1
|
Li D, Jin S, Teng X, Wang P, He K, Cao L, Du J, Guo Q, Xiao L, Xue H, Tian D, An C, Wu Y. Hydrogen sulfide attenuates sepsis-induced cardiac dysfunction in infant rats by inhibiting the expression of cold-inducible RNA-binding protein. Biosci Rep 2025; 45:BSR20241398. [PMID: 39907066 DOI: 10.1042/bsr20241398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025] Open
Abstract
Sepsis-induced cardiac dysfunction is one of the most common complications of sepsis. It is also a major cause of death in pediatric intensive care units. The underlying mechanism of sepsis-induced cardiac dysfunction remains elusive. Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that is up-regulated during sepsis. Hydrogen sulfide (H2S) has been shown to play a protective role in sepsis-induced cardiac dysfunction in adult animals. The present study aimed to determine whether H2S ameliorates the cardiac function in infant rats by inhibiting CIRP-mediated sepsis-induced cardiac dysfunction. Rat pups aged 17-18 days were subjected to cecal ligation and puncture (CLP) to induce sepsis. Six hours after CLP, hemodynamic results demonstrated that there was a significant decrease in +dP/dtmax, -dP/dtmax, left ventricular ejection fraction, and left ventricular shortening fraction, indicating cardiac dysfunction. The plasma levels of myocardial injury markers such as creatine kinase-myocardial band and cardiac troponin I were significantly increased at 6 h after CLP. The inhibition of CIRP with C23 improved the cardiac function of the rats with CLP-induced sepsis, accompanied by a significant decrease in endoplasmic reticulum stress (ERS) activation. Moreover, treatment with sodium 4-phenylbutyrate (an inhibitor of ERS) ameliorated myocardial injury and dysfunction, accompanied by a significant decrease in ERS activation. Sodium hydrosulfide, a H2S donor, ameliorated CLP-induced cardiac dysfunction and decreased CIRP levels and ERS. In contrast, the inhibition of endogenous H2S production by propargylglycine (a cystathionine-γ-lyase inhibitor) aggravated CLP-induced cardiac dysfunction and increased CIRP levels. In conclusion, the present study demonstrated that H2S exerted cardioprotective effects by inhibiting the CIRP/ERS pathway in infant rats with sepsis. These findings might indicate a novel target in the treatment of sepsis in infants.
Collapse
Affiliation(s)
- Desi Li
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Department of Medical, Hebei Medical University Third Hospital, Hebei 050051, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Ping Wang
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Kaichuan He
- Clinical Medicine Research Center, Hebei General Hospital, Hebei 050051, China
| | - Lijing Cao
- Department of Pediatric Intensive Care Unit, Hebei Children's Hospital, Hebei 050031, China
| | - Jiexian Du
- Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei 050000, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050031, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei 050017, China
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei 050017, China
| |
Collapse
|
2
|
Chen R, Zheng Y, Zhou C, Dai H, Wang Y, Chu Y, Luo J. N-Acetylcysteine Attenuates Sepsis-Induced Muscle Atrophy by Downregulating Endoplasmic Reticulum Stress. Biomedicines 2024; 12:902. [PMID: 38672256 PMCID: PMC11048408 DOI: 10.3390/biomedicines12040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.
Collapse
Affiliation(s)
- Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Young K, Yamane S, GharehTapeh EA, Kasamatsu S, Ihara H, Hasegawa U. Manganese Porphyrin-Containing Polymeric Micelles: A Novel Approach for Intracellular Catalytic Formation of Per/Polysulfide Species from a Hydrogen Sulfide Donor. Adv Healthc Mater 2024; 13:e2302429. [PMID: 37916994 PMCID: PMC11468854 DOI: 10.1002/adhm.202302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Per/polysulfide species that are generated from endogenously produced hydrogen sulfide have critical regulatory roles in a wide range of cellular processes. However, the lack of delivery systems that enable controlled and sustained release of these unstable species in biological systems hinders the advancement of sulfide biology research, as well as the translation of knowledge to therapeutic applications. Here, a novel approach is developed to generate per/polysulfide species in cells by combining an H2 S donor and manganese porphyrin-containing polymeric micelles (MnPMCs) that catalyze oxidization of H2 S to per/polysulfide species. MnPMCs serve as a catalyst for H2 S oxidation in aerobic phosphate buffer. HPLC-MS/MS analysis reveals that H2 S oxidation by MnPMCs in the presence of glutathione results in the formation of glutathione-SnH (n = 2 and 3). Furthermore, co-treatment of human umbilical vein endothelial cells with the H2 S donor anethole dithiolethione and MnPMCs increases intracellular per/polysulfide levels and induces a proangiogenic response. Co-delivery of MnPMCs and an H2 S donor is a promising approach for controlled delivery of polysulfides for therapeutic applications.
Collapse
Affiliation(s)
- Kemper Young
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| | - Setsuko Yamane
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
- Department of Chemistry & BiochemistryNational Institute of Technology, Numazu College3600 OokaNumazuShizuoka410‐8501Japan
| | - Elmira Abbasi GharehTapeh
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| | - Shingo Kasamatsu
- Department of Biological ChemistryOsaka Metropolitan University1‐1 Gakuen‐choSakaiOsaka599‐8531Japan
| | - Hideshi Ihara
- Department of Biological ChemistryOsaka Metropolitan University1‐1 Gakuen‐choSakaiOsaka599‐8531Japan
| | - Urara Hasegawa
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| |
Collapse
|
4
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Panthalattu Parambil A, Shamjith S, Kurian J, Kesavan A, Sen AK, Thangaraj PR, Maiti KK, Manheri MK. A dual mode 'turn-on' fluorescence-Raman (SERS) response probe based on a 1 H-pyrrol-3(2 H)-one scaffold for monitoring H 2S levels in biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2853-2860. [PMID: 37260380 DOI: 10.1039/d3ay00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Discovery of the biological signaling roles of H2S has spurred great interest in developing reliable methods for its accurate detection and quantification. As considerable variation in its levels is seen during pathological conditions such as sepsis, real-time quantification methods have relevance in diagnosis as well. Of various approaches, reaction-based probes which respond through 'off-on' fluorescence emission remain the most studied. Since the intensity of emission is related to the analyte concentration in these measurements, the presence of built-in features which provide an opportunity for internal referencing will be advantageous. In view of this, a dual mode response system that senses H2S through characteristic fluorescence and Raman (SERS) signals based on a 1H-pyrrol-3(2H)-one scaffold was developed and is the main highlight of this report. This probe offers several advantages such as fast response (<1 min), and high selectivity and sensitivity with a detection limit of ∼7 nM. Imaging of H2S in HepG2 cells, making use of the SERS signal from the thiolysis product is also demonstrated.
Collapse
Affiliation(s)
| | - Shanmughan Shamjith
- CSIR-National Institute for Interdisciplinary Science and Technology, CSTD, Organic Chemistry Section, Industrial Estate P.O., Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jais Kurian
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Akila Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Ashis K Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Paul R Thangaraj
- Department of Cardiothoracic and Transplant Surgery, Apollo Hospitals, Chennai, India
- Adjunct Faculty, Department of Mechanical Engineering, IIT-Madras, Chennai, 600036, India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science and Technology, CSTD, Organic Chemistry Section, Industrial Estate P.O., Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraleedharan K Manheri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
6
|
Almog T, Keshet R, Kandel-Kfir M, Shaish A, Apte RN, Harats D, Kamari Y. Gene deletion of Interleukin-1α reduces ER stress-induced CHOP expression in macrophages and attenuates the progression of atherosclerosis in apoE-deficient mice. Cytokine 2023; 167:156212. [PMID: 37146542 DOI: 10.1016/j.cyto.2023.156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
The pathophysiology of atherosclerosis initiation and progression involves many inflammatory cytokines, one of them is interleukin (IL)-1α that has been shown to be secreted by activated macrophages. We have previously shown that IL-1α from bone marrow-derived cells is critical for early atherosclerosis development in mice. It is known that endoplasmic reticulum (ER) stress in macrophages is involved in progression to more advanced atherosclerosis, but it is still unknown whether this effect is mediated through cytokine activation or secretion. We previously demonstrated that IL-1α is required in ER stress-induced activation of inflammatory cytokines in hepatocytes and in the associated induction of steatohepatitis. In the current study, we aimed to examine the potential role of IL-1α in ER stress-induced activation of macrophages, which is relevant to progression of atherosclerosis. First, we demonstrated that IL-1α is required for atherosclerosis development and progression in the apoE knockout (KO) mouse model of atherosclerosis. Next, we showed that ER stress in mouse macrophages results in the protein production and secretion of IL-1α in a dose-dependent manner, and that IL-1α is required in ER stress-induced production of the C/EBP homologous protein (CHOP), a critical step in ER stress-mediated apoptosis. We further demonstrated that IL-1α-dependent CHOP production in macrophages is specifically mediated through the PERK-ATF4 signaling pathway. Altogether, these findings highlight IL-1α as a potential target for prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Tal Almog
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rom Keshet
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Kandel-Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Achva Academic College, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
7
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
8
|
Di W, Jin Z, Lei W, Liu Q, Yang W, Zhang S, Lu C, Xu X, Yang Y, Zhao H. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cell Mol Biol Lett 2023; 28:35. [PMID: 37101253 PMCID: PMC10134561 DOI: 10.1186/s11658-022-00415-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/23/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Heart failure is a common complication of sepsis with a high mortality rate. It has been reported that melatonin can attenuate septic injury due to various properties. On the basis of previous reports, this study will further explore the effects and mechanisms of melatonin pretreatment, posttreatment, and combination with antibiotics in the treatment of sepsis and septic myocardial injury. METHODS AND RESULTS Our results showed that melatonin pretreatment showed an obvious protective effect on sepsis and septic myocardial injury, which was related to the attenuation of inflammation and oxidative stress, the improvement of mitochondrial function, the regulation of endoplasmic reticulum stress (ERS), and the activation of the AMPK signaling pathway. In particular, AMPK serves as a key effector for melatonin-initiated myocardial benefits. In addition, melatonin posttreatment also had a certain degree of protection, while its effect was not as remarkable as that of pretreatment. The combination of melatonin and classical antibiotics had a slight but limited effect. RNA-seq detection clarified the cardioprotective mechanism of melatonin. CONCLUSION Altogether, this study provides a theoretical basis for the application strategy and combination of melatonin in septic myocardial injury.
Collapse
Affiliation(s)
- Wencheng Di
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 29 Bulan Road, Shenzhen, Guangdong Province, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaoling Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China.
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China.
| |
Collapse
|
9
|
Zhao X, Zhang DQ, Song R, Wang R, Zhang G. The clinical significance of circulating glucose-regulated protein 78, Caspase-3, and C/EBP homologous protein levels in patients with heart failure. Heliyon 2023; 9:e13436. [PMID: 36820047 PMCID: PMC9937949 DOI: 10.1016/j.heliyon.2023.e13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims The destruction of endoplasmic reticulum (ER) homeostasis leads to heart failure (HF), which further aggravates ER stress. Limited data are available on the levels of ER stress markers in HF patients in clinical practice. This study aimed to determine the clinical significance of the ER stress markers, glucose-regulated protein 78 (GRP78), Caspase-3, and C/EBP homologous protein (CHOP), in predicting HF and its severity. Materials and methods A total of 62 patients with HF and 44 healthy controls were enrolled in the study, and all participants were followed-up for 2 years. Results Serum GRP78, Caspase-3, and CHOP levels were significantly higher in patients with HF than those in healthy controls. The level of GRP78 increased with the severity of HF. GRP78 levels were negatively correlated with left ventricular ejection fraction, and positively correlated with N-terminal B-type natriuretic peptide, D-dimer, and lactic acid. Serum GRP78 and Caspase-3 levels showed moderate predictive values for HF patients. Conclusion ER stress markers, GRP78 and Caspase-3, had a certain predictive value in HF and can be used as serum biomarkers for the diagnosis of HF. Additionally, GRP78 showed a certain predictive value in HF severity.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Da-Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Corresponding author. Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Longhua Road, Haikou City 570102, Hainan Province, China.
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
- Corresponding author. Department of Emergency Medicine, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
10
|
Zhou S, Rao Z, Xia Y, Wang Q, Liu Z, Wang P, Cheng F, Zhou H. CCAAT/Enhancer-binding Protein Homologous Protein Promotes ROS-mediated Liver Ischemia and Reperfusion Injury by Inhibiting Mitophagy in Hepatocytes. Transplantation 2023; 107:129-139. [PMID: 35821597 PMCID: PMC9746334 DOI: 10.1097/tp.0000000000004244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver ischemia and reperfusion (IR) injury represent a major risk factor in both partial hepatectomy and liver transplantation. CCAAT/enhancer-binding protein homologous protein (CHOP) is a key regulator of cell death, its precise molecular basis in regulating hepatocyte death during liver IR has not been delineated. METHODS Hepatocellular CHOP deficient mice were generated by bone marrow chimera models using global CHOP knockout mice. Liver partial warm ischemia model and hypoxia/reoxygenation model of primary hepatocytes were applied. Liver injury and mitophagy-related signaling pathways were investigated. IR-stressed patient liver tissues and serum samples were analyzed as well. RESULTS Mice with hepatocellular CHOP deficiency exhibited alleviated cell death, decreased reactive oxygen species (ROS) expression, and enhanced mitophagy in hepatocytes after IR, confirmed by in vitro studies of hepatocytes after hypoxia/reoxygenation. Mitochondria ROS scavenge by Mito TEMPO effectively attenuated hepatocyte death and liver IR injury of wild-type mice, whereas no significant effects were observed in hepatocellular CHOP -deficient mice. CHOP depletion upregulated dynamin-related protein 1 and Beclin-1 activation in the mitochondria of hepatocytes leading to enhanced mitophagy. Following IR, increased CHOP expression and impaired mitophagy activation were observed in the livers of patients undergoing hepatectomy. N-acetyl cysteine pretreatment significantly improved the liver function of patients after surgery. CONCLUSIONS IR-induced CHOP activation exacerbates ROS-mediated hepatocyte death by inhibiting dynamin-related protein 1-Beclin-1-dependent mitophagy.
Collapse
Affiliation(s)
- Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- School of Medical, Southeast University, Nanjing, China
| | - Zheng Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
11
|
Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun 2022; 635:194-202. [PMID: 36279681 DOI: 10.1016/j.bbrc.2022.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) by causing histopathological changes is considered one of the most important causes of liver failure and dysfunction after surgery which affect graft outcomes. Stem cells are new promising approaches to treating different diseases. One of the critical strategies to improve their function is the preconditioning of their culture medium. This study compared the effect of NaHS-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice. METHODS Human umbilical cord-derived MSC (MSC) cultured in a 75 cm3 flask and when confluency reached about 80%, the culture medium replaced with a serum-free medium, and 48 h later supernatants collected, concentrated, and then MSC-Exo extracted. To obtain H2S-Exo, MSC was treated with NaHS (1 μmol),the supernatant collected after 48 h, concentrated and exosomes extracted. Twenty-four male mice were randomly divided into four groups (n = 6) including: 1-ischemia, 2-sham-operated, 3- MSC-Exo, and 4- H2S-Exo. To induce ischemia, the hepatic artery and portal vein clamped using an atraumatic clip for 60 min followed by 3 h of reperfusion. Just upon ending the time of ischemia (removal of clamp artery), animals in MSC-Exo, and H2S-Exo groups received 100 μg exosomes in 100 μl PBS via tail vein. At the end of reperfusion, blood, and liver samples were collected for further serological, molecular, and histological analyses. RESULTS Administration of both MSC-Exo and H2S-Exo improved liver function by reducing inflammatory cytokines, cellular apoptosis, liver levels of total oxidant status, and liver aminotransferases. The results showed that protecting effect of MSC exosomes enhanced following NaHS preconditioning of cell culture medium. CONCLUSION MSC-Exo and H2S-Exo had hepato-protective effects against injuries induced by ischemia-reperfusion in mice. NaHS preconditioning of mesenchymal stem cells could enhance the therapeutic effects of MSC-derived exosomes.
Collapse
Affiliation(s)
- Maryam J Sameri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Feryal Savari
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Khojasteh Hoseinynejad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
13
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Wang S, Ding Y, Jiang W. CSE/H2S ameliorates colitis in mice via protection of enteric glial cells and inhibition of the RhoA/ROCK pathway. Front Immunol 2022; 13:966881. [PMID: 36189321 PMCID: PMC9520914 DOI: 10.3389/fimmu.2022.966881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteric glial cells (EGCs) participate in the homeostasis of the gastrointestinal tract, and RhoA/ROCK signaling pathway plays a vital role in colonic tight junctions. Hydrogen sulfide (H2S) has been reported to alleviate colitis. However, the effect and mechanism of endogenous H2S on colitis remain unclear. This study established a Cystathionine-γ-lyase (CSE) knockout mouse model, a significant source of H2S production in the gut. The role of CSE-produced H2S on EGCs and the RhoA/ROCK signaling pathway was investigated in experimental colitis using CSE knockout (KO) and wild-type (WT) mice. CSE gene knockout animals presented with disease progression, more deteriorated clinical scores, colon shortening, and histological damage. EGCs dysfunction, characterized by decreased expression of the glial fibrillary acidic protein (GFAP), C3, and S100A10, was observed in the colon of WT and KO mice, especially in KO mice. RhoA/ROCK pathway was significantly upregulated in colon of colitis mice, which was more evident in KO mice. Pretreatment with NaHS, an exogenous H2S donor, significantly ameliorated mucosal injury and inhibited the expression of proinflammatory factors. Furthermore, we found that NaHS promoted the transformation of EGCs from “A1” to “A2” type, with decreased expression of C3 and increased expression of S100A10. These findings suggest that CSE/H2S protects mice from colon inflammation, which may be associated with preserving EGCs function by promoting EGCs transformation and inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Wenjun Jiang,
| |
Collapse
|
15
|
Yousof T, Sharma H, Austin RC, Fox-Robichaud AE. Stressing the endoplasmic reticulum response as a diagnostic tool for sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:812. [PMID: 36034993 PMCID: PMC9403921 DOI: 10.21037/atm-22-3120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tamana Yousof
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Hitesh Sharma
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Division of Critical Care, Department of Medicine, Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Wang F, Ma J, Wang J, Chen M, Xia H, Yao S, Zhang D. SIRT1 ameliorated septic associated-lung injury and macrophages apoptosis via inhibiting endoplasmic reticulum stress. Cell Signal 2022; 97:110398. [PMID: 35811055 DOI: 10.1016/j.cellsig.2022.110398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The inappropriate apoptosis of macrophages plays an important role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. As an endogenous apoptosis pathway, endoplasmic reticulum (ER) stress plays an important role in cell damage in patients with sepsis. Clarifying the ER stress response and its effect on macrophages during the development of sepsis is helpful to explore new strategies for the prevention and treatment of ALI in sepsis. METHODS The mouse model and the RAW264.7 inflammation model were stimulated with LPS to establish in vivo and in vitro. We explored the effects of different expression levels of silent information regulator factor 2-related enzyme 1 (SIRT1) on the ER stress response and apoptosis of macrophages in the sepsis-related injury model. RESULTS Our studies found that the increased expression of SIRT1 can significantly improve sepsis-related lung injury and relieve lung inflammation. SRT1720, a SIRT1 activator, can significantly inhibit the ER stress response of lung tissue and macrophages, inhibit the expression of pro-apoptotic proteins, promote the expression of anti-apoptotic proteins, and reduce macrophages of apoptosis. While the EX527, an inhibitor of SIRT1, had the opposite effect. CONCLUSION SIRT1 can significantly improve sepsis-associated lung injury and LPS-induced macrophage apoptosis. This protective effect is closely related to its inhibition of the ER stress response via the PERK/eIF2-α/ATF4/CHOP pathway.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiamin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingxu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dingyu Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Jinyintan Hospital, Wuhan 430023, China.
| |
Collapse
|
17
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
18
|
Metzing UB, von Loeffelholz C, Steidl R, Romeike B, Winkler R, Rauchfuß F, Settmacher U, Stoppe C, Coldewey SM, Weinmann C, Weickert MO, Claus RA, Birkenfeld AL, Kosan C, Horn P. Endoplasmic reticulum stress and the unfolded protein response in skeletal muscle of subjects suffering from peritoneal sepsis. Sci Rep 2022; 12:504. [PMID: 35017615 PMCID: PMC8752775 DOI: 10.1038/s41598-021-04517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.
Collapse
Affiliation(s)
- Uta Barbara Metzing
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| | - Ricardo Steidl
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
- Department of Anaesthesiology, Intensive Care, Pain Medicine and Emergency Medicine, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Bernd Romeike
- Section of Neuropathology, Department of Pathology, Jena University Hospital, Jena, Germany
- Dean's Office, Medical Didactics, University Rostock Medical Center, Rostock, Germany
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Christian Stoppe
- Department of Anesthesiology and Intensive Care Medicine Wuerzburg, University Hospital, Wuerzburg, Germany
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, Medical Faculty RWTH Aachen, Aachen, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Claudia Weinmann
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Centre of Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas L Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, Jena, Germany
| | - Paul Horn
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
Li X, Zhou T, Zhu Z, Xu B. High concentration of serum FGF19 at ICU admission is associated with 28-day mortality in sepsis patients. Clin Chim Acta 2021; 523:513-518. [PMID: 34742678 DOI: 10.1016/j.cca.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sepsis remains associated with a high mortality rate despite recent advances in treatment. Traditional biomarkers are inadequate for stratification of patients by sepsis severity. We examined use of the baseline concentration of fibroblast growth factor 19 (FGF19) in predicting 28-day mortality from sepsis. METHODS A total of 220 consecutive adult patients with sepsis who were admitted to our intensive care unit (ICU) during 2020 were prospectively recruited. Patients were categorized as survivors or non-survivors according to status at 28 days. Baseline concentrations of FGF19 and other parameters were measured. Receiver operating characteristic (ROC) analysis was used to determine the sensitivity, specificity, predictive value, and optimal cutoff of FGF19 in prediction of survival. Prognostic factors were identified using Cox regression analysis. RESULTS The serum FGF19 concentration was much higher in non-survivors than in survivors (355.0 pg/ml [range: 37.2, 2315.6] vs. 127.3 pg/ml [5.7, 944.1]; P < 0.05]. ROC analysis indicated an FGF19 concentration of 180 pg/ml was the optimal cutoff value. Multivariable Cox regression analysis showed that FGF19 concentration and the change in sequential organ failure assessment (ΔSOFA) score at baseline were independently and significantly associated with 28-day mortality. ROC analysis indicated that FGF19 had a better predictive value than PCT or CRP. Although ΔSOFA had a better predictive value than FGF19, ΔSOFA and FGF19 together had a significantly better predictive value than ΔSOFA alone. CONCLUSION Sepsis patients with high serum concentrations of FGF19 at ICU admission were associated with an increased risk of 28-day mortality in our ICU.
Collapse
Affiliation(s)
- Xing Li
- The First Clinical College of Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou 510515, Guangdong Province, China; Department of Anesthesiology, General Hospital of The Southern Theater Command of The Chinese PLA, No. 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong Province, China; Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha 410010, Hunan Province, China
| | - Tinghong Zhou
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha 410010, Hunan Province, China
| | - Zexiang Zhu
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha 410010, Hunan Province, China
| | - Bo Xu
- The First Clinical College of Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou 510515, Guangdong Province, China; Department of Anesthesiology, General Hospital of The Southern Theater Command of The Chinese PLA, No. 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
20
|
Moreno-Navarrete JM, Comas F, de Jager V, Fernández-Real JM, Bouma HR. Cecal Ligation and Puncture-Induced Sepsis Promotes Brown Adipose Tissue Inflammation Without Any Impact on Expression of Thermogenic-Related Genes. Front Physiol 2021; 12:692618. [PMID: 34322037 PMCID: PMC8313297 DOI: 10.3389/fphys.2021.692618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The negative effects of chronic low-level inflammation on adipose tissue physiology have been extensively demonstrated, whereas the effects of acute inflammation are less studied. Here, we aimed to investigate the effects of sepsis-induced acute inflammation on gene expression markers of brown and white adipose tissue functionality. Methods: Brown adipose tissue (BAT) and perirenal white adipose tissue (prWAT) gene expression markers were analyzed in cecal ligation and puncture (CLP)-induced sepsis mice model. Results: CLP-induced sepsis attenuated expression of adipogenesis-related genes, in parallel to increased Tnf, Il6, and Ltf gene expression in prWAT. In contrast, CLP-induced sepsis resulted in increased expression of pro-inflammatory genes (Il6, Ltf, and Lbp) in BAT, without affecting expression of genes encoding for thermogenic activity. Conclusion: Sepsis promotes both prWAT and BAT inflammation, associated with reduced adipogenesis-related gene expression in prWAT, without significant effects on BAT thermogenic genes.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain
| | - Vincent de Jager
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Abstract
Sulfur dioxide (SO2) was previously known as a harmful gas in air pollution. Recently, it was reported that SO2 can be endogenously generated in cardiovascular tissues. Many studies have revealed that endogenous SO2 has important physiological and pathophysiological significance and pharmacological potential. As a novel gasotransmitter, SO2 has important regulatory effects on the heart. It has a dose-dependent negative inotropic effect on cardiac function, in which L-type calcium channels are involved. SO2 can also attenuate myocardial injury caused by various harmful stimuli and play an important role in myocardial ischemia-reperfusion injury and myocardial hypertrophy. These effects are thought to be linked to its ability to reduce inflammation and as an antioxidant. In addition, SO2 regulates cardiomyocyte apoptosis and autophagy. Therefore, endogenous SO2 plays an important role in maintaining cardiovascular system homeostasis. In the present review, the literature concerning the metabolism of endogenous SO2, its cardiac toxicological effects and physiological regulatory effects, mechanisms for SO2-mediated myocardial protection and its pharmacological applications are summarized and discussed.
Collapse
|
22
|
Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation 2021; 43:1184-1200. [PMID: 32333359 DOI: 10.1007/s10753-020-01233-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.
Collapse
|
23
|
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021; 12:653601. [PMID: 34177611 PMCID: PMC8220204 DOI: 10.3389/fphys.2021.653601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims: We examined the change in endogenous hydrogen sulfide (H2S) production and its role in sepsis-induced myocardial dysfunction (SIMD). Results: Significant elevations in plasma cardiac troponin I (cTnI), creatine kinase (CK), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were noted in SIMD patients, whereas left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and plasma H2S were significantly decreased relative to those in the controls. Plasma H2S was linearly related to LVEF and LVFS. Subsequently, an SIMD model was developed in mice by injecting lipopolysaccharide (LPS), and NaHS, an H2S donor, was used to elucidate the pathophysiological role of H2S. The mice showed decreased ventricular function and increased levels of TNF-α, IL-1β, cTnI, and CK after LPS injections. Toll-like receptor (TLR) 4 protein and endoplasmic reticulum stress (ERS) proteins were over expressed in the SIMD mice. All of the parameters above showed more noticeable variations in cystathionine γ-lyase knockout mice relative to those in wild type mice. The administration of NaHS could improve ventricular function and attenuate inflammation and ERS in the heart. Conclusion: Overall, these findings indicated that endogenous H2S deficiency contributed to SIMD and exogenous H2S ameliorated sepsis-induced myocardial dysfunction by suppressing inflammation and ERS via inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Yu-Hong Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zhen-Jie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Yang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
24
|
Adams JA, Lopez JR, Uryash A, Sackner MA. Whole body periodic acceleration (pGz) improves endotoxin induced cardiomyocyte contractile dysfunction and attenuates the inflammatory response in mice. Heliyon 2021; 7:e06444. [PMID: 33748496 PMCID: PMC7970274 DOI: 10.1016/j.heliyon.2021.e06444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 11/01/2022] Open
Abstract
Sepsis-induces myocardial contractile dysfunction. We previously showed that whole body periodic acceleration (pGz), the sinusoidal motion of the supine body head-foot ward direction significantly improves survival and decreases microvascular permeability in a lethal model of sepsis. We tested the hypothesis that pGz improves LPS induced cardiomyocyte contractile dysfunction and decreases LPS pro-inflammatory cytokine response when applied pre- or post-treatment. Isolated cardiomyocytes were obtained from mice that received LPS who had been pre-treated with pGz for three days (pGz-LPS) or control. Peak shortening (PS), maximal velocity of shortening (+dL/dt), and relengthening (-dL/dt) as well as diastolic intracellular calcium concentration ([Ca+2]d), sodium ([Na+]d), reactive oxygen species (ROS), and cardiac troponin (cTnT) production were measured. LPS decreased PS, +dL/dt, and -dL/dt, by 37%, 41% and 35% change respectively (p < 0.01), increased [Ca+2]d, [Na+]d, ROS, and cTnT by 343%, 122%, 298%, and 610% change respectively (p < 0.01) compared to control. pGz pre-treatment attenuated the parameters mentioned above. In a separate cohort, the effects of a lethal dose of LPS on protein expression of nitric oxide synthases (iNOS, eNOS, nNOS), pro- and anti-inflammatory cytokines in hearts of mice was studied in pre-treated with pGz for three days prior to LPS (pGz-LPS) and post-treated with pGz 30 min after LPS (LPS-pGz) were determined. LPS increased expression of early and late iNOS and decreased expression of eNOS, phosphorylated eNOS (p-eNOS), and nNOS. Both pre- and post-treatment with pGz markedly reduced early and late pro-inflammatory surge. Therefore, pre- and post-treatment with pGz improves LPS-induced cardiomyocyte dysfunction, decreases iNOS expression, and increases cytoprotective eNOS and nNOS, with decreased pro-inflammatory response. Such results have potential for translation to benefit outcomes in human sepsis.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
25
|
Gui DD, Luo W, Yan BJ, Ren Z, Tang ZH, Liu LS, Zhang JF, Jiang ZS. Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 2021; 896:173916. [PMID: 33529724 DOI: 10.1016/j.ejphar.2021.173916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.
Collapse
Affiliation(s)
- Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Ji-Feng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
26
|
Zhang C, Chen X, Wang C, Ran Y, Sheng K. Inhibition of XBP1 Alleviates LPS-Induced Cardiomyocytes Injury by Upregulating XIAP through Suppressing the NF-κB Signaling Pathway. Inflammation 2021; 44:974-984. [PMID: 33453047 DOI: 10.1007/s10753-020-01392-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Cardiomyocytes injury caused by sepsis is a complication of common clinical critical illness and an important cause of high mortality in intensive care unit (ICU) patients. Therefore, lipopolysaccharide (LPS)-induced H9c2 cells were used to simulate the cardiomyocytes injury in vitro. The aim of this study was to investigate whether X-box binding protein 1 (XBP1) exacerbated LPS-induced cardiomyocytes injury by downregulating Xlinked inhibitor of apoptosis protein (XIAP) through activating the NF-κB signaling pathway. After transfection or LPS induction, XBP1 expression was detected by RT-qPCR analysis and Western blot analysis. The viability and apoptosis of H9c2 cells was detected by MTT assay and TUNEL assay. The protein expression related to apoptosis and NF-κB signaling pathway was detected by Western blot analysis. The inflammation and oxidative stress in H9c2 cells was evaluated by their commercial kits. Dual-luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to determine the combination of XBP1 and XIAP. As a result, LPS promoted the XBP1 expression in H9c2 cells. XBP1 was combined with XIAP. Inhibition of XBP1 increased viability, and inhibited apoptosis, inflammation, and oxidative stress of LPS-induced H9c2 cells by suppressing the NF-κB signaling pathway, which was partially reversed by the inhibition of XIAP. In conclusion, inhibition of XBP1 alleviates LPS-induced cardiomyocytes injury by upregulating XIAP through suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chunmei Zhang
- Intensive Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xi Chen
- Intensive Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Chao Wang
- Intensive Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Yu Ran
- Intensive Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Kai Sheng
- Cardio Surgery ICU, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
27
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
28
|
Jiang Y, Bian Y, Lian N, Wang Y, Xie K, Qin C, Yu Y. iTRAQ-Based Quantitative Proteomic Analysis of Intestines in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4885-4900. [PMID: 33209018 PMCID: PMC7670176 DOI: 10.2147/dddt.s271191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Objective Sepsis-associated intestinal injury has a higher morbidity and mortality in patients with sepsis, but there is still no effective treatment. Our research team has proven that inhaling 2% hydrogen gas (H2) can effectively improve sepsis and related organ damage, but the specific molecular mechanism of its role is not clear. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics analysis was used for studying the effect of H2 on intestinal injury in sepsis. Methods Male C57BL/6J mice were used to prepare a sepsis model by cecal ligation and puncture (CLP). The 7-day survival rates of mice were measured. 4-kd fluorescein isothiocyanate-conjugated Dextran (FITC-dextran) blood concentration measurement, combined with hematoxylin-eosinstain (HE) staining and Western blotting, was used to study the effect of H2 on sepsis-related intestinal damage. iTRAQ-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used for studying the proteomics associated with H2 for the treatment of intestinal injury. Results H2 can significantly improve the 7-day survival rates of sepsis mice. The load of blood and peritoneal lavage bacteria was increased, and H2 treatment can significantly reduce it. CLP mice had significant intestinal damage, and inhalation of 2% hydrogen could significantly reduce this damage. All 4194 proteins were quantified, of which 199 differentially expressed proteins were associated with the positive effect of H2 on sepsis. Functional enrichment analysis indicated that H2 may reduce intestinal injury in septic mice through the effects of thyroid hormone synthesis and nitrogen metabolism signaling pathway. Western blot showed that H2 was reduced by down-regulating the expressions of deleted in malignant brain tumors 1 protein (DMBT1), insulin receptor substrate 2 (IRS2), N-myc downregulated gene 1 (NDRG1) and serum amyloid A-1 protein (SAA1) intestinal damage in sepsis mice. Conclusion A total of 199 differential proteins were related with H2 in the intestinal protection of sepsis. H2-related differential proteins were notably enriched in the following signaling pathways, including thyroid hormone synthesis signaling pathway, nitrogen metabolism signaling pathways, digestion and absorption signaling pathways (vitamins, proteins and fats). H2 reduced intestinal injury in septic mice by down-regulating the expressions of SAA1, NDRG1, DMBT1 and IRS2.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| |
Collapse
|
29
|
MicroRNA-150 affects endoplasmic reticulum stress via MALAT1-miR-150 axis-mediated NF-κB pathway in LPS-challenged HUVECs and septic mice. Life Sci 2020; 265:118744. [PMID: 33181172 DOI: 10.1016/j.lfs.2020.118744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
AIMS Sepsis is a systemic inflammatory complication, which is the common cause of death in critical patients. This study aimed to evaluate the potential regulatory mechanisms of miR-150 in lipopolysaccharide (LPS)-challenged HUVECs and cecal ligation and puncture (CLP)-induced septic mice. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were challenged with LPS. Pulmonary arterial endothelial cells (PAECs) were isolated from CLP-induced septic mice. The mRNA and protein levels of target molecules were detected by RT-qPCR and Western blotting. Apoptosis of HUVECs was determined by Annexin V/PI staining on a flow cytometry. The interaction between miR-150 and MALAT1 was assessed by luciferase reporter assay, RIP and RNA pull-down assay. KEY FINDINGS MiR-150 was downregulated in LPS-induced HUVECs. MiR-150 mimics restrained LPS-induced inflammatory response by reducing TNF-α and IL-6 levels, but increasing IL-10 level. Moreover, miR-150 mimics downregulated endoplasmic reticulum (ER) stress-related proteins, GRP78 and CHOP levels in LPS-exposed HUVECs. Additionally, LPS-induced apoptosis was suppressed by miR-150 mimics via decreasing cleaved caspase-3 and Bax levels, while enhancing Bcl-2 level. Mechanistically, MALAT1 could competitively bind to miR-150. LPS-induced apoptosis, ER stress and inflammation were promoted by MALAT1 overexpression, but reversed by siMALAT1. Furthermore, miR-150 inhibitor strengthened LPS-induced apoptosis, ER stress and inflammation, which could be attenuated by siMALAT1 via regulating NF-κB pathway. Finally, agomiR-150 repressed ER stress and inflammatory response in PAECs isolated from septic mice via decreasing MALAT1 level. SIGNIFICANCE Our findings suggest that miR-150 affects sepsis-induced endothelial injury by regulating ER stress and inflammation via MALAT1-mediated NF-κB pathway.
Collapse
|
30
|
Zhang Z, Wang Y, Shan Y, Zhou R, Yin W. Oroxylin A alleviates immunoparalysis of CLP mice by degrading CHOP through interacting with FBXO15. Sci Rep 2020; 10:19272. [PMID: 33159144 PMCID: PMC7648083 DOI: 10.1038/s41598-020-76285-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022] Open
Abstract
Clinical reports have found that with the improvement of treatment, most septic patients are able to survive the severe systemic inflammatory response and to enter the immunoparalysis stage. Considering that immunoparalysis leads to numerous deaths of clinical sepsis patients, alleviation of the occurrence and development of immunoparalysis has become a top priority in the treatment of sepsis. In our study, we investigate the effects of oroxylin A on sepsis in cecal ligation and puncture (CLP) mice. We find that the 60 h + 84 h (30 mg/kg) injection scheme of oroxylin A induce the production of pro-inflammatory factors, and further significantly improves the survival of CLP mice during the middle or late stages of sepsis. Mechanistically, C/EBP-homologous protein (CHOP) is upregulated and plays anti-inflammatory roles to facilitate the development of immunoparalysis in CLP mice. Oroxylin A induces the transcription of E3 ligase F-box only protein 15 gene (fbxo15), and activated FBXO15 protein binds to CHOP and further mediates the degradation of CHOP through the proteasome pathway, which eventually relieves the immunoparalysis of CLP mice. Taken together, these findings suggest oroxylin A relieves the immunoparalysis of CLP mice by degrading CHOP through interacting with FBXO15.
Collapse
Affiliation(s)
- Zhaoxin Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yun Wang
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yating Shan
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ri Zhou
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Ahmad A, Druzhyna N, Szabo C. Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury. J Burn Care Res 2020; 40:148-156. [PMID: 30649358 DOI: 10.1093/jbcr/irz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gaseous transmitter hydrogen sulfide (H2S) has been implicated in various forms of critical illness. Here, we have compared the outcome of scald burn injury in wild-type mice and in mice deficient in 3-mercaptopyruvate sulfurtransferase (3-MST), a mammalian H2S-generating enzyme. Outcome variables included indices of organ injury, clinical chemistry parameters, and plasma levels of inflammatory mediators. Plasma levels of H2S significantly increased in response to burn in wild-type mice, but remained unchanged in 3-MST-/- mice. The capacity of tissue homogenates to produce H2S from 3-mercaptopyruvate was unaffected by burn injury. In 3-MST-/- mice, compared to wild-type controls, there was a significant enhancement in the accumulation of polymorphonuclear cells (as assessed by the quantification of myeloperoxidase) in the liver (but not heart, lung, or skin) at 7 days postburn. Oxidative tissue damage (as assessed by malon dialdehyde content) was comparable between wild-type and 3-MST-deficient mice in all tissues studied. 3-MST-/- and wild-type mice exhibited comparable burn-induced elevations in circulating plasma levels of hepatic injury; however, 3-MST-/- mice exhibited a higher degree of renal injury (as reflected by elevated blood urea nitrogen levels) at 7 days postburn. Inflammatory mediators (eg, TNF-α, IL-1β, IL-2, IL-6, IL-10, and IL-12) increased in burn injury, but without significant differences between the 3-MST-/- and wild-type groups. The healing of the burn wound was also unaffected by 3-MST deficiency. In conclusion, the absence of the H2S-producing enzyme 3-MST slightly exacerbates the development of multiorgan dysfunction but does not affect inflammatory mediator production or wound healing in a murine model of burn injury.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston.,Shriners Hospital for Children, Galveston, Texas.,Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| |
Collapse
|
33
|
Hydrogen alleviated organ injury and dysfunction in sepsis: The role of cross-talk between autophagy and endoplasmic reticulum stress: Experimental research. Int Immunopharmacol 2020; 78:106049. [PMID: 31830624 DOI: 10.1016/j.intimp.2019.106049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/26/2023]
|
34
|
Kalluruttimmal R, Thekke Thattariyil D, Panthalattu Parambil A, Sen AK, Chakkumkumarath L, Manheri MK. Electronically-tuned triarylmethine scaffolds for fast and continuous monitoring of H 2S levels in biological samples. Analyst 2019; 144:4210-4218. [PMID: 31188362 DOI: 10.1039/c9an00522f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A sensor for the detection and quantification of H2S in biological samples should ideally meet a set of criteria such as fast detection, high sensitivity in the desired concentration range, high selectivity, non-interference from biomolecules like proteins, ease of synthesis, long-term stability and water solubility. Although a number of H2S probes are known, none of them possess all the above attributes that are relevant for practical applications. As part of a program to develop reliable chemical probes for continuous monitoring of this gasotransmitter in the blood plasma of sepsis-prone individuals in post-operative wards, we have looked at the possibility of improving the reactivity and selectivity profile of triarylmethine dyes towards different nucleophiles. After achieving high sensitivity through electronic control, the interference from sulfite, thiosulfate and metabisulfite was addressed by introducing a metal salt-mediated desulfuration step that results in dye regeneration selectively from its H2S adduct. Typically, if the analyte contains only H2S, the loss of absorbance in the first step gets completely reinstated after the second step; absorbance changes in both steps vary linearly with sulfide concentration and either of these two steps can be used for the quantification of H2S with the help of standard plots. In the presence of interfering ions, the first step will show decolourization due to the presence of all of them whereas only the H2S-adduct will undergo desulfuration in the second step which can be used for quantification. The decolourization step is instantaneous while the desulfuration requires only about 50 s, making the entire protocol complete in less than a minute. The methodology optimized here also meets the requirements mentioned above for real-life applications.
Collapse
Affiliation(s)
- Ramshad Kalluruttimmal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
35
|
Chen Y, Zhang L, Gong X, Gong H, Cheng R, Qiu F, Zhong X, Huang Z. Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia‑reperfusion injury via inhibiting endoplasmic reticulum stress‑mediated neuronal apoptosis in rats. Mol Med Rep 2019; 21:131-140. [PMID: 31746404 PMCID: PMC6896402 DOI: 10.3892/mmr.2019.10833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Iridoid glycosides of Radix Scrophulariae (IGRS) are a group of the major bioactive components from Radix Scrophulariae with extensive pharmacological activities. The present study investigated the effects of IGRS on cerebral ischemia‑reperfusion injury (CIRI) and explored its potential mechanisms of action. A CIRI model in rats was established by occlusion of the right middle cerebral artery for 90 min, followed by 24 h of reperfusion. Prior to surgery, 30, 60 or 120 mg/kg IGRS was administered to the rats once a day for 7 days. Then, the neurological scores, brain edema and volume of the cerebral infarction were measured. The apoptosis index was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling. The effects of IGRS on the histopathology of the cortex in brain tissues and the endoplasmic reticulum ultrastructure in the hippocampus were analyzed. Finally, the expression of endoplasmic reticulum stress (ERS)‑regulating mediators, endoplasmic reticulum chaperone BiP (GRP78), DNA damage‑inducible transcript 3 protein (CHOP) and caspase‑12, were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The volume of cerebral infarction and brain water content in the IGRS‑treated groups treated at doses of 60 and 120 mg/kg were decreased significantly compared with the Model group. The neurological scores were also significantly decreased in the IGRS‑treated groups. IGRS treatment effectively decreased neuronal apoptosis resulting from CIRI‑induced neuron injury. In addition, the histopathological damage and the endoplasmic reticulum ultrastructure injury were partially improved in CIRI rats following IGRS treatment. RT‑qPCR and western blot analysis data indicated that IGRS significantly decreased the expression levels of GRP78, CHOP and caspase‑12 at both mRNA and protein levels. The results of the present study demonstrated that IGRS exerted a protective effect against CIRI in brain tissue via the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Yanyue Chen
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xueyuan Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Hengpei Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Rubin Cheng
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Fengmei Qiu
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xiaoming Zhong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Zhen Huang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
36
|
Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. mBio 2019; 10:mBio.02174-19. [PMID: 31662455 PMCID: PMC6819659 DOI: 10.1128/mbio.02174-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages. The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.
Collapse
|
37
|
Zhang J, Shi C, Wang H, Gao C, Chang P, Chen X, Shan H, Zhang M, Tao L. Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signaling. Int J Biochem Cell Biol 2019; 117:105636. [PMID: 31654751 DOI: 10.1016/j.biocel.2019.105636] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide as the third endogenous gaseous mediator had protective effects against traumatic brain injury-induced neuronal damage in mice. However, the exact pathophysiological mechanism underlying traumatic brain injury is complicated and the protective role of H2S is not yet fully known. Therefore, we combined the mechanical injury (scratch) with secondary injury including metabolic impairment (no glucose) together to investigate the underlying cellular mechanism of hydrogen sulfide in vitro models of traumatic brain injury. In the present study, we found that H2S could prevent the scratch-induced decrease in the expression of cystathionine-β-synthetase, a key enzyme involved in the source of hydrogen sulfide, and endogenous hydrogen sulfide generation in PC12 cells. We also found that hydrogen sulfide could prevent scratch-induced cellular injury, alteration of mitochondrial membrane potential, intracellular accumulation of reactive oxygen species and cell death (autophagic cell death and apoptosis) in PC12 cells. It was also found that blocking PI3K/AKT pathway by LY294002, abolished the protection of H2S against scratch-induced cellular reactive oxygen species level and NRF2 accumulation and function in the nucleus. These results suggest that hydrogen sulfide protects against cell damage induced by scratch injury through modulation of the PI3K/Akt/Nrf2 pathway. This study raises the possibility that hydrogen sulfide may have therapeutic efficacy in traumatic brain injury.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Chaoqun Shi
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haochen Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Pan Chang
- Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, 710038, China
| | - Xiping Chen
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China.
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy, Soochow University, Suzhou, 215000, China.
| | - Luyang Tao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
38
|
Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxid Redox Signal 2019; 31:134-152. [PMID: 30403161 DOI: 10.1089/ars.2018.7537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.
Collapse
Affiliation(s)
- Vera A Reitsema
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bastiaan S Star
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent D de Jager
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- 2 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,3 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Su XJ, Huang L, Qu Y, Mu D. Progress in research on the role of Omi/HtrA2 in neurological diseases. Rev Neurosci 2019; 30:279-287. [PMID: 30205651 DOI: 10.1515/revneuro-2018-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Omi/HtrA2 is a serine protease present in the mitochondrial space. When stimulated by external signals, HtrA2 is released into the mitochondrial matrix where it regulates cell death through its interaction with apoptotic and autophagic signaling pathways. Omi/HtrA2 is closely related to the pathogenesis of neurological diseases, such as neurodegeneration and hypoxic ischemic brain damage. Here, we summarize the biological characteristics of Omi/HtrA2 and its role in neurological diseases, which will provide new hints in developing Omi/HtrA2 as a therapeutic target for neurological diseases.
Collapse
Affiliation(s)
- Xiao Juan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
40
|
Lou L, Hu D, Chen S, Wang S, Xu Y, Huang Y, Shi Y, Zhang H. Protective role of JNK inhibitor SP600125 in sepsis-induced acute lung injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:528-538. [PMID: 31933857 PMCID: PMC6945091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Whether the c-Jun N-terminal kinase (JNK) pathway mediates apoptosis in sepsis-induced acute lung injury is not known. Here we investigated the effect of JNK inhibition in a rat model of sepsis-induced lung injury, and assessed expression of JNK and endoplasmic reticulum stress-related proteins. METHODS Sepsis was established by cecal ligation and puncture (CLP) in 48 male Sprague-Dawley rats. 32 additional rats underwent sham surgery. 24 CLP rats and 24 sham rats received tail vein injection of 30 mg/kg SP600125. The rest received saline injection. At 6, 12 and 24 h after surgery, blood, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. p-JNK, XBP-1, ATF-4 and CHOP levels of the lung tissue were measured by western blot; and the JNK mRNA levels were measured by qPCR. RESULTS The W/D ratios of lungs in the CLP group were significantly higher than those in the sham group, but lower those in the CLP+JNK inhibitor group (P<0.05). TUNEL staining revealed significantly more apoptotic cells in the lungs of the CLP group than the sham group, and in the CLP+JNK inhibitor group the apoptotic index was significantly reduced (P<0.05). XBP-1, ATF-4, CHOP and p-JNK protein levels and JNK mRNA levels were significantly elevated in the CLP group (P<0.05), but significantly ameliorated in the CLP+JNK inhibitor group (P<0.05). CONCLUSIONS Inhibition of the JNK signaling pathway mitigates sepsis-induced lung injury. Our results suggest that JNK signaling promotes endoplasmic reticulum stress and thus apoptosis in sepsis-induced lung injury.
Collapse
Affiliation(s)
- Liming Lou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Dandan Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Suzhen Chen
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Shiqiang Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Yikai Xu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Yuenuo Huang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Yali Shi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Wei Y, Meng M, Tian Z, Xie F, Yin Q, Dai C, Wang J, Zhang Q, Liu Y, Liu C, Yan F, Jiang F, Guo X. Pharmacological preconditioning with the cellular stress inducer thapsigargin protects against experimental sepsis. Pharmacol Res 2018; 141:114-122. [PMID: 30579975 DOI: 10.1016/j.phrs.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Previous studies have shown that pretreatment with thapsigargin (TG), a cellular stress inducer, produced potent protective actions against various pathologic injuries. So far there is no information on the effects of TG on the development of bacterial sepsis. Using lipopolysaccharides- and cecal ligation/puncture-induced sepsis models in mice, we demonstrated that preconditioning with a single bolus administration of TG conferred significant improvements in survival. The beneficial effects of TG were not mediated by ER stress induction or changes in Toll-like receptor 4 signaling. In vivo and in cultured macrophages, we identified that TG reduced the protein production of pro-inflammatory cytokines, but exhibited no significant effects on steady state levels of their transcriptions. Direct measurement on the fraction of polysome-bound mRNAs revealed that TG reduced the translational efficiency of pro-inflammatory cytokines in macrophages. Moreover, we provided evidence suggesting that repression of the mTOR (the mammalian target of rapamycin) signaling pathway, but not activation of the PERK (protein kinase R-like endoplasmic reticulum kinase)-eIF2α (eukaryotic initiation factor 2α) pathway, might be involved in mediating the TG effects on cytokine production. In summary, our results support that pharmacological preconditioning with TG may represent a novel strategy to prevent sepsis-induced mortality and organ injuries.
Collapse
Affiliation(s)
- Yaping Wei
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated, Shandong University, Jinan, Shandong Province, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fubo Xie
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chang Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Feng Yan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
42
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
43
|
Figliuolo VR, Coutinho-Silva R, Coutinho CMLM. Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci 2018; 215:145-151. [PMID: 30414430 DOI: 10.1016/j.lfs.2018.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Alteration in microbial populations and metabolism are key events associated with disruption of intestinal homeostasis and immune tolerance during intestinal inflammation. A substantial imbalance in bacterial populations in the intestine and their relationships with the host have been observed in patients with inflammatory bowel disease (IBD), believed to be part of an intricate mechanism of triggering and progression of intestinal inflammation. Because elevated numbers of sulfate-reducing bacteria (SRB) have been found in the intestines of patients with IBD, the study of their interaction with intestinal cells and their potential involvement in IBD has been the focus of investigation to better understand the intestinal pathology during IBD, as well as to find new ways to treat the disease. SRB not only directly interact with intestinal epithelial cells during intestinal inflammation but may also promote intestinal damage through generation of hydrogen sulfide at high levels. Herein we review the literature to discuss the various aspects of SRB interaction with host intestinal tissue, focusing on their interaction with intestinal epithelial and immune cells during intestinal inflammation.
Collapse
Affiliation(s)
- Vanessa Ribeiro Figliuolo
- Instituto de Biofísica Carlos Chagas Filho - IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; LITEB, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho - IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Claudia Mara Lara Melo Coutinho
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil; LITEB, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
44
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
45
|
Increase in soluble protein oligomers triggers the innate immune system promoting inflammation and vascular dysfunction in the pathogenesis of sepsis. Clin Sci (Lond) 2018; 132:1433-1438. [PMID: 30021912 DOI: 10.1042/cs20180368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is a profoundly morbid and life-threatening condition, and an increasingly alarming burden on modern healthcare economies. Patients with septic shock exhibit persistent hypotension despite adequate volume resuscitation requiring pharmacological vasoconstrictors, but the molecular mechanisms of this phenomenon remain unclear. The accumulation of misfolded proteins is linked to numerous diseases, and it has been observed that soluble oligomeric protein intermediates are the primary cytotoxic species in these conditions. Oligomeric protein assemblies have been shown to bind and activate a variety of pattern recognition receptors (PRRs) including formyl peptide receptor (FPR). While inhibition of endoplasmic reticulum (ER) stress and stabilization of protein homeostasis have been promising lines of inquiry regarding sepsis therapy, little attention has been given to the potential effects that the accumulation of misfolded proteins may have in driving sepsis pathogenesis. Here we propose that in sepsis, there is an accumulation of toxic misfolded proteins in the form of soluble protein oligomers (SPOs) that contribute to the inflammation and vascular dysfunction observed in sepsis via the activation of one or more PRRs including FPR. Our laboratory has shown increased levels of SPOs in the heart and intrarenal arteries of septic mice. We have also observed that exposure of resistance arteries and vascular smooth muscle cells to SPOs is associated with increased mitogen-activated protein kinase (MAPK) signaling including phosphorylated extracellular signal-regulated kinase (p-ERK) and p-P38 MAPK pathways, and that this response is abolished with the knockout of FPR. This hypothesis has promising clinical implications as it proposes a novel mechanism that can be exploited as a therapeutic target in sepsis.
Collapse
|
46
|
Heme Oxygenase-1 Reduces Sepsis-Induced Endoplasmic Reticulum Stress and Acute Lung Injury. Mediators Inflamm 2018; 2018:9413876. [PMID: 30013453 PMCID: PMC6022325 DOI: 10.1155/2018/9413876] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis leads to severe acute lung injury/acute respiratory distress syndrome (ALI/ARDS) that is associated with enhanced endoplasmic reticulum (ER) stress. Heme oxygenase-1 (HO-1), an ER-anchored protein, exerts antioxidant and protective functions under ALI. However, the role of HO-1 activation in the development of endoplasmic reticulum (ER) stress during sepsis remains unknown. Methods Cecal ligation and puncture (CLP) model was created to induce septic ALI. Lung tissue ER stress was measured 18 hours after CLP. The effects of HO-1 on ER stress during septic ALI were investigated in vivo using HO-1 agonist hemin and antagonist ZnPP. Results Compared with the sham group, ER stress in septic lung increased significantly 18 hours after CLP, which was significantly reduced by pretreatment with the ER inhibitor 4-phenylbutyrate (4-PBA). The lung injury score and the lung wet to dry (W/D) ratio in lungs were significantly reduced in septic rats after ER stress inhibition. Similarly, lung ER stress-related genes' (PERK, eIF2-α, ATF4, and CHOP) levels were attenuated after ER stress inhibition. Furthermore, HO-1 activation by hemin reduced p-PERK, p-eIF2-α, ATF4, and CHOP protein expression and oxidative stress and lung cell apoptosis. Additionally, HO-1 antagonist could aggregate the ER stress-related ALI. Conclusions ER stress was activated during CLP-induced ALI, which may represent a mechanism by which CLP induces ALI. HO-1 activation could inhibit CLP-induced lung ER stress and attenuate CLP-induced ALI.
Collapse
|
47
|
Hydrogen Gas Protects Against Intestinal Injury in Wild Type But Not NRF2 Knockout Mice With Severe Sepsis by Regulating HO-1 and HMGB1 Release. Shock 2018; 48:364-370. [PMID: 28234792 DOI: 10.1097/shk.0000000000000856] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intestine plays an important role in the pathogenesis of sepsis. Hydrogen gas (H2), which has anti-oxidative, anti-inflammatory, and anti-apoptotic effects, can be effectively used to treat septic mice. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive master switch that regulates the expression of antioxidant and protective enzymes. This study investigated the effects of 2% H2 on intestinal injuries and the underlying mechanisms in a mouse model of severe sepsis. Male Nrf2 knockout mice (Nrf2-KO) and wild-type (WT) mice were randomized into four groups: sham, sham+H2, cecal ligation and puncture (CLP), and CLP+H2. The survival rate was observed and recorded within 7 days, and pro-inflammatory cytokines (TNF-α, IL-6, HMGB1), anti-inflammatory cytokine (IL-10), antioxidant enzymes (superoxide dismutase, and catalase ), and oxidative products (MDA, 8-iso-PGF2α) were detected in the serum and intestine using an enzyme-linked immunosorbent assay. In addition, the protein and mRNA levels of heme oxygenase-1 (HO-1) and high mobility group box 1 (HMGB1) were measured by Western blotting and quantitative PCR, respectively. Immunofluorescence and immunohistochemistry were used to measure HMGB1 and HO-1 release into the intestine, respectively. The results showed that therapy with 2% H2 increased the survival rate, alleviated the injuries caused by oxidative stress and inflammation, reduced HMGB1 levels but increased HO-1 levels in WT septic mice, but not in Nrf2-KO mice. These data demonstrate that 2% H2 inhalation may be a promising therapeutic strategy for intestinal injuries caused by severe sepsis through the regulation of HO-1 and HMGB1 release. In addition, Nrf2 plays a key role in the protective effects of H2 against intestinal damage in this disease.
Collapse
|
48
|
The Role of Thioredoxin-1 in Suppression Sepsis Through Inhibiting Mitochondrial-Induced Apoptosis in Spleen. Shock 2018; 47:753-758. [PMID: 28505020 DOI: 10.1097/shk.0000000000000789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sepsis is a serious public health issue and the leading cause of death in critically ill patients in intensive care units. Thioredoxin-1 (Trx-1) is a protein of regulating redox, as well as a modulator of inflammation and apoptosis. Our previous study reported that Trx-1 decreased endoplasmic reticulum-mediated inflammation involved in lung in a model of experimental sepsis. However, its effect on mitochondrial-mediated apoptosis in spleen has not been reported. We studied whether Trx-1 could prevent spleen cells apoptosis in sepsis. In the present study, we showed that the apoptosis in spleen was decreased in sepsis induced by cecal ligation and puncture (CLP) in Trx-1 overexpression transgenic (Tg) mice compared with wild-type mice. Colony forming units in the peritoneal cavity and the level of procalcitonin in plasma were significantly decreased in Trx-1 Tg mice 12 h after CLP. The expressions of c-jun-N-terminal kinase, Bax, caspase-9, and caspase-3 were increased in spleen, which were suppressed in Trx-1 Tg mice. However, the decreased Bcl-2 expression in sepsis was recovered in Trx-1 Tg mice. Our results suggest that overexpression of Trx-1 provides protection against sepsis through suppressing mitochondria-induced apoptosis pathway in spleen. This study may provide a new target for clinical intervention, as well potential strategies for treatment of sepsis.
Collapse
|
49
|
Ahmad A, Druzhyna N, Szabo C. Delayed Treatment with Sodium Hydrosulfide Improves Regional Blood Flow and Alleviates Cecal Ligation and Puncture (CLP)-Induced Septic Shock. Shock 2018; 46:183-93. [PMID: 26863032 DOI: 10.1097/shk.0000000000000589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cecal ligation and puncture (CLP)-induced sepsis is a serious medical condition, caused by a severe systemic infection resulting in a systemic inflammatory response. Recent studies have suggested the therapeutic potential of donors of hydrogen sulfide (H2S), a novel endogenous gasotransmitter and biological mediator in various diseases. The aim of the present study was to assess the effect of H2S supplementation in sepsis, with special reference to its effect on the modulation of regional blood flow. We infused sodium hydrosulfide (NaHS), a compound that produces H2S in aqueous solution (1, 3, or 10 mg/kg/h, for 1 h at each dose level) in control rats or rats 24 h after CLP, and measured blood flow using fluorescent microspheres. In normal control animals, NaHS induced a characteristic redistribution of blood flow, and reduced cardiac, hepatic, and renal blood flow in a dose-dependent fashion. In contrast, in rats subjected to CLP, cardiac, hepatic, and renal blood flow was significantly reduced; infusion of NaHS (1 mg/kg/h and 3 mg/kg/h) significantly increased organ blood flow. In other words, the effect of H2S on regional blood flow is dependent on the status of the animals (i.e., a decrease in blood flow in normal controls, but an increase in blood flow in CLP). We have also evaluated the effect of delayed treatment with NaHS on organ dysfunction and the inflammatory response by treating the animals with NaHS (3 mg/kg) intraperitoneally (i.p.) at 24 h after the start of the CLP procedure; plasma levels of various cytokines and tissue indicators of inflammatory cell infiltration and oxidative stress were measured 6 h later. After 24 h of CLP, glomerular function was significantly impaired, as evidenced by markedly increased (over 4-fold over baseline) blood urea nitrogen and creatinine levels; this increase was also significantly reduced by treatment with NaHS. NaHS also attenuated the CLP-induced increases in malondialdehyde levels (an index of oxidative stress) in heart as well as in liver and myeloperoxidase levels (an index of neutrophil infiltration) in heart and lung. Plasma levels of IL-1β, IL-5, IL-6, TNF-α, and HMGB1 were attenuated by NaHS. Treatment of NaHS at 3 mg/kg i.p. (but not 1 mg/kg or 6 mg/kg), starting 24 h post-CLP, with dosing repeated every 6 h, improved the survival rate in CLP animals. In summary, treatment with 3 mg/kg H2S-when started in a delayed manner, when CLP-induced organ injury, inflammation and blood flow redistribution have already ensued-improves blood flow to several organs, protects against multiple organ failure, and reduces the plasma levels of multiple pro-inflammatory mediators. These findings support the view that H2S donation may have therapeutic potential in sepsis.
Collapse
Affiliation(s)
- Akbar Ahmad
- *Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas †Shriners Hospital for Children, Galveston, Texas
| | | | | |
Collapse
|
50
|
Thioredoxin-1 Increases Survival in Sepsis by Inflammatory Response Through Suppressing Endoplasmic Reticulum Stress. Shock 2018; 46:67-74. [PMID: 27299588 DOI: 10.1097/shk.0000000000000570] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is the main cause of death in critically ill patients, pathogenesis of which is still unclear. The nuclear factor κB (NF-κB) inflammatory signal pathway mediated by endoplasmic reticulum stress is involved in sepsis. Thioredoxin-1 (Trx-1) is an important protein of regulating oxidative stress. It plays a crucial role in the anti-oxidation, anti-apoptosis, and anti-inflammation. However, the role and the mechanism of Trx-1 in sepsis have not been extensively studied. In the present study, we showed that the survival was longer in sepsis induced by cecal ligation and puncture in Trx-1 overexpression transgenic (Tg) mice compared with wild-type mice. Wet/dry lung weight ratio was decreased in Trx-1 Tg mice. The levels of TNF-α and IL-1β in plasma and lung tissue were inhibited in Tg mice. The expressions of glucose-regulated protein 78, inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2, C/EBP homologous protein, NF-κB, and inhibitors of NF-κBα were increased in lung tissue. More importantly, the overexpression of Trx-1 in transgenic mice suppressed NF-κB inflammatory signal pathway by inhibiting the activation of molecules involved in ER stress. Our results suggest that Trx-1 may play protective role in extending survival in sepsis by regulating inflammatory response through suppressing ER stress.
Collapse
|