1
|
Stoltzfus AT, Michel SLJ. Cysteine-rich zinc finger proteins and the nuclear factor kappa-B pathway. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1503390. [PMID: 40405983 PMCID: PMC12097756 DOI: 10.3389/fchbi.2024.1503390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Inflammation-related disorders, such as autoimmune diseases and cancer, impose a significant global health burden. Zinc finger proteins (ZFs) are ubiquitous metalloproteins which regulate inflammation and many biological signaling pathways related to growth, development, and immune function. Numerous ZFs are involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, associating them with inflammation-related diseases that feature chronically elevated pro-inflammatory cytokines. This review highlights the predominance of ZFs in NFκB-related signaling and summarizes the breadth of functions that these proteins perform. The cysteine-specific post-translational modification (PTM) of persulfidation is also discussed in the context of these cysteine-rich ZFs, including what is known from the few available reports on the functional implications of ZF persulfidation. Persulfidation, mediated by endogenously produced hydrogen sulfide (H2S), has a recently established role in signaling inflammation. This work will summarize the known connections between ZFs and persulfidation and has the potential to inform on the development of related therapies.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
2
|
Cai Y, Li S, Yang Y, Duan S, Fan G, Bai J, Zheng Q, Gu Y, Li X, Liu R. Intestinal epithelial damage-derived mtDNA activates STING-IL12 axis in dendritic cells to promote colitis. Theranostics 2024; 14:4393-4410. [PMID: 39113810 PMCID: PMC11303083 DOI: 10.7150/thno.96184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: The treatment of ulcerative colitis (UC) presents an ongoing clinical challenge. Emerging research has implicated that the cGAS-STING pathway promotes the progression of UC, but conflicting results have hindered the development of STING as a therapeutic target. In the current study, we aim to comprehensively elucidate the origins, downstream signaling and pathogenic roles of myeloid STING in colitis and colitis-associated carcinoma (CAC). Methods: Tmem173 fl/fl Lyz2-Cre ert2 mice were constructed for inducible myeloid-specific deletion of STING. RNA-sequencing, flow cytometry, and multiplex immunohistochemistry were employed to investigate immune responses in DSS-induced colitis or AOM/DSS-induced carcinogenesis. Colonic organoids, primary bone marrow derived macrophages and dendritic cells, and splenic T cells were used for in vitro studies. Results: We observed that myeloid STING knockout in adult mice inhibited macrophage maturation, reduced DC cell activation, and suppressed pro-inflammatory Th1 and Th17 cells, thereby protecting against both acute and chronic colitis and CAC. However, myeloid STING deletion in neonatal or tumor-present mice exhibited impaired immune tolerance and anti-tumor immunity. Furthermore, we found that TFAM-associated mtDNA released from damaged colonic organoids, rather than bacterial products, activates STING in dendritic cells in an extracellular vesicle-independent yet endocytosis-dependent manner. Both IRF3 and NF-κB are required for STING-mediated expression of IL-12 family cytokines, promoting Th1 and Th17 differentiation and contributing to excessive inflammation in colitis. Conclusions: Detection of the TFAM-mtDNA complex from damaged intestinal epithelium by myeloid STING exacerbates colitis through IL-12 cytokines, providing new evidence to support the development of STING as a therapeutic target for UC and CAC.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jinzhao Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| |
Collapse
|
3
|
Riehl DR, Sharma A, Roewe J, Murke F, Ruppert C, Eming SA, Bopp T, Kleinert H, Radsak MP, Colucci G, Subramaniam S, Reinhardt C, Giebel B, Prinz I, Guenther A, Strand D, Gunzer M, Waisman A, Ward PA, Ruf W, Schäfer K, Bosmann M. Externalized histones fuel pulmonary fibrosis via a platelet-macrophage circuit of TGFβ1 and IL-27. Proc Natl Acad Sci U S A 2023; 120:e2215421120. [PMID: 37756334 PMCID: PMC10556605 DOI: 10.1073/pnas.2215421120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFβ and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFβ1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFβ1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFβ1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Dennis R. Riehl
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, Cologne50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne50931, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Markus P. Radsak
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Third Department of Medicine – Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Giuseppe Colucci
- Outer Corelab, Viollier AG, Allschwil4123, Switzerland
- Department of Hematology, University of Basel, Basel4031, Switzerland
| | - Saravanan Subramaniam
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz55131, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Immo Prinz
- Institute for Immunology, Hannover Medical School, Hannover30625, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen45122, Germany
- Leibniz-Institute for Analytical Sciences -ISAS- e.V., Dortmund44139, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor48109, MI
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| |
Collapse
|
4
|
Cao H. Bacterial endotoxin lipopolysaccharides regulate gene expression in human colon cancer cells. BMC Res Notes 2023; 16:216. [PMID: 37705049 PMCID: PMC10500902 DOI: 10.1186/s13104-023-06506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) is a major cell wall component of gram-negative bacteria. Colon bacteria contribute to LPS which promotes colon cancer metastasis. The objective of this study was to survey the effect of LPS on cell viability and gene expression of 55 molecular targets in human colon cancer cells. RESULTS LPS did not affect the viability of COLO 225 cells under the culture conditions but affected the expression of a number of genes important in inflammatory responses and cancer development. LPS increased TTP family, GLUT family and DGAT1 mRNA levels but decreased DGAT2a and DGAT2b expression in the human colon cancer cells. LPS also increased COX2, CXCL1, ELK1, ICAM1, TNFSF10 and ZFAND5 but decreased BCL2L1, CYP19A1 and E2F1 mRNA levels in the colon cancer cells. These data suggest that LPS has profound effects on gene expression in human colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, LA, 70124, USA.
| |
Collapse
|
5
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
6
|
Cao H, Sethumadhavan K. Identification of Bcl2 as a Stably Expressed qPCR Reference Gene for Human Colon Cancer Cells Treated with Cottonseed-Derived Gossypol and Bioactive Extracts and Bacteria-Derived Lipopolysaccharides. Molecules 2022; 27:molecules27217560. [PMID: 36364387 PMCID: PMC9655230 DOI: 10.3390/molecules27217560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Cottonseed contains many bioactive molecules including plant polyphenols. Cottonseed value might be increased by providing high-value bioactive polyphenols for improving nutrition and health. However, there was a lack of molecular evidence for cottonseed bioactivity in mammalian cells. One widely used method for evaluating the bioactivity of natural products is quantitative real-time-PCR (qPCR). The selection of stably expressed internal reference genes is a crucial task of qPCR assay for data analysis. The rationale for reference gene selection is that a lower standard deviation of the cycle of threshold (Cq) among the treatments indicates a more stable expression of the gene. The objective of this study was to select reference genes in human colon cancer cells (COLO 205) treated with cottonseed-derived gossypol and bioactive extracts along with bacterial endotoxin lipopolysaccharides (LPS). SYBR Green qPCR was used to analyze the mRNA levels of a wide range of biomarkers involved in glucose transport, lipid biosynthesis, inflammatory response, and cancer development. qPCR data (10,560 Cq values) were generated from 55 genes analyzed from 64 treatments with triplicate per treatment for each gene. The data showed that B-cell lymphoma 2 (Bcl2) mRNA was the most stable among the 55 mRNAs analyzed in the human colon cancer cells. Glyceraldehyde 3 phosphate dehydrogenase (Gapdh) and ribosome protein L32 (Rpl32) mRNAs were not good qPCR references for the colon cancer cells. These observations were consistent regardless of the treatment comparison between gossypol and LPS, glanded and glandless seed extracts, seed coat and kernel extracts, or treatment for 8 and 24 h. These results suggest that Bcl2 is a preferable reference gene for qPCR assays in human colon cancer cells treated with cottonseed-derived gossypol and bioactive extracts as well as LPS. The extensive qPCR results firmly support the conclusion that the Bcl2 gene is stably expressed at the mRNA level in the human colon cancer cells regardless of the treatment, suggesting that Bcl2 gene expression is not regulated at the mRNA level but at the post-transcriptional level. These results should facilitate studies designated to evaluate bioactivity on gene expression regulation by cottonseed molecules and other natural and synthetic molecules for nutrition and health uses.
Collapse
|
7
|
Cottonseed extracts regulate gene expression in human colon cancer cells. Sci Rep 2022; 12:1039. [PMID: 35058516 PMCID: PMC8776848 DOI: 10.1038/s41598-022-05030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.
Collapse
|
8
|
Yang X, Chen B, Zhang M, Xu S, Shuai Z. Tristetraprolin Gene Single-Nucleotide Polymorphisms and mRNA Level in Patients With Rheumatoid Arthritis. Front Pharmacol 2021; 12:728015. [PMID: 34539409 PMCID: PMC8440805 DOI: 10.3389/fphar.2021.728015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
To observe and evaluate the correlation between single-nucleotide polymorphisms (SNPs) and messenger RNA (mRNA) level related to tristetraprolin (TTP) in Chinese rheumatoid arthritis (RA). TapMan SNP was used for genotyping analysis in 580 RA patients and 554 healthy people. Association between TTP gene polymorphisms (rs251864 and rs3746083) and RA was obtained. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) technology was applied for the detection of TTP mRNA level in peripheral blood mononuclear cells (PBMCs) in 36 RA patients and 37 healthy people. We observed that the allele T of TTP rs3746083 increased RA susceptibility (p = 0.019). A significant difference was found under the dominant model of rs3746083 (p = 0.037). Further analysis showed the allele distribution of rs3746083 was nominally correlated with RF phenotype of RA patients (p = 0.045). Nevertheless, the association between TTP rs251864 and the incidence of RA was no statistically significant (p > 0.05). The TTP expression level in PBMCs of RA patients was significantly reduced (p < 0.001). In conclusion, the results of this experiment support that TTP may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Chen
- Department of Nuclear Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Mingyue Zhang
- Department of Medical Record Room, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Rakhra G, Rakhra G. Zinc finger proteins: insights into the transcriptional and post transcriptional regulation of immune response. Mol Biol Rep 2021; 48:5735-5743. [PMID: 34304391 PMCID: PMC8310398 DOI: 10.1007/s11033-021-06556-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily considered to be DNA binding transcription factors; however, owing to the diverse array of zinc-finger domains, they are able to interact with molecules other than DNA like RNA, proteins, lipids and PAR (poly-ADP-ribose). Evidences from recent scientific studies have provided an insight into the potential functions of zinc finger proteins in immune system regulation both at the transcriptional and post transcriptional level. However, the mechanism and importance of zinc finger proteins in the regulation of immune response is not very well defined and understood. This review highlights in detail the importance of zinc finger proteins in the regulation of immune system at transcriptional and post transcriptional level. CONCLUSION Different types of zinc finger proteins are involved in immune system regulation and their mechanism of regulation is discussed herewith.
Collapse
Affiliation(s)
- Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, 121004, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
10
|
Cao H, Sethumadhavan K, Cao F, Wang TTY. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci Rep 2021; 11:5922. [PMID: 33723275 PMCID: PMC7961146 DOI: 10.1038/s41598-021-84970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Kandan Sethumadhavan
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Fangping Cao
- grid.66741.320000 0001 1456 856XBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Thomas T. Y. Wang
- grid.508988.4United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, Beltsville, MD 20705 USA
| |
Collapse
|
11
|
Saaoud F, Wang J, Iwanowycz S, Wang Y, Altomare D, Shao Y, Liu J, Blackshear PJ, Lessner SM, Murphy EA, Wang H, Yang X, Fan D. Bone marrow deficiency of mRNA decaying protein Tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biol 2020; 37:101609. [PMID: 32591281 PMCID: PMC7767740 DOI: 10.1016/j.redox.2020.101609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
Tristetraprolin (TTP), an mRNA binding and decaying protein, plays a significant role in controlling inflammation by decaying mRNAs encoding inflammatory cytokines such as TNFalpha. We aimed to test a hypothesis that TTP in bone marrow (BM) cells regulates atherogenesis by modulating inflammation and lipid metabolism through the modulation of oxidative stress pathways by TTP target genes. In a BM transplantation study, lethally irradiated atherogenic LDLR-/- mice were reconstituted with BM cells from either wild type (TTP+/+) or TTP knockout (TTP-/-) mice, and fed a Western diet for 12 weeks. We made the following observations: (1) TTP-/- BM recipients display a significantly higher systemic and multi-organ inflammation than TTP+/+ BM recipients; (2) BM TTP deficiency modulates hepatic expression of genes, detected by microarray, involved in lipid metabolism, inflammatory responses, and oxidative stress; (3) TTP-/- BM derived macrophages increase production of mitochondrial reactive oxygen species (mtROS); (4) BM-TTP-/- mice display a significant reduction in serum VLDL/LDL levels, and attenuated hepatic steatosis compared to controls; and (5) Reduction of serum VLDL/LDL levels offsets the increased inflammation, resulting in no changes in atherosclerosis. These findings provide a novel mechanistic insight into the roles of TTP-mediated mRNA decay in bone marrow-derived cells in regulating systemic inflammation, oxidative stress, and liver VLDL/LDL biogenesis.
Collapse
Affiliation(s)
- Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA; Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Susan M Lessner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Microbiology and Immunology, and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA; Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Microbiology and Immunology, and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA.
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.
| |
Collapse
|
12
|
Ahmed CM, Ildefonso CJ, Johnson HM, Lewin AS. A C-terminal peptide from type I interferon protects the retina in a mouse model of autoimmune uveitis. PLoS One 2020; 15:e0227524. [PMID: 32101556 PMCID: PMC7043762 DOI: 10.1371/journal.pone.0227524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/04/2020] [Indexed: 01/26/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) in rodents recapitulates many features of the disease in humans and has served as a useful tool for the development of therapeutics. A peptide from C-terminus of interferon α1, conjugated to palmitoyl-lysine for cell penetration, denoted as IFNα-C, was tested for its anti-inflammatory properties in ARPE-19 cells, followed by testing in a mouse model of EAU. Treatment with IFNα-C and evaluation by RT-qPCR showed the induction of anti-inflammatory cytokines and chemokine. Inflammatory markers induced by treatment with TNFα were suppressed when IFNα-C was simultaneously present. TNF-α mediated induction of NF-κB and signaling by IL-17A were attenuated by IFNα-C. Differentiated ARPE-19 cells were treated with TNFα in the presence or absence IFNα-C and analyzed by immmunhistochemistry. IFNα-C protected against the disruption integrity of tight junction proteins. Similarly, loss of transepithelial resistance caused by TNFα was prevented by IFNα-C. B10.RIII mice were immunized with a peptide from interphotoreceptor binding protein (IRBP) and treated by gavage with IFNα-C. Development of uveitis was monitored by histology, fundoscopy, SD-OCT, and ERG. Treatment with IFNα-C prevented uveitis in mice immunized with the IRBP peptide. Splenocytes isolated from mice with ongoing EAU exhibited antigen-specific T cell proliferation that was inhibited in the presence of IFNα-C. IFNα-C peptide exhibits anti-inflammatory properties and protects mice against damage to retinal structure and function suggesting that it has therapeutic potential for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
13
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
14
|
Deng X, Luo Q, Dong F, Xu L, Tang X. [Tristetraprolin inhibits autophagy in cultured lung cancer cells via the nuclear factor-κB pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:313-319. [PMID: 31068309 DOI: 10.12122/j.issn.1673-4254.2019.03.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To explore the expression of the RNA-binding protein tristetraprolin in lung adenocarcinoma cells and its molecular mechanism for inhibiting autophagy. METHODS Quantitative real-time PCR and Western blotting were performed to detect the expression of autophagy-related genes (including Beclin1, LC3-Ⅱ/LC3-Ⅰ and SQSTM1/p62) in cultured lung adenocarcinoma cells at 24, 48 and 72 h after transient transfection with a tristetraprolin-overexpressing plasmid and the empty plasmid. The effects of transfection with the tristetraprolin-overexpressing plasmid and empty plasmids in the presence or absence of tumor necrosis factor-α (TNF-α) on the expressions of nuclear factor-κB (NF-κB) p65, c-rel, and p50 were examined in lung adenocarcinoma cells using immunofluorescence assay and Western blotting. The cells were also transfected with the IκBα-mut plasmid and the tristetraprolin-overexpressing plasmid, either alone or in combination, and the changes in the expressions of tristetraprolin and autophagy-related genes were detected using RT-qPCR and Western blotting. RESULTS The expressions of tristetraprolin were significantly reduced at both the mRNA and protein levels in lung adenocarcinoma cells (P < 0.001). Overexpression of tristetraprolin in the cells significantly lowered the expressions of autophagy-related genes Beclin1 and the ratio of LC3-Ⅱ/LC3-Ⅰ at the mRNA and protein levels (P < 0.001), obviously lowered the expressions of NF-κB p65 and c-rel, and almost totally blocked the nuclear translocation of NF-κB p65 and c-rel (P < 0.05); the expression of p50, however, did not undergo significant changes in response to tristetraprolin overexpression (P > 0.05). The inhibitory effect of tristetraprolin overexpression on autophagy was abrogated by transfection of the cells with IκBα-mut plasmid, which blocked the NF-κB signaling pathway. Co-transfection of the cells with IκBα-mut also attenuated the inhibitory effect of tristetraprolin overexpression on Beclin1 and the LC3-Ⅱ/LC3-Ⅰ ratio at both the mRNA and protein levels (P < 0.05). CONCLUSIONS The expression of tristetraprolin is low in lung adenocarcinoma cells. Tristetraprolin overexpression causes inhibition of autophagy in lung adenocarcinoma cells possibly by blocking NF-κB p65 and c-rel nuclear translocation.
Collapse
Affiliation(s)
- Xiaoya Deng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qinli Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaokui Tang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Roles of Tristetraprolin in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19113384. [PMID: 30380668 PMCID: PMC6274954 DOI: 10.3390/ijms19113384] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis. Similar to other tumor suppressors, TTP expression is frequently downregualted in various human cancers, and its low expression is correlated with poor prognosis. Additionally, disruption in the regulation of TTP by various mechanisms results in the inactivation of TTP protein or altered TTP expression. A recent study showing alleviation of Myc-driven lymphomagenesis by the forced expression of TTP has shed light on new therapeutic avenues for cancer prevention and treatment through the restoration of TTP expression. In this review, we summarize key oncogenes subjected to the TTP-mediated mRNA degradation, and discuss how dysregulation of TTP can contribute to tumorigenesis. In addition, the control mechanism underlying TTP expression at the posttranscriptional and posttranslational levels will be discussed.
Collapse
|
16
|
Liu X, Li X, Ma R, Xiong B, Sun SC, Liu H, Gu L. Tristetraprolin functions in cytoskeletal organization during mouse oocyte maturation. Oncotarget 2018; 7:53330-53338. [PMID: 27458159 PMCID: PMC5288190 DOI: 10.18632/oncotarget.10755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/10/2016] [Indexed: 01/17/2023] Open
Abstract
Tristetraprolin (TTP), a member of TIS11 family containing CCCH tandem zinc finger, is one of the best characterized RNA-binding proteins. However, to date, the role of TTP in mammalian oocytes remains completely unknown. In the present study, we report the altered maturational progression and cytokinesis, upon specific knockdown of TTP in mouse oocytes. Furthermore, by confocal scanning, we observe the failure to form cortical actin cap during meiosis of TTP-depleted oocytes. Loss of TTP in oocytes also results in disruption of meiotic spindle morphology and chromosome alignment. In support of these findings, incidence of aneuploidy is accordingly increased when TTP is abated in oocytes. Our results suggest that TTP as a novel cytoskeletal regulator is required for spindle morphology/chromosome alignment and actin polymerization in oocytes.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Guo J, Qu H, Chen Y, Xia J. The role of RNA-binding protein tristetraprolin in cancer and immunity. Med Oncol 2017; 34:196. [DOI: 10.1007/s12032-017-1055-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
|
18
|
The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans 2017; 44:1321-1337. [PMID: 27911715 PMCID: PMC5095909 DOI: 10.1042/bst20160166] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.
Collapse
|
19
|
Gain-of-Function Mutation of Tristetraprolin Impairs Negative Feedback Control of Macrophages In Vitro yet Has Overwhelmingly Anti-Inflammatory Consequences In Vivo. Mol Cell Biol 2017; 37:MCB.00536-16. [PMID: 28265004 PMCID: PMC5440651 DOI: 10.1128/mcb.00536-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.
Collapse
|
20
|
Maeda K, Akira S. Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. Int Immunol 2017; 29:149-155. [PMID: 28369485 PMCID: PMC5890888 DOI: 10.1093/intimm/dxx015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022] Open
Abstract
Current studies using knockout mice have revealed that some Cys-Cys-Cys-His (CCCH)-type zinc-finger proteins, namely tristetraprolin (TTP), Roquin and Regnase-1, play important roles in the immune system. These proteins are closely associated with the fate of their target RNAs in normal immune responses. However, the functions of many RNA-binding proteins have not been characterized precisely. To understand the molecular mechanisms of RNA metabolism in the immune system, investigation of TTP/Roquin/Regnase-1 might provide new knowledge. In this review, we will discuss the current understanding of these proteins in immune regulation and homeostasis and discuss RNA metabolism in the immune system.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC) and
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC) and
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Abstract
Nearly 60 CCCH zinc finger proteins have been identified in humans and mice. These proteins are involved in the regulation of multiple steps of RNA metabolism, including mRNA splicing, polyadenylation, transportation, translation and decay. Several CCCH zinc finger proteins, such as tristetraprolin (TTP), roquin 1 and MCPIP1 (also known as regnase 1), are crucial for many aspects of immune regulation by targeting mRNAs for degradation and modulation of signalling pathways. In this Review, we focus on the emerging roles of CCCH zinc finger proteins in the regulation of immune responses through their effects on cytokine production, immune cell activation and immune homeostasis.
Collapse
|
22
|
Xu L, Ning H, Gu L, Wang Q, Lu W, Peng H, Cui W, Ying B, Ross CR, Wilson GM, Wei L, Wold WSM, Liu J. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway. Oncotarget 2016; 6:41679-91. [PMID: 26497679 PMCID: PMC4747181 DOI: 10.18632/oncotarget.6149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ling Gu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Wenbao Lu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Weiguang Cui
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, Haines JL, Pericak-Vance MA. GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 2016; 17:305-12. [PMID: 27278126 PMCID: PMC4956564 DOI: 10.1038/gene.2016.23] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
To identify genes and biologically relevant pathways associated with risk to develop multiple sclerosis (MS), the Genome-Wide Association Studies noise reduction method (GWAS-NR) was applied to MS genotyping data. Regions of association were defined based on the significance of linkage disequilibrium blocks. Candidate genes were cross-referenced based on a review of current literature, with attention to molecular function and directly interacting proteins. Supplementary annotations and pathway enrichment scores were generated using The Database for Annotation, Visualization and Integrated Discovery. The candidate set of 220 MS susceptibility genes prioritized by GWAS-NR was highly enriched with genes involved in biological pathways related to positive regulation of cell, lymphocyte and leukocyte activation (P=6.1E-15, 1.2E-14 and 5.0E-14, respectively). Novel gene candidates include key regulators of NF-κB signaling and CD4+ T helper type 1 (Th1) and T helper type 17 (Th17) lineages. A large subset of MS candidate genes prioritized by GWAS-NR were found to interact in a tractable pathway regulating the NF-κB-mediated induction and infiltration of pro-inflammatory Th1/Th17 T-cell lineages, and maintenance of immune tolerance by T-regulatory cells. This mechanism provides a biological context that potentially links clinical observations in MS to the underlying genetic landscape that may confer susceptibility.
Collapse
Affiliation(s)
| | - A H Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - M Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - E R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - M A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Deng K, Wang H, Shan T, Chen Y, Zhou H, Zhao Q, Xia J. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33. Sci Rep 2016; 6:24505. [PMID: 27074834 PMCID: PMC4830935 DOI: 10.1038/srep24505] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/30/2016] [Indexed: 02/07/2023] Open
Abstract
Tristetraprolin (TTP) is an adenine/uridine (AU)-rich element (ARE)-binding protein that can induce degradation of mRNAs. In this study, we report that TTP suppresses the expression of interleukin-33 (IL-33), a tumor-promoting inflammatory cytokine, and thereby inhibits the progression of gastric cancer (GC). Overexpression of TTP decreased the level of IL-33, whereas knockdown of TTP increased IL-33 levels. We also discovered that TTP inhibited the proliferation, migration, and invasion of GC cell lines through regulation of IL-33. Furthermore, TTP RNA and protein levels were remarkably reduced in GC and inversely correlated with IL-33 level, and they were also closely associated with depth of invasion, lymph node metastasis, advanced TNM stage, as well as survival rate. Taken together, these findings identified TTP as a downregulator of IL-33, and further suggest that TTP can serve as a novel biomarker for the diagnosis of GC and as a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Ting Shan
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Yigang Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hong Zhou
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| |
Collapse
|
25
|
Schwerk J, Savan R. Translating the Untranslated Region. THE JOURNAL OF IMMUNOLOGY 2016; 195:2963-71. [PMID: 26386038 DOI: 10.4049/jimmunol.1500756] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene expression programs undergo constant regulation to quickly adjust to environmental stimuli that alter the physiological status of the cell, like cellular stress or infection. Gene expression is tightly regulated by multilayered regulatory elements acting in both cis and trans. Posttranscriptional regulation of the 3' untranslated region (UTR) is a powerful regulatory process that determines the rate of protein translation from mRNA. Regulatory elements targeting the 3' UTR include microRNAs, RNA-binding proteins, and long noncoding RNAs, which dramatically alter the immune response. We provide an overview of our current understanding of posttranscriptional regulation of immune gene expression. The focus of this review is on regulatory elements that target the 3' UTR. We delineate how the synergistic or antagonistic interactions of posttranscriptional regulators determine gene expression levels and how dysregulation of 3' UTR-mediated posttranscriptional control associates with human diseases.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
26
|
Anti-Inflammatory Effect of 1,3,5,7-Tetrahydroxy-8-isoprenylxanthone Isolated from Twigs of Garcinia esculenta on Stimulated Macrophage. Mediators Inflamm 2015; 2015:350564. [PMID: 26538826 PMCID: PMC4619971 DOI: 10.1155/2015/350564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/30/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023] Open
Abstract
Garcinia Linn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE's capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
27
|
Ross EA, Smallie T, Ding Q, O'Neil JD, Cunliffe HE, Tang T, Rosner DR, Klevernic I, Morrice NA, Monaco C, Cunningham AF, Buckley CD, Saklatvala J, Dean JL, Clark AR. Dominant Suppression of Inflammation via Targeted Mutation of the mRNA Destabilizing Protein Tristetraprolin. THE JOURNAL OF IMMUNOLOGY 2015; 195:265-76. [PMID: 26002976 PMCID: PMC4472942 DOI: 10.4049/jimmunol.1402826] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tim Smallie
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Qize Ding
- Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - John D O'Neil
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen E Cunliffe
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tina Tang
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dalya R Rosner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iva Klevernic
- Unit of Signal Transduction, Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, University Hospital, 4000 Liege, Belgium
| | - Nicholas A Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; and
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Adam F Cunningham
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher D Buckley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jonathan L Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Andrew R Clark
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
28
|
Foley JH, Peterson EA, Lei V, Wan LW, Krisinger MJ, Conway EM. Interplay between fibrinolysis and complement: plasmin cleavage of iC3b modulates immune responses. J Thromb Haemost 2015; 13:610-8. [PMID: 25556624 DOI: 10.1111/jth.12837] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The plasmin(ogen) and complement systems are simultaneously activated at sites of tissue injury, participating in hemostasis, wound healing, inflammation and immune surveillance. In particular, the C3 proteolytic fragment, iC3b, and its degradation product C3dg, which is generated by cleavage by factor I (FI) and the cofactor complement receptor CR1, are important in bridging innate and adaptive immunity. Via a thioester (TE) bond, iC3b and C3dg covalently tag pathogens, modulating phagocytosis and adaptive immune responses. OBJECTIVE To examine plasmin-mediated proteolysis of iC3b, and to evaluate the functional consequences, comparing the effects with products generated by FI/CR1 cleavage of iC3b. METHODS Dose-dependent and time-dependent plasmin-mediated cleavage of iC3b were characterized by analytical gel electrophoresis. The properties of the resultant TE bond-containing fragments on phagocytosis and induction of pro-inflammatory cytokines were measured in cell culture systems. RESULTS At low concentrations, plasmin effectively cleaves iC3b, but at numerous previously undescribed sites, giving rise to novel C3c-like and C3dg-like moieties, the latter of which retain the TE bond. When attached to zymosan or erythrocytes and exposed to THP-1 macrophages, the C3dg-like proteins behave almost identically to the bona fide C3dg, yielding less phagocytosis as compared with the opsonin iC3b, and more macrophage secretion of the pro-inflammatory cytokine, IL-12. CONCLUSION Plasmin cleavage of iC3b provides a complement regulatory pathway that is as efficient as FI/CR1 but does not require a cellular cofactor.
Collapse
Affiliation(s)
- J H Foley
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|