1
|
Dorta S, Alexandre-Silva V, Popolin CP, de Sousa DB, Grigoli MM, Pelegrini LNDC, Manzine PR, Camins A, Marcello E, Endres K, Cominetti MR. ADAM10 isoforms: Optimizing usage of antibodies based on protein regulation, structural features, biological activity and clinical relevance to Alzheimer's disease. Ageing Res Rev 2024; 101:102464. [PMID: 39173916 DOI: 10.1016/j.arr.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
A Disintegrin and Metalloproteinase 10 (ADAM10) is a crucial transmembrane protein involved in diverse cellular processes, including cell adhesion, migration, and proteolysis. ADAM10's ability to cleave over 100 substrates underscores its significance in physiological and pathological contexts, particularly in Alzheimer's disease (AD). This review comprehensively examines ADAM10's multifaceted roles, highlighting its critical function in the non-amyloidogenic processing of the amyloid precursor protein (APP), which mitigates amyloid beta (Aβ) production, a critical factor in AD development. We summarize the regulation of ADAM10 at multiple levels: transcriptional, translational, and post-translational, revealing the complexity and responsiveness of its expression to various cellular signals. A standardized nomenclature for ADAM10 isoforms is proposed to improve clarity and consistency in research, facilitating better comparison and replication of findings across studies. We address the challenges in detecting ADAM10 isoforms using antibodies, advocating for standardized detection protocols to resolve discrepancies in results from different biological matrices. By highlighting these issues, this review underscores the potential of ADAM10 as a biomarker for early diagnosis and a therapeutic target in AD. By consolidating current knowledge on ADAM10's regulation and function, we aim to provide insights that will guide future research and therapeutic strategies in the AD context.
Collapse
Affiliation(s)
- Sabrina Dorta
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Tranter M, Stanford KI. Exosome Delivery to the Heart: What Can Brown Fat Do for You? Circ Res 2022; 131:148-150. [DOI: 10.1161/circresaha.122.321402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH (M.T.)
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH (K.I.S.)
| |
Collapse
|
3
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
4
|
Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10010133. [PMID: 35062793 PMCID: PMC8780385 DOI: 10.3390/vaccines10010133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Allergic diseases represent a global health and economic burden of increasing significance. The lack of disease-modifying therapies besides specific allergen immunotherapy (AIT) which is not available for all types of allergies, necessitates the study of novel therapeutic approaches. Exosomes are small endosome-derived vesicles delivering cargo between cells and thus allowing inter-cellular communication. Since immune cells make use of exosomes to boost, deviate, or suppress immune responses, exosomes are intriguing candidates for immunotherapy. Here, we review the role of exosomes in allergic sensitization and inflammation, and we discuss the mechanisms by which exosomes could potentially be used in immunotherapeutic approaches for the treatment of allergic diseases. We propose the following approaches: (a) Mast cell-derived exosomes expressing IgE receptor FcεRI could absorb IgE and down-regulate systemic IgE levels. (b) Tolerogenic exosomes could suppress allergic immune responses via induction of regulatory T cells. (c) Exosomes could promote TH1-like responses towards an allergen. (d) Exosomes could modulate IgE-facilitated antigen presentation.
Collapse
Affiliation(s)
- Paul Engeroff
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France;
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology, Immunology, and Allergology, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Schumertl T, Lokau J, Rose-John S, Garbers C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119143. [PMID: 34626681 DOI: 10.1016/j.bbamcr.2021.119143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is involved in numerous physiological and pathophysiological functions that include development, immune cell differentiation, inflammation and cancer. IL-6 can signal via the membrane-bound IL-6 receptor (IL-6R, classic signaling) or via soluble forms of the IL-6R (sIL-6R, trans-signaling). Both modes of signaling induce the formation of a homodimer of the signal transducing β-receptor glycoprotein 130 (gp130) and the activation of several intracellular signaling cascades, e.g. the Jak/STAT pathway. Intriguingly, only IL-6 trans-signaling is required for the pro-inflammatory properties of IL-6, while regenerative and anti-inflammatory functions are mediated via classic signaling. The sIL-6R is generated by different molecular mechanisms, including alternative mRNA splicing, proteolysis of the membrane-bound IL-6R and the release of extracellular vesicles. In this review, we give an in-depth overview on these molecular mechanisms with a special emphasize on IL-6R cleavage by the metalloprotease ADAM17 and other proteases. We discuss the biological functions of the sIL-6R and highlight attempts to selectively block IL-6 trans-signaling in pre-clinical animal models as well as in clinical studies in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
6
|
De Sousa KP, Potriquet J, Mulvenna J, Sotillo J, Groves PL, Loukas A, Apte SH, Doolan DL. Proteomic identification of the contents of small extracellular vesicles from in vivo Plasmodium yoelii infection. Int J Parasitol 2021; 52:35-45. [PMID: 34339723 DOI: 10.1016/j.ijpara.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles, including exosomes, are formed by the endocytic pathway and contain genetic and protein material which reflect the contents of their cells of origin. These contents have a role in vesicle-mediated information transfer, as well as physiological and pathological functions. Thus, these vesicles are of great interest as therapeutic targets, or as vehicles for immunomodulatory control. In Plasmodium spp. infections, vesicles derived from the parasite or parasite-infected cells have been shown to induce the expression of pro-inflammatory elements, which have been correlated with manifestations of clinical disease. Herein, we characterised the protein cargo of naturally occurring sEVs in the plasma of P. yoelii-infected mice. After in vivo infections, extracellular vesicles in the size range of exosomes were collected by sequential centrifugation/ultracentrifugation followed by isopycnic gradient separation. Analysis of the vesicles was performed by transmission electron microscopy, dynamic light scattering, SDS-PAGE and flow cytometry. LC-MS analysis followed by bioinformatics analysis predicted parasite protein cargo associated with exosomes. Within these small extracellular vesicles, we identified proteins of interest as vaccine candidates, uncharacterized proteins which may be targets of T cell immunoreactivity, and proteins involved in metabolic processes, regulation, homeostasis and immunity. Importantly, the small extracellular vesicles studied in our work were obtained from in vivo infection rather than from the supernatant of in vitro cultures. These findings add to the growing interest in parasite small extracellular vesicles, further our understanding of the interactions between host and parasite, and identify novel proteins which may represent potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Karina P De Sousa
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Jeremy Potriquet
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878 Australia
| | - Jason Mulvenna
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878 Australia; Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Penny L Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Alex Loukas
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Simon H Apte
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878 Australia
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878 Australia.
| |
Collapse
|
7
|
Hua L, Liu Q, Li J, Zuo X, Chen Q, Li J, Wang Y, Liu H, Shen Z, Li Y, Ma Z, Dong S, Ji R, Fang D, Chen Y, Zhong W, Zhang J, Zhang J, Bao Y. Gene-gene and gene-environment interactions on cord blood total IgE in Chinese Han children. Allergy Asthma Clin Immunol 2021; 17:69. [PMID: 34243801 PMCID: PMC8268446 DOI: 10.1186/s13223-021-00571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background IL13, IL4, IL4RA, FCER1B and ADRB2 are susceptible genes of asthma and atopy. Our previous study has found gene–gene interactions on asthma between these genes in Chinese Han children. Whether the interactions begin in fetal stage, and whether these genes interact with prenatal environment to enhance cord blood IgE (CBIgE) levels and then cause subsequent allergic diseases have yet to be determined. This study aimed to determine whether there are gene–gene and gene-environment interactions on CBIgE elevation among the aforementioned five genes and prenatal environmental factors in Chinese Han population. Methods 989 cord blood samples from a Chinese birth cohort were genotyped for nine single-nucleotide polymorphisms (SNPs) in the five genes, and measured for CBIgE levels. Prenatal environmental factors were collected using a questionnaire. Gene–gene and gene-environment interactions were analyzed with generalized multifactor dimensionality methods. Results A four-way gene–gene interaction model (IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713) was regarded as the optimal one for CBIgE elevation (testing balanced accuracy = 0.5805, P = 9.03 × 10–4). Among the four SNPs, only IL13 rs20541 was identified to have an independent effect on elevated CBIgE (odds ratio (OR) = 1.36, P = 3.57 × 10–3), while the other three had small but synergistic effects. Carriers of IL13 rs20541 TT, IL13 rs1800925 CT/TT, IL4 rs2243250 TT and ADRB2 rs1042713 AA were estimated to be at more than fourfold higher risk for CBIgE elevation (OR = 4.14, P = 2.69 × 10–2). Gene-environment interaction on elevated CBIgE was found between IL4 rs2243250 and maternal atopy (OR = 1.41, P = 2.65 × 10–2). Conclusions Gene–gene interaction between IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713, and gene-environment interaction between IL4 rs2243250 and maternal atopy begin in prenatal stage to augment IgE production in Chinese Han children.
Collapse
Affiliation(s)
- Li Hua
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Quanhua Liu
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jing Li
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xianbo Zuo
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyang Li
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haipei Liu
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhaobo Shen
- Department of Pulmonology, Children's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Li
- Department of Pulmonology, Children's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zenan Ma
- Department of Pediatrics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Shengdong Dong
- Medical Department, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoxu Ji
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dingzhu Fang
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi Chen
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenwei Zhong
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Zhang
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yixiao Bao
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Tonxin Pediatric Clinic, Shanghai, China.
| |
Collapse
|
8
|
Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76:1981-1989. [PMID: 33378583 PMCID: PMC8359454 DOI: 10.1111/all.14724] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
IgE, the key molecule in atopy has been shown to bind two receptors, FcεRI, the high‐affinity receptor, and FcεRII (CD23), binding IgE with lower affinity. Whereas cross‐linking of IgE on FcεRI expressed by mast cells and basophils triggers the allergic reaction, binding of IgE to CD23 on B cells plays an important role in both IgE regulation and presentation. Furthermore, IgE‐immune complexes (IgE‐ICs) bound by B cells enhance antibody and T cell responses in mice and humans. However, the mechanisms that regulate the targeting of the two receptors and the respective function of the two pathways in inflammation or homeostasis are still a matter of debate. Here, we focus on CD23 and discuss several mechanisms related to IgE binding, as well as the impact of the IgE/antigen‐binding on different immune cells expressing CD23. One recent paper has shown that free IgE preferentially binds to FcεRI whereas IgE‐ICs are preferentially captured by CD23. Binding of IgE‐ICs to CD23 on B cells can, on one hand, regulate serum IgE and prevent effector cell activation and on the other hand facilitate antigen presentation by delivering the antigen to dendritic cells. These data argue for a multifunctional role of CD23 for modulating IgE serum levels and immune responses.
Collapse
Affiliation(s)
- Paul Engeroff
- INSERM UMR_S 959 Immunology‐Immunopathology‐Immunotherapy (i3) Sorbonne Université Paris France
| | - Monique Vogel
- Center for Clinical Research Region Västmanland/Uppsala University, Västmanland hospital Västerås Sweden
- Department of BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
9
|
Hua L, Yang F, Chen Q, Liu Q, Ji R, Liu H, Ye J, Zhang J, Zhang J, Bao Y. Association of a four-gene model with allergic diseases: Two-year follow-up of a birth cohort study. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:239-245. [PMID: 33277970 PMCID: PMC7860525 DOI: 10.1002/iid3.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/18/2020] [Indexed: 01/29/2023]
Abstract
Background Our previous study has developed a four‐gene model involving IL13 rs20541, IL4 rs2243250, ADRB2 rs1042713, and FCER1B rs569108 associated with asthma and atopy in Chinese Han children. However, whether the gene model is associated with allergies in early life has yet to be determined. This study aimed to apply the gene model in a birth cohort to investigate its associations with the development of allergic diseases in Chinese Han toddlers. Methods Five hundred and ninety‐seven children from a birth cohort completing 2‐year follow‐up were included. Epidemiologic information and cord blood were collected. Children were genotyped for the above polymorphisms and divided into high or low genetic risk groups based on the genotypes. Subjects were followed at 6, 12, and 24 months, with information on allergic diseases collected via standard questionnaires and assessed by specialists. Results Two hundred and eighty‐four children were divided into a high‐risk group and 313 into a low‐risk group. Between the two groups, a significant difference was only found in delivery mode among all the subject characteristics (p = .025). After stratification for delivery mode, children at high risk were more likely to develop eczema (relative risk [RR] = 1.46, p = .040) over 2 years of follow‐up compared with those at low risk. No significant associations were found between genetic risk and food allergy, wheezing and allergic rhinitis (p > .05). Conclusion The gene model was significantly associated with the development of eczema in Chinese Han toddlers. Long‐term follow‐up along with functional and replication studies on the gene model are still needed in future.
Collapse
Affiliation(s)
- Li Hua
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Yang
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanhua Liu
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoxu Ji
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haipei Liu
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Ye
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Zhang
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixiao Bao
- Department of Pediatric Pulmonology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Tonxin Pediatric Clinic, Shanghai, China
| |
Collapse
|
10
|
Dawes RP, Burke KA, Byun DK, Xu Z, Stastka P, Chan L, Brown EB, Madden KS. Chronic Stress Exposure Suppresses Mammary Tumor Growth and Reduces Circulating Exosome TGF-β Content via β-Adrenergic Receptor Signaling in MMTV-PyMT Mice. Breast Cancer (Auckl) 2020; 14:1178223420931511. [PMID: 32595275 PMCID: PMC7301655 DOI: 10.1177/1178223420931511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Preclinical models of breast cancer have established mechanistic links between psychological stress and cancer progression. However, epidemiological evidence linking stress and cancer is equivocal. We tested the impact of stress exposure in female mice expressing the mouse mammary tumor virus polyoma middle-T antigen (MMTV-PyMT), a spontaneous model of mammary adenocarcinoma that mimics metastatic hormone receptor-positive human breast cancer development. MMTV-PyMT mice were socially isolated at 6 to 7 weeks of age during premalignant hyperplasia. To increase the potency of the stressor, singly housed mice were exposed to acute restraint stress (2 hours per day for 3 consecutive days) at 8 to 9 weeks of age during early carcinoma. Exposure to this dual stressor activated both major stress pathways, the sympathetic nervous system and hypothalamic-pituitary-adrenal axis throughout malignant transformation. Stressor exposure reduced mammary tumor burden in association with increased tumor cleaved caspase-3 expression, indicative of increased cell apoptosis. Stress exposure transiently increased tumor vascular endothelial growth factor and reduced tumor interleukin-6, but no other significant alterations in immune/inflammation-associated chemokines and cytokines or changes in myeloid cell populations were detected in tumors. No stress-induced change in second-harmonic generation-emitting collagen, indicative of a switch to a metastasis-promoting tumor extracellular matrix, was detected. Systemic indicators of slowed tumor progression included reduced myeloid-derived suppressor cell (MDSC) frequency in lung and spleen, and decreased transforming growth factor β (TGF-β) content in circulating exosomes, nanometer-sized particles associated with tumor progression. Chronic β-adrenergic receptor (β-AR) blockade with nadolol abrogated stress-induced alterations in tumor burden and cleaved caspase-3 expression, lung MDSC frequency, and exosomal TGF-β content. Despite the evidence for reduced tumor growth, metastatic lesions in the lung were not altered by stress exposure. Unexpectedly, β-blockade in nonstressed mice increased lung metastatic lesions and splenic MDSC frequency, suggesting that in MMTV-PyMT mice, β-AR activation also inhibits tumor progression in the absence of stress exposure. Together, these results suggest stress exposure can act through β-AR signaling to slow primary tumor growth in MMTV-PyMT mice.
Collapse
Affiliation(s)
- Ryan P Dawes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathleen A Burke
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Daniel K Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Zhou Xu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Petr Stastka
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Leland Chan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Edward B Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Kelley S Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Arnold P, Lückstädt W, Li W, Boll I, Lokau J, Garbers C, Lucius R, Rose-John S, Becker-Pauly C. Joint Reconstituted Signaling of the IL-6 Receptor via Extracellular Vesicles. Cells 2020; 9:cells9051307. [PMID: 32456348 PMCID: PMC7291149 DOI: 10.3390/cells9051307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) signaling is a crucial regulatory event important for many biological functions, such as inflammation and tissue regeneration. Accordingly, several pathological conditions are associated with dysregulated IL-6 activity, making it an attractive therapeutic target. For instance, blockade of IL-6 or its α-receptor (IL-6R) by monoclonal antibodies has been successfully used to treat rheumatoid arthritis. However, based on different signaling modes, IL-6 function varies between pro- and anti-inflammatory activity, which is critical for therapeutic intervention. So far, three modes of IL-6 signaling have been described, the classic anti-inflammatory signaling, as well as pro-inflammatory trans-signaling, and trans-presentation. The IL-6/IL-6R complex requires an additional β-receptor (gp130), which is expressed on almost all cells of the human body, to induce STAT3 (signal transducer and activator of signal transcription 3) phosphorylation and subsequent transcriptional regulation. In contrast, the IL-6R is expressed on a limited number of cells, including hepatocytes and immune cells. However, the proteolytic release of the IL-6R enables trans-signaling on cells expressing gp130 only. Here, we demonstrate a fourth possibility of IL-6 signaling that we termed joint reconstituted signaling (JRS). We show that IL-6R on extracellular vesicles (EVs) can also be transported to and fused with other cells that lack the IL-6R on their surface. Importantly, JRS via EVs induces delayed STAT3 phosphorylation compared to the well-established trans-signaling mode. EVs isolated from human serum were already shown to carry the IL-6R, and thus this new signaling mode should be considered with regard to signal intervention.
Collapse
Affiliation(s)
- Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
- MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (P.A.); (C.B.-P.)
| | - Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Wenjia Li
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Inga Boll
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Juliane Lokau
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Christoph Garbers
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
| | - Christoph Becker-Pauly
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Correspondence: (P.A.); (C.B.-P.)
| |
Collapse
|
12
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
14
|
Qiao G, Bucsek MJ, Winder NM, Chen M, Giridharan T, Olejniczak SH, Hylander BL, Repasky EA. β-Adrenergic signaling blocks murine CD8 + T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother 2019; 68:11-22. [PMID: 30229289 PMCID: PMC6326964 DOI: 10.1007/s00262-018-2243-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
Abstract
Primary and secondary lymphoid organs are heavily innervated by the autonomic nervous system. Norepinephrine, the primary neurotransmitter secreted by post-ganglionic sympathetic neurons, binds to and activates β-adrenergic receptors expressed on the surface of immune cells and regulates the functions of these cells. While it is known that both activated and memory CD8+ T-cells primarily express the β2-adrenergic receptor (β2-AR) and that signaling through this receptor can inhibit CD8+ T-cell effector function, the mechanism(s) underlying this suppression is not understood. Under normal activation conditions, T-cells increase glucose uptake and undergo metabolic reprogramming. In this study, we show that treatment of murine CD8+ T-cells with the pan β-AR agonist isoproterenol (ISO) was associated with a reduced expression of glucose transporter 1 following activation, as well as decreased glucose uptake and glycolysis compared to CD8+ T-cells activated in the absence of ISO. The effect of ISO was specifically dependent upon β2-AR, since it was not seen in adrb2-/- CD8+ T-cells and was blocked by the β-AR antagonist propranolol. In addition, we found that mitochondrial function in CD8+ T-cells was also impaired by β2-AR signaling. This study demonstrates that one mechanism by which β2-AR signaling can inhibit CD8+ T-cell activation is by suppressing the required metabolic reprogramming events which accompany activation of these immune cells and thus reveals a new mechanism by which adrenergic stress can suppress the effector activity of immune cells.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Glucose/immunology
- Glucose/metabolism
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Isoproterenol/pharmacology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Propranolol/pharmacology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mark J Bucsek
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Nicolette M Winder
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Jacob School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
15
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
17
|
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol 2015; 65:416-28. [PMID: 25745808 DOI: 10.1016/j.molimm.2015.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/20/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
Abstract
The "A Disintegrin And Metalloproteinases" (ADAMs) form a subgroup of the metzincin endopeptidases. Proteolytically active members of this protein family act as sheddases and govern key processes in development and inflammation by regulating cell surface expression and release of cytokines, growth factors, adhesion molecules and their receptors. In T lymphocytes, ADAM10 sheds the death factor Fas Ligand (FasL) and thereby regulates T cell activation, death and effector function. Although FasL shedding by ADAM10 was confirmed in several studies, its regulation is still poorly defined. We recently reported that ADAM10 is highly abundant on T cells whereas its close relative ADAM17 is expressed at low levels and transiently appears at the cell surface upon stimulation. Since FasL is also stored intracellularly and brought to the plasma membrane upon stimulation, we addressed where the death factor gets exposed to ADAM proteases. We report for the first time that both ADAM10 and ADAM17 are associated with FasL-containing secretory lysosomes. Moreover, we demonstrate that TCR/CD3/CD28-stimulation induces a partial positioning of both proteases and FasL to lipid rafts and only the activation-induced raft-positioning results in FasL processing. TCR/CD3/CD28-induced FasL proteolysis is markedly affected by reducing both ADAM10 and ADAM17 protein levels, indicating that in human T cells also ADAM17 is implicated in FasL processing. Since FasL shedding is affected by cholesterol depletion and by inhibition of Src kinases or palmitoylation, we conclude that it requires mobilization and co-positioning of ADAM proteases in lipid raft-like platforms associated with an activation of raft-associated Src-family kinases.
Collapse
Affiliation(s)
- Henriette Ebsen
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
19
|
Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn 2015; 14:565-74. [PMID: 24844135 DOI: 10.1586/14737159.2014.922879] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs are small noncoding RNAs with gene regulatory functions, frequently dysregulated in human cancers. Specific signatures of differentially expressed miRNAs can be used in the diagnosis of cancer and in some cases harbor prognostic implications. The biology of cancer is dictated not only by cancer cells but also by the surrounding tumor microenvironment. In particular, the role of miRNAs within the tumor microenvironment is emerging as of paramount importance. This review will focus on the current knowledge of the role of miRNAs and both cellular and stromal components of the tumor microenvironment. We will also discuss more recent findings, showing that miRNAs can be found inside of exosomes and mediate the cross-talk between cancer cells and surrounding cells, leading to the discovery of new fascinating molecular mechanisms leading to a better understanding of the cancer 'niche' and how these noncoding RNAs can become very promising diagnostic molecules.
Collapse
Affiliation(s)
- Kishore B Challagundla
- Departments of Pediatrics and Molecular Microbiology & Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Saban Research Institute, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin RK, Brooks KB, Henningsson F, Heyman B, Conrad DH. Antigen transfer from exosomes to dendritic cells as an explanation for the immune enhancement seen by IgE immune complexes. PLoS One 2014; 9:e110609. [PMID: 25330118 PMCID: PMC4203810 DOI: 10.1371/journal.pone.0110609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022] Open
Abstract
IgE antigen complexes induce increased specific T cell proliferation and increased specific IgG production. Immediately after immunization, CD23+ B cells capture IgE antigen complexes, transport them to the spleen where, via unknown mechanisms, dendritic cells capture the antigen and present it to T cells. CD23, the low affinity IgE receptor, binds IgE antigen complexes and internalizes them. In this study, we show that these complexes are processed onto B-cell derived exosomes (bexosomes) in a CD23 dependent manner. The bexosomes carry CD23, IgE and MHC II and stimulate antigen specific T-cell proliferation in vitro. When IgE antigen complex stimulated bexosomes are incubated with dendritic cells, dendritic cells induce specific T-cell proliferation in vivo, similar to IgE antigen complexes. This suggests that bexosomes can provide the essential transfer mechanism for IgE antigen complexes from B cells to dendritic cells.
Collapse
Affiliation(s)
- Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Keith B. Brooks
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Frida Henningsson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
The interaction between the sympathetic nervous system and the immune system has been documented over the last several decades. In this review, the neuroanatomical, cellular, and molecular evidence for neuroimmune regulation in the maintenance of immune homeostasis will be discussed, as well as the potential impact of neuroimmune dysregulation in health and disease.
Collapse
Affiliation(s)
- Caroline J Padro
- The Biomedical Sciences Graduate Program, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States.
| | - Virginia M Sanders
- The Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States; The Institute of Behavioral Medicine Research, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States.
| |
Collapse
|
22
|
Simkins T, Crawford RB, Goudreau JL, Lookingland KJ, Kaplan BLF. Enhanced Humoral Immunity in Mice Lacking CB1 and CB2 Receptors (Cnr1 −/− /Cnr2 −/− Mice) is not Due to Increased Splenic Noradrenergic Neuronal Activity. J Neuroimmune Pharmacol 2014; 9:544-57. [DOI: 10.1007/s11481-014-9549-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/12/2014] [Indexed: 01/10/2023]
|