Stanic AK, Joyce S. Characterization and Functional Analysis of Mouse Semi-invariant Natural T Cells. ACTA ACUST UNITED AC 2017; 117:14.13.1-14.13.55. [PMID: 28369682 DOI: 10.1002/cpim.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Sebastian Joyce
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
20
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
21
|
Gilchuk P, Knight FC, Wilson JT, Joyce S. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols. Methods Mol Biol 2017; 1494:321-352. [PMID: 27718206 DOI: 10.1007/978-1-4939-6445-1_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA.,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA
| | - Frances C Knight
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - John T Wilson
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA.,Department of Chemical & Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA. .,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA.
| |
Collapse
|
22
|
Guillaume J, Seki T, Decruy T, Venken K, Elewaut D, Tsuji M, Van Calenbergh S. Synthesis of C6′′-modified α-C-GalCer analogues as mouse and human iNKT cell agonists. Org Biomol Chem 2017; 15:2217-2225. [DOI: 10.1039/c7ob00081b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-GalCer analogues that combine known Th1 polarizing C6′′-modifications with a C-glycosidic linkage were synthesized and evaluated as iNKT cell antigens.
Collapse
Affiliation(s)
- Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW)
- Faculty of Pharmaceutical Sciences
- UGent
- B-9000 Ghent
- Belgium
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center
- Affiliate of The Rockefeller University
- New York
- USA
| | - Tine Decruy
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Koen Venken
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Dirk Elewaut
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center
- Affiliate of The Rockefeller University
- New York
- USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW)
- Faculty of Pharmaceutical Sciences
- UGent
- B-9000 Ghent
- Belgium
| |
Collapse
|
23
|
Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016; 68:623-38. [PMID: 27393665 DOI: 10.1007/s00251-016-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer.
Collapse
|
24
|
Marzabadi CH, Franck RW. Small-Molecule Carbohydrate-Based Immunostimulants. Chemistry 2016; 23:1728-1742. [PMID: 27385422 DOI: 10.1002/chem.201601539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/07/2023]
Abstract
In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.
Collapse
Affiliation(s)
- Cecilia H Marzabadi
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA
| | - Richard W Franck
- Department of Chemistry & Biochemistry, Hunter College/CUNY, 695 Park Ave., New York, NY, 10065, USA
| |
Collapse
|
25
|
Kharkwal SS, Arora P, Porcelli SA. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 2016; 68:597-610. [PMID: 27377623 DOI: 10.1007/s00251-016-0925-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Natural Killer T cells (NKT cells) are a subpopulation of T lymphocytes with unique phenotypic properties and a remarkably broad range of immune effector and regulatory functions. One subset of these cells, known as invariant NKT cells (iNKT cells), has become a significant focus in the search for new and better ways to enhance immunotherapies and vaccination. These unconventional T cells are characterized by their ability to be specifically activated by a range of foreign and self-derived glycolipid antigens presented by CD1d, an MHC class I-related antigen presenting molecule that has evolved to bind and present lipid antigens. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here we review the basic background biology of iNKT cells that is relevant to their potential for improving immune responses, and summarize recent work supporting the further development of glycolipid activators of iNKT cells as a new class of vaccine adjuvants.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pooja Arora
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
26
|
Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 2016; 68:561-76. [PMID: 27368414 DOI: 10.1007/s00251-016-0931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA. .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
27
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
28
|
Wingender G, Birkholz AM, Sag D, Farber E, Chitale S, Howell AR, Kronenberg M. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3838-48. [PMID: 26355152 DOI: 10.4049/jimmunol.1500203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022]
Abstract
Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey;
| | - Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey; Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Elisa Farber
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Sampada Chitale
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
29
|
Zajonc DM, Girardi E. Recognition of Microbial Glycolipids by Natural Killer T Cells. Front Immunol 2015; 6:400. [PMID: 26300885 PMCID: PMC4523824 DOI: 10.3389/fimmu.2015.00400] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
30
|
Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:924-33. [PMID: 26078271 PMCID: PMC4506857 DOI: 10.4049/jimmunol.1500070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Petr A Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037;
| |
Collapse
|
31
|
Guillaume J, Pauwels N, Aspeslagh S, Zajonc DM, Elewaut D, Van Calenbergh S. Synthesis of C-5″ and C-6″-modified α-GalCer analogues as iNKT-cell agonists. Bioorg Med Chem 2015; 23:3175-82. [PMID: 26003341 PMCID: PMC4461518 DOI: 10.1016/j.bmc.2015.04.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/20/2022]
Abstract
Alpha-galactosyl ceramide (α-GalCer) is a prototypical synthetic ligand of invariant natural killer T (iNKT) cells. Upon presentation by the MHC class I-like molecule CD1d, this glycolipid stimulates iNKT cells to secrete a vast amount of both pro-inflammatory Th1 and anti-inflammatory Th2 cytokines. Recently, we discovered that selected 6″-modified α-GalCer analogues may produce markedly Th1-biased responses due to the formation of either an additional anchor with CD1d or by establishing extra interactions with the T-cell receptor of iNKT cells. Here, we report a practical synthesis towards 6″-O-carbamate and galacturonamide analogues of α-GalCer and their evaluation as iNKT cell agonists in mice.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Carbamates/chemistry
- Carbohydrate Sequence
- Crystallography, X-Ray
- Galactosylceramides/chemical synthesis
- Galactosylceramides/pharmacology
- Gene Expression
- Hexuronic Acids/chemistry
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interleukin-4/biosynthesis
- Interleukin-4/immunology
- Ligands
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Natural Killer T-Cells/cytology
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Protein Binding
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Structure-Activity Relationship
- Th1-Th2 Balance/drug effects
Collapse
Affiliation(s)
- Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Nora Pauwels
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Gent University, 9000 Gent, Belgium
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Gent University, 9000 Gent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium.
| |
Collapse
|
32
|
Birkholz A, Nemčovič M, Yu ED, Girardi E, Wang J, Khurana A, Pauwels N, Farber E, Chitale S, Franck RW, Tsuji M, Howell A, Van Calenbergh S, Kronenberg M, Zajonc DM. Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation. J Biol Chem 2015; 290:17206-17. [PMID: 26018083 DOI: 10.1074/jbc.m115.654814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/31/2023] Open
Abstract
The ability of different glycosphingolipids (GSLs) to activate type I natural killer T cells (NKT cells) has been known for 2 decades. The possible therapeutic use of these GSLs has been studied in many ways; however, studies are needed in which the efficacy of promising GSLs is compared under identical conditions. Here, we compare five unique GSLs structurally derived from α-galactosylceramide. We employed biophysical and biological assays, as well as x-ray crystallography to study the impact of the chemical modifications of the antigen on type I NKT cell activation. Although all glycolipids are bound by the T cell receptor of type I NKT cells in real time binding assays with high affinity, only a few activate type I NKT cells in in vivo or in vitro experiments. The differences in biological responses are likely a result of different pharmacokinetic properties of each lipid, which carry modifications at different parts of the molecule. Our results indicate a need to perform a variety of assays to ascertain the therapeutic potential of type I NKT cell GSL activators.
Collapse
Affiliation(s)
- Alysia Birkholz
- From the Division of Cell Biology and Division of Developmental Immunology,La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, the Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037
| | | | | | | | - Jing Wang
- From the Division of Cell Biology and
| | - Archana Khurana
- Division of Developmental Immunology,La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Nora Pauwels
- the Laboratory for Medicinal Chemistry, Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Elisa Farber
- the Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, and
| | - Sampada Chitale
- the Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, and
| | - Richard W Franck
- the Department of Chemistry, Hunter College of City University of New York, New York, New York 10021
| | - Moriya Tsuji
- the Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016
| | - Amy Howell
- the Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, and
| | - Serge Van Calenbergh
- the Laboratory for Medicinal Chemistry, Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Mitchell Kronenberg
- Division of Developmental Immunology,La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, the Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037
| | - Dirk M Zajonc
- From the Division of Cell Biology and the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
33
|
Birkholz AM, Howell AR, Kronenberg M. The Alpha and Omega of Galactosylceramides in T Cell Immune Function. J Biol Chem 2015; 290:15365-15370. [PMID: 25947378 DOI: 10.1074/jbc.r115.647057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipids are a subgroup of glycolipids that contain an amino alcohol sphingoid base linked to sugars. They are found in the membranes of cells ranging from bacteria to vertebrates. This group of lipids is known to stimulate the immune system through activation of a type of white blood cell known as natural killer T cell (NKT cell). Here we summarize the extensive research that has been done to identify the structures of natural glycolipids that stimulate NKT cells and to determine how these antigens are recognized. We also review studies designed to understand how glycolipid variants, both natural and synthetic, can alter the responses of NKT cells, leading to dramatic changes in the global immune response.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, California 92037
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, California 92037.
| |
Collapse
|
34
|
Patent Highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|
35
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
36
|
De Spiegeleer A, Wynendaele E, Vandekerckhove M, Stalmans S, Boucart M, Van Den Noortgate N, Venken K, Van Calenbergh S, Aspeslagh S, Elewaut D. An in silico approach for modelling T-helper polarizing iNKT cell agonists. PLoS One 2014; 9:e87000. [PMID: 24498010 PMCID: PMC3909045 DOI: 10.1371/journal.pone.0087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias Vandekerckhove
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Maxime Boucart
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nele Van Den Noortgate
- Geriatrics Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|