1
|
Zhang S, Xu CL, Wang J, Xiong X, Wang JH. Spike proteins of coronaviruses activate mast cells for degranulation via stimulating Src/PI3K/AKT/Ca 2+ intracellular signaling cascade. J Virol 2025:e0007825. [PMID: 40304504 DOI: 10.1128/jvi.00078-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025] Open
Abstract
Mast cells (MCs) are strategically located at the interface between host and environment. The non-allergic functions of MCs in immunosurveillance against pathogens have been recently underscored. However, the activation of MCs by pathogens may beneficially or detrimentally regulate immune inflammation to combat or promote pathogen invasion. We and others have conclusively demonstrated that MCs serve as a crucial mediator in the induction of hyperinflammation initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to substantial tissue damage across multiple organs in murine and nonhuman primate models. Whereas the precise mechanism underlying virus-induced MC activation and degranulation remains largely elusive, our previous findings have indicated that the binding of the Spike proteins to cellular receptors is sufficient to elicit MC activation for rapid degranulation. This study aims to corroborate the ubiquity of coronavirus-induced MC degranulation and elucidate the intracellular signaling pathways that mediate the activation of MCs upon Spike protein binding to the cellular receptors. Our transcriptome analysis revealed MC activation upon the stimulations with a range of Spike/RBD proteins and viral particles of coronavirus. Notably, the interaction between these Spike/RBD proteins and cellular receptors triggered the activation of src kinase, a member of Src Family Kinases (SFKs). This activation, in turn, stimulated the PI3K/AKT signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitated microtubule-dependent granule transport, ultimately promoting MC degranulation. In summary, this study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies. IMPORTANCE The activation and degranulation of mast cells (MCs), triggered by a variety of viruses, are intricately linked to viral pathogenesis. However, the precise mechanism underlying virus-induced MC degranulation remains largely unknown. In this study, we demonstrate the ubiquity of coronavirus-induced MC degranulation and investigate the intracellular signaling pathways that mediate this process. We reveal that the binding of Spike proteins and cellular receptors is sufficient to elicit MC activation for rapid degranulation. This binding triggers the activation of src kinase and the downstream PI3K/AKT cellular signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitate microtubule-dependent granule transport, ultimately promoting MC degranulation. This study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| | - Chu-Lan Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Lind MCH, Naimi WA, Chiarelli TJ, Sparrer T, Ghosh M, Shapiro L, Carlyon JA. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. mBio 2024; 15:e0156124. [PMID: 39324816 PMCID: PMC11481542 DOI: 10.1128/mbio.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.
Collapse
Affiliation(s)
- Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Waheeda A. Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Tavis Sparrer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Linda Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Ghosh M, McGurk F, Norris R, Dong A, Nair S, Jellison E, Murphy P, Verma R, Shapiro LH. The Implant-Induced Foreign Body Response Is Limited by CD13-Dependent Regulation of Ubiquitination of Fusogenic Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:663-676. [PMID: 38149920 PMCID: PMC10828181 DOI: 10.4049/jimmunol.2300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-β expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.
Collapse
Affiliation(s)
- Mallika Ghosh
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Fraser McGurk
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Medical School, Farmington, CT
| | - Andy Dong
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Sreenidhi Nair
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Evan Jellison
- Department of Immunology, University of Connecticut Medical School, Farmington, CT
| | - Patrick Murphy
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rajkumar Verma
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT
| | - Linda H. Shapiro
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| |
Collapse
|
4
|
Mendoza-Salazar I, Fragozo A, González-Martínez AP, Trejo-Martínez I, Arreola R, Pavón L, Almagro JC, Vallejo-Castillo L, Aguilar-Alonso FA, Pérez-Tapia SM. Almost 50 Years of Monomeric Extracellular Ubiquitin (eUb). Pharmaceuticals (Basel) 2024; 17:185. [PMID: 38399400 PMCID: PMC10892293 DOI: 10.3390/ph17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.
Collapse
Affiliation(s)
- Ivette Mendoza-Salazar
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Aneth P. González-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ismael Trejo-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Juan C. Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Francisco A. Aguilar-Alonso
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
5
|
Anderluzzi G, Ghitti M, Gasparri AM, Taiè G, Sacchi A, Gori A, Andolfo A, Pozzi F, Musco G, Curnis F, Corti A. A novel aminopeptidase N/CD13 inhibitor selectively targets an endothelial form of CD13 after coupling to proteins. Cell Mol Life Sci 2024; 81:68. [PMID: 38289472 PMCID: PMC10827914 DOI: 10.1007/s00018-023-05102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.
Collapse
Affiliation(s)
- Giulia Anderluzzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Michela Ghitti
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giulia Taiè
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, C.N.R., Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pozzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
6
|
Díaz-Alvarez L, Martínez-Sánchez ME, Gray E, Pérez-Figueroa E, Ortega E. Aminopeptidase N/CD13 Crosslinking Promotes the Activation and Membrane Expression of Integrin CD11b/CD18. Biomolecules 2023; 13:1488. [PMID: 37892170 PMCID: PMC10604325 DOI: 10.3390/biom13101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The β2 integrin CD11b/CD18, also known as complement receptor 3 (CR3), and the moonlighting protein aminopeptidase N (CD13), are two myeloid immune receptors with overlapping activities: adhesion, migration, phagocytosis of opsonized particles, and respiratory burst induction. Given their common functions, shared physical location, and the fact that some receptors can activate a selection of integrins, we hypothesized that CD13 could induce CR3 activation through an inside-out signaling mechanism and possibly have an influence on its membrane expression. We revealed that crosslinking CD13 on the surface of human macrophages not only activates CR3 but also influences its membrane expression. Both phenomena are affected by inhibitors of Src, PLCγ, Syk, and actin polymerization. Additionally, after only 10 min at 37 °C, cells with crosslinked CD13 start secreting pro-inflammatory cytokines like interferons type 1 and 2, IL-12p70, and IL-17a. We integrated our data with a bioinformatic analysis to confirm the connection between these receptors and to suggest the signaling cascade linking them. Our findings expand the list of features of CD13 by adding the activation of a different receptor via inside-out signaling. This opens the possibility of studying the joint contribution of CD13 and CR3 in contexts where either receptor has a recognized role, such as the progression of some leukemias.
Collapse
Affiliation(s)
- Laura Díaz-Alvarez
- Instituto de Investigaciones Biomédicas, Departamento de Inmunología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Mexico City 04510, Mexico
| | | | - Eleanor Gray
- London Centre for Nanotechnology, Department of Physics and Astronomy, University College London, London WC2R 2LS, UK
| | - Erandi Pérez-Figueroa
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Departamento de Inmunología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ, Naves R. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front Immunol 2023; 14:1191838. [PMID: 37334380 PMCID: PMC10272814 DOI: 10.3389/fimmu.2023.1191838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE.
Collapse
Affiliation(s)
- Juan E. Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis F. González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nirmal R. Kannaiyan
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | | | - Jorge Ibañez-Vega
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I. Burgos
- Department of Clinical Immunology and Rheumatology , School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moritz J. Rossner
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter J. Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines (Basel) 2023; 11:vaccines11010174. [PMID: 36680018 PMCID: PMC9862439 DOI: 10.3390/vaccines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.
Collapse
|
9
|
Feng J, Wang Y, Li B, Yu X, Lei L, Wu J, Zhang X, Chen Q, Zhou Y, Gou J, Li H, Tan Z, Dai Z, Li X, Guan F. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML. Leukemia 2023; 37:113-121. [PMID: 36335262 DOI: 10.1038/s41375-022-01748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects. Malignant clonal cells delivered exosomal miR-188-5p to recipient stromal cells, where it suppressed bisecting GlcNAc by targeting MGAT3 gene. Proteomic analysis revealed reduced GlcNAc structures and enhanced expression of MCAM, a marker of BM niche. We characterized MCAM as a bisecting GlcNAc-bearing target protein, and identified Asn 56 as bisecting GlcNAc modification site on MCAM. MCAM on stromal cell surface with reduced bisecting GlcNAc bound strongly to CD13 on myeloid cells, activated responding ERK signaling, and thereby promoted myeloid cell growth. Our findings, taken together, suggest a novel mechanism whereby MDS/AML clonal cells generate a self-permissive niche by modifying glycosylation level of stromal cells.
Collapse
Affiliation(s)
- Jingjing Feng
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Bingxin Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xinwen Yu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Lei Lei
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Jinpeng Wu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xin Zhang
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | | | - Yue Zhou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Junjie Gou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Hongjiao Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E. Crosslinking of membrane CD13 in human neutrophils mediates phagocytosis and production of reactive oxygen species, neutrophil extracellular traps and proinflammatory cytokines. Front Immunol 2022; 13:994496. [PMID: 36439182 PMCID: PMC9686367 DOI: 10.3389/fimmu.2022.994496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Aminopeptidase N, or CD13, is a cell membrane ectopeptidase highly expressed in myeloid cells. Through its enzymatic activity, CD13 regulates the activity of several bioactive peptides, such as endorphins and enkephalins, chemotactic peptides like MCP-1 and IL-8, angiotensin III, bradikinin, etc. In recent years, it has been appreciated that independently of its peptidase activity, CD13 can activate signal transduction pathways and mediate effector functions such as phagocytosis and cytokine secretion in monocytes and macrophages. Although neutrophils are known to express CD13 on its membrane, it is currently unknown if CD13 can mediate effector functions in these cells. Here, we show that in human neutrophils CD13 can mediate phagocytosis, which is dependent on a signaling pathway that involves Syk, and PI3-K. Phagocytosis mediated by CD13 is associated with production of reactive oxygen species (ROS). The level of phagocytosis and ROS production mediated by CD13 are similar to those through FcγRIII (CD16b), a widely studied receptor of human neutrophils. Also, CD13 ligation induces the release of neutrophil extracellular traps (NETs) as well as cytokine secretion from neutrophils. These results support the hypothesis that CD13 is a membrane receptor able to activate effector functions in human neutrophils.
Collapse
Affiliation(s)
| | | | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
11
|
Gong T, Zhang X, Peng Z, Ye Y, Liu R, Yang Y, Chen Z, Zhang Z, Hu H, Yin S, Xu Y, Tang J, Liu Y. Macrophage-derived exosomal aminopeptidase N aggravates sepsis-induced acute lung injury by regulating necroptosis of lung epithelial cell. Commun Biol 2022; 5:543. [PMID: 35668098 PMCID: PMC9170685 DOI: 10.1038/s42003-022-03481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a serious sepsis complication and the prevailing cause of death. Circulating plasma exosomes might exert a key role in regulating intercellular communication between immunological and structural cells, as well as contributing to sepsis-related organ damage. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate ALI in septic infection remains undefined. Therefore, we investigated the effect of macrophage-derived exosomal APN/CD13 on the induction of epithelial cell necrosis. Exosomal APN/CD13 levels in the plasma of septic mice and patients with septic ALI were found to be higher. Furthermore, increased plasma exosomal APN/CD13 levels were associated with the severity of ALI and fatality in sepsis patients. We found remarkably high expression of APN/CD13 in exosomes secreted by LPS-stimulated macrophages. Moreover, c-Myc directly induced APN/CD13 expression and was packed into exosomes. Finally, exosomal APN/CD13 from macrophages regulated necroptosis of lung epithelial cells by binding to the cell surface receptor TLR4 to induce ROS generation, mitochondrial dysfunction and NF-κB activation. These results demonstrate that macrophage-secreted exosomal APN/CD13 can trigger epithelial cell necroptosis in an APN/CD13-dependent manner, which provides insight into the mechanism of epithelial cell functional disorder in sepsis-induced ALI. Necroptosis of lung epithelial cells is regulated by aminopeptidase N levels in circulating plasma exosomes in patients and mice with sepsis-induced acute lung injury.
Collapse
|
12
|
López-Cortés GI, Díaz-Alvarez L, Ortega E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front Immunol 2021; 12:742292. [PMID: 34887854 PMCID: PMC8650063 DOI: 10.3389/fimmu.2021.742292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.
Collapse
Affiliation(s)
- Georgina I López-Cortés
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Díaz-Alvarez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Liu A, Xie H, Li R, Ren L, Yang B, Dai L, Lu W, Liu B, Ren D, Zhang X, Chen Q, Huang Y, Shi K. Silencing ZIC2 abrogates tumorigenesis and anoikis resistance of non-small cell lung cancer cells by inhibiting Src/FAK signaling. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:195-208. [PMID: 34514099 PMCID: PMC8424131 DOI: 10.1016/j.omto.2021.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
Aberrant expression of the zinc finger protein (ZIC) family has been extensively reported to contribute to progression and metastasis in multiple human cancers. However, the functional roles and underlying mechanisms of ZIC2 in non-small cell lung cancer (NSCLC) are largely unknown. In this study, ZIC2 expression was evaluated using qRT-PCR, western blot, and immunohistochemistry, respectively. Animal experiments in vivo and functional assays in vitro were performed to investigate the role of ZIC2 in NSCLC. Luciferase assays and chromatin immunoprecipitation (ChIP) were carried out to explore the underlying target involved in the roles of ZIC2 in NSCLC. Here, we reported that ZIC2 was upregulated in NSCLC tissues, and high expression of ZIC2 predicted worse overall and progression-free survival of NSCLC patients. Silencing ZIC2 repressed tumorigenesis and reduced the anoikis resistance of NSCLC cells. Mechanical investigation further revealed that silencing ZIC2 transcriptionally inhibited Src expression and inactivated steroid receptor coactivator/focal adhesion kinase signaling, which further attenuated the anoikis resistance of NSCLC cells. Importantly, our results showed that the number of circulating tumor cells (CTCs) was positively correlated with ZIC2 expression in NSCLC patients. Collectively, our findings unravel a novel mechanism implicating ZIC2 in NSCLC, which will facilitate the development of anti-tumor strategies in NSCLC.
Collapse
Affiliation(s)
- Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huayan Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Longxia Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Baoyi Liu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang 524023, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang 524023, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Corresponding author: Yanming Huang, Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China.
| | - Ke Shi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Corresponding author: Ke Shi, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
CD13 orients the apical-basal polarity axis necessary for lumen formation. Nat Commun 2021; 12:4697. [PMID: 34349123 PMCID: PMC8338993 DOI: 10.1038/s41467-021-24993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Polarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.
Collapse
|
15
|
CD13 is a critical regulator of cell-cell fusion in osteoclastogenesis. Sci Rep 2021; 11:10736. [PMID: 34031489 PMCID: PMC8144195 DOI: 10.1038/s41598-021-90271-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
The transmembrane aminopeptidase CD13 is highly expressed in cells of the myeloid lineage, regulates dynamin-dependent receptor endocytosis and recycling and is a necessary component of actin cytoskeletal organization. Here, we show that CD13-deficient mice present a low bone density phenotype with increased numbers of osteoclasts per bone surface, but display a normal distribution of osteoclast progenitor populations in the bone marrow and periphery. In addition, the bone formation and mineral apposition rates are similar between genotypes, indicating a defect in osteoclast-specific function in vivo. Lack of CD13 led to exaggerated in vitro osteoclastogenesis as indicated by significantly enhanced fusion of bone marrow-derived multinucleated osteoclasts in the presence of M-CSF and RANKL, resulting in abnormally large cells containing remarkably high numbers of nuclei. Mechanistically, while expression levels of the fusion-regulatory proteins dynamin and DC-STAMP1 must be downregulated for fusion to proceed, these are aberrantly sustained at high levels even in CD13-deficient mature multi-nucleated osteoclasts. Further, the stability of fusion-promoting proteins is maintained in the absence of CD13, implicating CD13 in protein turnover mechanisms. Together, we conclude that CD13 may regulate cell–cell fusion by controlling the expression and localization of key fusion regulatory proteins that are critical for osteoclast fusion.
Collapse
|
16
|
Devarakonda CKV, Meredith E, Ghosh M, Shapiro LH. Coronavirus Receptors as Immune Modulators. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:923-929. [PMID: 33380494 PMCID: PMC7889699 DOI: 10.4049/jimmunol.2001062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
The Coronaviridae family includes the seven known human coronaviruses (CoV) that cause mild to moderate respiratory infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1) as well as severe illness and death (MERS-CoV, SARS-CoV, SARS-CoV-2). Severe infections induce hyperinflammatory responses that are often intensified by host adaptive immune pathways to profoundly advance disease severity. Proinflammatory responses are triggered by CoV entry mediated by host cell surface receptors. Interestingly, five of the seven strains use three cell surface metallopeptidases (CD13, CD26, and ACE2) as receptors, whereas the others employ O-acetylated-sialic acid (a key feature of metallopeptidases) for entry. Why CoV evolved to use peptidases as their receptors is unknown, but the peptidase activities of the receptors are dispensable, suggesting the virus uses/benefits from other functions of these molecules. Indeed, these receptors participate in the immune modulatory pathways that contribute to the pathological hyperinflammatory response. This review will focus on the role of CoV receptors in modulating immune responses.
Collapse
Affiliation(s)
| | - Emily Meredith
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
17
|
Lu C, Amin MA, Fox DA. CD13/Aminopeptidase N Is a Potential Therapeutic Target for Inflammatory Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 204:3-11. [PMID: 31848300 DOI: 10.4049/jimmunol.1900868] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
CD13/aminopeptidase N is a widely expressed ectoenzyme with multiple functions. As an enzyme, CD13 regulates activities of numerous cytokines by cleaving their N-terminals and is involved in Ag processing by trimming the peptides bound to MHC class II. Independent of its enzymatic activity, cell membrane CD13 functions by cross-linking-induced signal transduction, regulation of receptor recycling, enhancement of FcγR-mediated phagocytosis, and acting as a receptor for cytokines. Moreover, soluble CD13 has multiple proinflammatory roles mediated by binding to G-protein-coupled receptors. CD13 not only modulates development and activities of immune-related cells, but also regulates functions of inflammatory mediators. Therefore, CD13 is important in the pathogenesis of various inflammatory disorders. Inhibitors of CD13 have shown impressive anti-inflammatory effects, but none of them has yet been used for clinical therapy of human inflammatory diseases. We reevaluate CD13's regulatory role in inflammation and suggest that CD13 could be a potential therapeutic target for inflammatory disorders.
Collapse
Affiliation(s)
- Chenyang Lu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mohammad A Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - David A Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
18
|
Sharma V, Bryant C, Montero M, Creegan M, Slike B, Krebs SJ, Ratto-Kim S, Valcour V, Sithinamsuwan P, Chalermchai T, Eller MA, Bolton DL. Monocyte and CD4+ T-cell antiviral and innate responses associated with HIV-1 inflammation and cognitive impairment. AIDS 2020; 34:1289-1301. [PMID: 32598115 DOI: 10.1097/qad.0000000000002537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mechanisms underlying immune activation and HIV-associated neurocognitive disorders (HAND) in untreated chronic infection remain unclear. The objective of this study was to identify phenotypic and transcriptional changes in blood monocytes and CD4 T cells in HIV-1-infected and uninfected individuals and elucidate processes associated with neurocognitive impairment. DESIGN A group of chronically HIV-1-infected Thai individuals (n = 19) were selected for comparison with healthy donor controls (n = 10). Infected participants were further classified as cognitively normal (n = 10) or with HAND (n = 9). Peripheral monocytes and CD4 T cells were phenotyped by flow cytometry and simultaneously isolated for multiplex qPCR-targeted gene expression profiling directly ex vivo. The frequency of HIV-1 RNA-positive cells was estimated by limiting dilution cell sorting. RESULTS Expression of genes and proteins involved in cellular activation and proinflammatory immune responses was increased in monocytes and CD4 T cells from HIV-1-infected relative to uninfected individuals. Gene expression profiles of both CD4 T cells and monocytes correlated with soluble markers of inflammation in the periphery (P < 0.05). By contrast, only modest differences in gene programs were observed between cognitively normal and HAND cases. These included increased monocyte surface CD169 protein expression relative to cognitively normal (P = 0.10), decreased surface CD163 expression relative to uninfected (P = 0.02) and cognitively normal (P = 0.06), and downregulation of EMR2 (P = 0.04) and STAT1 (P = 0.02) relative to cognitively normal. CONCLUSION Our data support a model of highly activated monocytes and CD4 T cells associated with inflammation in chronic HIV-1 infection, but impaired monocyte anti-inflammatory responses in HAND compared with cognitively normal.
Collapse
Affiliation(s)
- Vishakha Sharma
- aU.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring bHenry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda cThe EMMES Corporation, Rockville, Maryland dMemory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA eFaculty of Medicine, Phramongkutklao Hospital fSEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mo CF, Li J, Yang SX, Guo HJ, Liu Y, Luo XY, Wang YT, Li MH, Li JY, Zou Q. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1154-1163. [PMID: 32632148 PMCID: PMC7525663 DOI: 10.1038/s41416-020-0970-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells. METHODS IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study. RESULTS IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis. CONCLUSIONS Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
Collapse
Affiliation(s)
- Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Jun Li
- Department of Gastroenterology, The first affiliated hospital of Chengdu medical college, Chengdu, China
| | - Shu-Xia Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan-Tang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China. .,School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
20
|
Ghosh M, Shapiro LH. CD13 regulation of membrane recycling: implications for cancer dissemination. Mol Cell Oncol 2019; 6:e1648024. [PMID: 31692781 DOI: 10.1080/23723556.2019.1648024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Membrane recycling is critical to numerous cell functions and its dysregulation contributes to cancer and metastasis. We established that activation of the transmembrane molecule aminopeptidase N (ANPEP, also known as CD13) tethers the IQ motif containing, guanosine triphosphate hydrolase activating protein 1 (IQGAP1) scaffolding protein at the plasma membrane, thus stimulating the recycling regulator ADP-ribosylation factor 6 (ARF6) to ensure proper recycling of β1-integrin and other membrane components impacting cell attachment.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
21
|
Mechanism of Action of the Tumor Vessel Targeting Agent NGR-hTNF: Role of Both NGR Peptide and hTNF in Cell Binding and Signaling. Int J Mol Sci 2019; 20:ijms20184511. [PMID: 31547231 PMCID: PMC6769691 DOI: 10.3390/ijms20184511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
NGR-hTNF is a therapeutic agent for a solid tumor that specifically targets angiogenic tumor blood vessels, through the NGR motif. Its activity has been assessed in several clinical studies encompassing tumors of different histological types. The drug’s activity is based on an improved permeabilization of newly formed tumor vasculature, which favors intratumor penetration of chemotherapeutic agents and leukocyte trafficking. This work investigated the binding and the signaling properties of the NGR-hTNF, to elucidate its mechanism of action. The crystal structure of NGR-hTNF and modeling of its interaction with TNFR suggested that the NGR region is available for binding to a specific receptor. Using 2D TR-NOESY experiments, this study confirmed that the NGR-peptides binds to a specific CD13 isoform, whose expression is restricted to tumor vasculature cells, and to some tumor cell lines. The interaction between hTNF or NGR-hTNF with immobilized TNFRs showed similar kinetic parameters, whereas the competition experiments performed on the cells expressing both TNFR and CD13 showed that NGR-hTNF had a higher binding affinity than hTNF. The analysis of the NGR-hTNF-triggered signal transduction events showed a specific impairment in the activation of pro-survival pathways (Ras, Erk and Akt), compared to hTNF. Since a signaling pattern identical to NGR-hTNF was obtained with hTNF and NGR-sequence given as distinct molecules, the inhibition observed on the survival pathways was presumably due to a direct effect of the NGR-CD13 engagement on the TNFR signaling pathway. The reduced activation of the pro survival pathways induced by NGR-hTNF correlated with the increased caspases activation and reduced cell survival. This study demonstrates that the binding of the NGR-motif to CD13 determines not only the homing of NGR-hTNF to tumor vessels, but also the increase in its antiangiogenic activity.
Collapse
|
22
|
Devarakonda CV, Pereira FE, Smith JD, Shapiro LH, Ghosh M. CD13 deficiency leads to increased oxidative stress and larger atherosclerotic lesions. Atherosclerosis 2019; 287:70-80. [PMID: 31229835 PMCID: PMC6746312 DOI: 10.1016/j.atherosclerosis.2019.06.901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is an inflammatory cardiovascular disorder characterized by accumulation of lipid-loaded macrophages in the intima. Prolonged accumulation leads to apoptosis of macrophages and eventually to progression of lesion development. Prevention of macrophage accumulation within the intima has been shown to reduce lesion formation. Since CD13 mediates trafficking of macrophages to sites of injury and repair, we tested the role of CD13 in atherosclerosis. METHODS CD13+/+Ldlr-/- and CD13-/-Ldlr-/- (low density lipoprotein receptor) mice were fed basal or high fat diet (HFD) for 9, 12 and 15 weeks. Mice were euthanized and aortic roots along with innominate arteries were analyzed for atherosclerotic lesions. Cellular mechanisms were determined in vitro using CD13+/+ and CD13-/- bone marrow derived macrophages (BMDMs) incubated with highly oxidized low-density lipoprotein (oxLDL). RESULTS At the 9 and 12 week time points, no differences were observed in the average lesion size, but at the 15 week time point, CD13-/-Ldlr-/- mice had larger lesions with exaggerated necrotic areas. CD13+/+ and CD13-/- macrophages endocytosed similar amounts of oxLDL, but CD13-/- macrophages generated higher amounts of oxidative stressors in comparison to CD13+/+ macrophages. This increased oxidative stress was due to increased nitric oxide production in oxLDL treated CD13-/- macrophages. Accumulated oxidative stress subsequently led to accelerated apoptosis and enhanced necrosis of oxLDL treated CD13-/- macrophages. CONCLUSIONS Contrary to our prediction, CD13 deficiency led to larger atherosclerotic lesions with increased areas of necrosis. Mechanistically, CD13 deficiency led to increased nitric oxide production and consequently, greater oxidative stress.
Collapse
Affiliation(s)
- Charan V Devarakonda
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Flavia E Pereira
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
23
|
Du Y, Lu C, Morgan RL, Stinson WA, Campbell PL, Cealey E, Fu W, Lepore NJ, Hervoso JL, Cui H, Urquhart AG, Lawton JN, Chung KC, Fox DA, Amin MA. Angiogenic and Arthritogenic Properties of the Soluble Form of CD13. THE JOURNAL OF IMMUNOLOGY 2019; 203:360-369. [PMID: 31189572 DOI: 10.4049/jimmunol.1801276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
Aminopeptidase N/CD13 is expressed by fibroblast-like synoviocytes (FLS) and monocytes (MNs) in inflamed human synovial tissue (ST). This study examined the role of soluble CD13 (sCD13) in angiogenesis, MN migration, phosphorylation of signaling molecules, and induction of arthritis. The contribution of sCD13 was examined in angiogenesis and MN migration using sCD13 and CD13-depleted rheumatoid arthritis (RA) synovial fluids (SFs). An enzymatically inactive mutant CD13 and intact wild-type (WT) CD13 were used to determine whether its enzymatic activity contributes to the arthritis-related functions. CD13-induced phosphorylation of signaling molecules was determined by Western blotting. The effect of sCD13 on cytokine secretion from RA ST and RA FLS was evaluated. sCD13 was injected into C57BL/6 mouse knees to assess its arthritogenicity. sCD13 induced angiogenesis and was a potent chemoattractant for MNs and U937 cells. Inhibitors of Erk1/2, Src, NF-κB, Jnk, and pertussis toxin, a G protein-coupled receptor inhibitor, decreased sCD13-stimulated chemotaxis. CD13-depleted RA SF induced significantly less MN migration than sham-depleted SF, and addition of mutant or WT CD13 to CD13-depleted RA SF equally restored MN migration. sCD13 and recombinant WT or mutant CD13 had similar effects on signaling molecule phosphorylation, indicating that the enzymatic activity of CD13 had no role in these functions. CD13 increased the expression of proinflammatory cytokines by RA FLS, and a CD13 neutralizing Ab inhibited cytokine secretion from RA ST organ culture. Mouse knee joints injected with CD13 exhibited increased circumference and proinflammatory mediator expression. These data support the concept that sCD13 plays a pivotal role in RA and acute inflammatory arthritis.
Collapse
Affiliation(s)
- Yuxuan Du
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,National Center for Clinical Laboratories/Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chenyang Lu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Rachel L Morgan
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - William A Stinson
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Phillip L Campbell
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ellen Cealey
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Wenyi Fu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China; and
| | - Nicholas J Lepore
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonatan L Hervoso
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Huadong Cui
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China; and
| | - Andrew G Urquhart
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - Jeffrey N Lawton
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - Kevin C Chung
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - David A Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109;
| | - Mohammad A Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
24
|
Ghosh M, Lo R, Ivic I, Aguilera B, Qendro V, Devarakonda C, Shapiro LH. CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, β1 integrin recycling, and cell migration. Sci Signal 2019; 12:12/579/eaav5938. [PMID: 31040262 DOI: 10.1126/scisignal.aav5938] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| | - Robin Lo
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ivan Ivic
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Aguilera
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Veneta Qendro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Charan Devarakonda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
25
|
ZNF32 induces anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling in hepatocellular carcinoma. Cancer Lett 2018; 442:271-278. [PMID: 30439540 DOI: 10.1016/j.canlet.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Tumor cells need to attain anoikis resistance to survive prior to metastasis making it a vital trait of malignancy. The molecular mechanism by which hepatocellular carcinoma (HCC) cells resist anoikis remains not fully understood. Here, we report that ZNF32 expression is markedly upregulated in HCC cells upon detachment. Enforced ZNF32 expression significantly promotes the anchorage-independent growth capability of HepG2 and Huh7 cells, whereas knockdown of ZNF32 results in increased apoptosis of HCC cells after detachment. Mechanistically, we demonstrate that ZNF32 overexpression suppresses the reactive oxygen species (ROS) accumulation and maintains mitochondrial membrane potential, leading to ATP, GSH and NADPH elevation and promoting HCC cell survival in response to suspension. Moreover, ZNF32 enhances the phosphorylation and activation of Src/FAK signaling. Src and FAK inhibitors effectively reverse ZNF32-induced anoikis resistance in HCC cells. Collectively, our findings not only reveal a novel and important mechanism by which ZNF32 contributes to anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling, but also suggest the potential therapeutic value of ZNF32 in HCC patients.
Collapse
|
26
|
Khatun A, Kang KH, Ryu DY, Rahman MS, Kwon WS, Pang MG. Effect of Aminopeptidase N on functions and fertility of mouse spermatozoa in vitro. Theriogenology 2018; 118:182-189. [PMID: 29913423 DOI: 10.1016/j.theriogenology.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Aminopeptidase N (APN) is defined as a multifunctional enzyme, which regulate cellular physiology of a wide variety of cells in human. Earlier studies reported that mammalian semen shares this common enzyme as a major protein of seminal plasma that has correlation with male fertility, while the regulatory mechanisms of APN in spermatozoa are still far from being well understood. Present study was designed to investigate the role of APN in biological and chemical functions of spermatozoa using an in vitro antagonistic approach. Results showed that lower APN activity in sperm culture medium significantly increased sperm motility and the percentage of high speed spermatozoa and decreased the percentage of slow speed spermatozoa after a dose dependent inhibitor treatment (10, 100, and 1000 μM leuhistin) on epididymal mouse spermatozoa in a capacitating media for 90 min. Both 100 μM and 1000 μM decreased APN activity, while only 1000 μM decreased cell viability and increased PKA activity significantly compared to control. Nonetheless capacitation status, acrosome reaction status, and lactate dehydrogenase activity were not affected. Intriguingly, the treatment affected embryonic development through decreasing tyrosine phosphorylation of proteins and increasing reactive oxygen species levels. Further in silico analysis revealed associated regulatory proteins, which have critical functional role for male fertility.
Collapse
Affiliation(s)
- Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea; Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Kyu-Ho Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea.
| |
Collapse
|
27
|
Dimitrova E, Caromile LA, Laubenbacher R, Shapiro LH. The innate immune response to ischemic injury: a multiscale modeling perspective. BMC SYSTEMS BIOLOGY 2018; 12:50. [PMID: 29631571 PMCID: PMC5891907 DOI: 10.1186/s12918-018-0580-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Background Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases. The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents can be designed that antagonize their harmful effects while preserving host defense functions. This requires an understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific pathway components, predict potential outcomes and identify safe and effective therapeutic targets. Results We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation, macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by assessing its ability to reproduce published data not used in its construction. Conclusions These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating ischemic/inflammatory injury.
Collapse
Affiliation(s)
- Elena Dimitrova
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - Leslie A Caromile
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA. .,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA.
| |
Collapse
|
28
|
Distinct Epitopes on CD13 Mediate Opposite Consequences for Cell Adhesion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4093435. [PMID: 29789790 PMCID: PMC5896358 DOI: 10.1155/2018/4093435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 12/25/2022]
Abstract
CD13 is a membrane glycoprotein with aminopeptidase activity, expressed on several cell types, including myeloid cells (dendritic cells, monocytes, macrophages, neutrophils, etc.). CD13 participates in several functions such as proteolytic regulation of bioactive peptides, viral receptor, angiogenesis, and tumor metastasis. CD13 has also been proposed to participate in cell adhesion, as crosslinking of CD13 by certain CD13-specific antibodies induces homotypic aggregation of monocytes and heterotypic adhesion of monocytes to endothelial cells. We generated two monoclonal antibodies (mAbs C and E) that block homotypic aggregation of U-937 monocytic cells induced by CD13-specific mAb 452. Moreover, the mAbs cause detachment of cells whose aggregation was induced by CD13 crosslinking. Both mAbs also inhibit heterotypic adhesion of U-937 monocytes to endothelial cells. mAbs C and E recognize membrane CD13 but bind to epitopes different from that recognized by mAb 452. Crosslinking of CD13 by mAb C or E is required to inhibit adhesion, as monovalent Fab fragments are not sufficient. Thus, C and E antibodies recognize a distinct epitope on CD13, and binding to this epitope interferes with both CD13-mediated cell adhesion and enzymatic activity. These antibodies may represent important tools to study cell-cell interactions mediated by CD13 in physiological and pathological conditions.
Collapse
|
29
|
Resheq YJ, Menzner AK, Bosch J, Tickle J, Li KK, Wilhelm A, Hepburn E, Murihead G, Ward ST, Curbishley SM, Zimmermann HW, Bruns T, Gilbert DF, Tripal P, Mackensen A, Adams DH, Weston CJ. Impaired Transmigration of Myeloid-Derived Suppressor Cells across Human Sinusoidal Endothelium Is Associated with Decreased Expression of CD13. THE JOURNAL OF IMMUNOLOGY 2017; 199:1672-1681. [PMID: 28739875 DOI: 10.4049/jimmunol.1600466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
Human monocytic myeloid-derived suppressor cells (MO-MDSCs) within the hepatic compartment suppress inflammation and impair immune surveillance in liver cancer. It is currently not known whether recruitment of MO-MDSCs from blood via hepatic sinusoidal endothelium (HSEC) contributes to their enrichment within the hepatic compartment. We compared the transmigratory potential of MO-MDSCs and monocytes after adhesion to hepatic endothelial monolayers in flow-based assays that mimic in vivo shear stress in the sinusoids. Despite comparable binding to HSEC monolayers, proportionally fewer MO-MDSCs underwent transendothelial migration, indicating that the final steps of extravasation, where actin polymerization plays an important role, are impaired in MO-MDSCs. In this article, we found reduced levels of CD13 on MO-MDSCs, which has recently been reported to control cell motility in monocytes, alongside reduced VLA-4 expression, an integrin predominantly involved in adherence to the apical side of the endothelium. CD13 and VLA-4 blocking and activating Abs were used in flow-based adhesion assays, live-cell imaging of motility, and actin polymerization studies to confirm a role for CD13 in impaired MO-MDSC transmigration. These findings indicate that CD13 significantly contributes to tissue infiltration by MO-MDSCs and monocytes, thereby contributing to the pathogenesis of hepatic inflammation.
Collapse
Affiliation(s)
- Yazid J Resheq
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; .,Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Ann-Katrin Menzner
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Jacobus Bosch
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Joseph Tickle
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ka-Kit Li
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Annika Wilhelm
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Division of Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London W2 1NY, United Kingdom
| | - Elizabeth Hepburn
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gillian Murihead
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stephen T Ward
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stuart M Curbishley
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Henning W Zimmermann
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tony Bruns
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Department of Medicine IV, University of Jena, 07743 Jena, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany; and
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - David H Adams
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Chris J Weston
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
30
|
The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion. PLoS One 2016; 11:e0160108. [PMID: 27467268 PMCID: PMC4965216 DOI: 10.1371/journal.pone.0160108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Aminopeptidase N (CD13) is a widely expressed cell surface metallopeptidase involved in the migration of cancer and endothelial cells. Apart from our demonstration that CD13 modulates the efficacy of tumor necrosis factor-α-induced apoptosis in neutrophils, no other function for CD13 has been ascribed in this cell. We hypothesized that CD13 may be involved in neutrophil migration and/or homotypic aggregation. Using purified human blood neutrophils we confirmed the expression of CD13 on neutrophils and its up-regulation by pro-inflammatory agonists. However, using the anti-CD13 monoclonal antibody WM-15 and the aminopeptidase enzymatic inhibitor bestatin we were unable to demonstrate any direct involvement of CD13 in neutrophil polarisation or chemotaxis. In contrast, IL-8-mediated neutrophil migration in type I collagen gels was significantly impaired by the anti-CD13 monoclonal antibodies WM-15 and MY7. Notably, these antibodies also induced significant homotypic aggregation of neutrophils, which was dependent on CD13 cross-linking and was attenuated by phosphoinositide 3-kinase and extracellular signal-related kinase 1/2 inhibition. Live imaging demonstrated that in WM-15-treated neutrophils, where homotypic aggregation was evident, the number of cells entering IL-8 impregnated collagen I gels was significantly reduced. These data reveal a novel role for CD13 in inducing homotypic aggregation in neutrophils, which results in a transmigration deficiency; this mechanism may be relevant to neutrophil micro-aggregation in vivo.
Collapse
|
31
|
Viktorsson K, Shah CH, Juntti T, Hååg P, Zielinska-Chomej K, Sierakowiak A, Holmsten K, Tu J, Spira J, Kanter L, Lewensohn R, Ullén A. Melphalan-flufenamide is cytotoxic and potentiates treatment with chemotherapy and the Src inhibitor dasatinib in urothelial carcinoma. Mol Oncol 2016; 10:719-34. [PMID: 26827254 PMCID: PMC5423156 DOI: 10.1016/j.molonc.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chemotherapy options in advanced urothelial carcinoma (UC) remain limited. Here we evaluated the peptide-based alkylating agent melphalan-flufenamide (mel-flufen) for UC. METHODS UC cell lines J82, RT4, TCCsup and 5637 were treated with mel-flufen, alone or combined with cisplatin, gemcitabine, dasatinib or bestatin. Cell viability (MTT assay), intracellular drug accumulation (liquid chromatography) apoptosis induction (apoptotic cell nuclei morphology, western blot analysis of PARP-1/caspase-9 cleavage and Bak/Bax activation) were evaluated. Kinome alterations were characterized by PathScan array and phospho-Src validated by western blotting. Aminopeptidase N (ANPEP) expression was evaluated in UC clinical specimens in relation to patient outcome. RESULTS In J82, RT4, TCCsup and 5637 UC cells, mel-flufen amplified the intracellular loading of melphalan in part via aminopeptidase N (ANPEP), resulting in increased cytotoxicity compared to melphalan alone. Mel-flufen induced apoptosis seen as activation of Bak/Bax, cleavage of caspase-9/PARP-1 and induction of apoptotic cell nuclei morphology. Combining mel-flufen with cisplatin or gemcitabine in J82 cells resulted in additive cytotoxic effects and for gemcitabine also increased apoptosis induction. Profiling of mel-flufen-induced kinome alterations in J82 cells revealed that mel-flufen alone did not inhibit Src phosphorylation. Accordingly, the Src inhibitor dasatinib sensitized for mel-flufen cytotoxicity. Immunohistochemical analysis of the putative mel-flufen biomarker ANPEP demonstrated prominent expression levels in tumours from 82 of 83 cystectomy patients. Significantly longer median overall survival was found in patients with high ANPEP expression (P = 0.02). CONCLUSION Mel-flufen alone or in combination with cisplatin, gemcitabine or Src inhibition holds promise as a novel treatment for UC.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden.
| | - Carl-Henrik Shah
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Petra Hååg
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Katarzyna Zielinska-Chomej
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Adam Sierakowiak
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Karin Holmsten
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jessica Tu
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Jack Spira
- InSpira Medical AB, SE-135 53 Tyresö, Sweden
| | - Lena Kanter
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anders Ullén
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
32
|
Huang J, Kast J. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5. J Proteome Res 2015; 14:3015-26. [PMID: 26159767 DOI: 10.1021/acs.jproteome.5b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Collapse
Affiliation(s)
- Jiqing Huang
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| | - Juergen Kast
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| |
Collapse
|
33
|
Tallmadge RL, Shen L, Tseng CT, Miller SC, Barry J, Felippe MJB. Bone marrow transcriptome and epigenome profiles of equine common variable immunodeficiency patients unveil block of B lymphocyte differentiation. Clin Immunol 2015; 160:261-76. [PMID: 25988861 DOI: 10.1016/j.clim.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/30/2022]
Abstract
Common variable immunodeficiency (CVID) is a late-onset humoral deficiency characterized by B lymphocyte dysfunction or loss, decreased immunoglobulin production, and recurrent bacterial infections. CVID is the most frequent human primary immunodeficiency but still presents challenges in the understanding of its etiology and treatment. CVID in equine patients manifests with a natural impairment of B lymphocyte differentiation, and is a unique model to identify genetic and epigenetic mechanisms of disease. Bone marrow transcriptome analyses revealed decreased expression of genes indicative of the pro-B cell differentiation stage, importantly PAX5 (p≤0.023). We hypothesized that aberrant epigenetic regulation caused PAX5 gene silencing, resulting in the late-onset and non-familial manifestation of CVID. A significant increase in PAX5 enhancer region methylation was identified in equine CVID patients by genome-wide reduced-representation bisulfite sequencing and bisulfite PCR sequencing (p=0.000). Thus, we demonstrate that integrating transcriptomics and epigenetics in CVID enlightens potential mechanisms of dysfunctional B lymphopoiesis or function.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lishuang Shen
- Cornell Mammalian Cell Reprogramming Core, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chia T Tseng
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Steven C Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jay Barry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14853, USA
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Licona-Limón I, Garay-Canales CA, Muñoz-Paleta O, Ortega E. CD13 mediates phagocytosis in human monocytic cells. J Leukoc Biol 2015; 98:85-98. [PMID: 25934926 PMCID: PMC7167067 DOI: 10.1189/jlb.2a0914-458r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/06/2015] [Indexed: 11/24/2022] Open
Abstract
The myelomonocytic marker aminopeptidase N/CD13 is a novel phagocytic receptor in monocytes and macrophages. CD13 is a membrane‐bound ectopeptidase, highly expressed on monocytes, macrophages, and dendritic cells. CD13 is involved in diverse functions, including degradation of peptide mediators, cellular adhesion, migration, viral endocytosis, signaling, and positive modulation of phagocytosis mediated by FcγRs and other phagocytic receptors. In this work, we explored whether besides acting as an accessory receptor, CD13 by itself is a primary phagocytic receptor. We found that hCD13 mediates efficient phagocytosis of large particles (erythrocytes) modified so as to interact with the cell only through CD13 in human macrophages and THP‐1 monocytic cells. The extent of this phagocytosis is comparable with the phagocytosis mediated through the canonical phagocytic receptor FcγRI. Furthermore, we demonstrated that hCD13 expression in the nonphagocytic cell line HEK293 is sufficient to enable these cells to internalize particles bound through hCD13. CD13‐mediated phagocytosis is independent of other phagocytic receptors, as it occurs in the absence of FcγRs, CR3, and most phagocytic receptors. Phagocytosis through CD13 is independent of its enzymatic activity but is dependent on actin rearrangement and activation of PI3K and is partially dependent on Syk activation. Moreover, the cross‐linking of CD13 with antibodies rapidly induced pSyk in human macrophages. Finally, we observed that antibody‐mediated cross‐linking of hCD13, expressed in the murine macrophage‐like J774 cell line, induces production of ROS. These results demonstrate that CD13 is a fully competent phagocytic receptor capable of mediating internalization of large particles.
Collapse
Affiliation(s)
- Ileana Licona-Limón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Claudia A Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Ofelia Muñoz-Paleta
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| |
Collapse
|
35
|
Ghosh M, Subramani J, Rahman MM, Shapiro LH. CD13 restricts TLR4 endocytic signal transduction in inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4466-76. [PMID: 25801433 DOI: 10.4049/jimmunol.1403133] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/19/2015] [Indexed: 01/09/2023]
Abstract
Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5(+) early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13(KO) dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13(KO) mice showed significantly enhanced IFNβ-mediated signal transduction via JAK-STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
36
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
37
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25:171-84. [PMID: 25618329 DOI: 10.1016/j.tcb.2014.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Since its discovery in 1994, recognized cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1-interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologs demonstrates unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in the integration of diverse signaling pathways.
Collapse
|
39
|
Rahimi N, Costello CE. Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics 2014; 15:300-9. [PMID: 25161153 DOI: 10.1002/pmic.201400183] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 01/02/2023]
Abstract
The vascular endothelial growth factor receptor-2 (VEGFR-2) belongs to the family of receptor tyrosine kinases and is a key player in vasculogenesis and pathological angiogenesis. An emerging picture of PTMs of VEGFR-2 suggests that they play central roles in generating a highly dynamic and complex signaling system that regulates key angiogenic responses ranging from endothelial cell differentiation, proliferation, migration to permeability. Recent MS analysis of VEGFR-2 uncovered previously unrecognized PTMs on VEGFR-2 with a distinct function. The ligand binding extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains highly decorated with N-glycosylation, while its cytoplasmic domain is subject to multiple PTMs including Tyr, Ser/Thr phosphorylation, Arg and Lys methylation, acetylation and ubiquitination. Here we review the PTMs on VEGFR-2, their importance in angiogenic signaling relays and possible novel therapeutic potentials.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
40
|
Ghosh M, Gerber C, Rahman MM, Vernier KM, Pereira FE, Subramani J, Caromile LA, Shapiro LH. Molecular mechanisms regulating CD13-mediated adhesion. Immunology 2014; 142:636-47. [PMID: 24627994 PMCID: PMC4107673 DOI: 10.1111/imm.12279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022] Open
Abstract
CD13/Aminopeptidase N is a transmembrane metalloproteinase that is expressed in many tissues where it regulates various cellular functions. In inflammation, CD13 is expressed on myeloid cells, is up-regulated on endothelial cells at sites of inflammation and mediates monocyte/endothelial adhesion by homotypic interactions. In animal models the lack of CD13 alters the profiles of infiltrating inflammatory cells at sites of ischaemic injury. Here, we found that CD13 expression is enriched specifically on the pro-inflammatory subset of monocytes, suggesting that CD13 may regulate trafficking and function of specific subsets of immune cells. To further dissect the mechanisms regulating CD13-dependent trafficking we used the murine model of thioglycollate-induced sterile peritonitis. Peritoneal monocytes, macrophages and dendritic cells were significantly decreased in inflammatory exudates from global CD13KO animals when compared with wild-type controls. Furthermore, adoptive transfer of wild-type and CD13KO primary myeloid cells, or wild-type myeloid cells pre-treated with CD13-blocking antibodies into thioglycollate-challenged wild-type recipients demonstrated fewer CD13KO or treated cells in the lavage, suggesting that CD13 expression confers a competitive advantage in trafficking. Similarly, both wild-type and CD13KO cells were reduced in infiltrates in CD13KO recipients, confirming that both monocytic and endothelial CD13 contribute to trafficking. Finally, murine monocyte cell lines expressing mouse/human chimeric CD13 molecules demonstrated that the C-terminal domain of the protein mediates CD13 adhesion. Therefore, this work verifies that the altered inflammatory trafficking in CD13KO mice is the result of aberrant myeloid cell subset trafficking and further defines the molecular mechanisms underlying this regulation.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rahman MM, Subramani J, Ghosh M, Denninger JK, Takeda K, Fong GH, Carlson ME, Shapiro LH. CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front Physiol 2014; 4:402. [PMID: 24409152 PMCID: PMC3885827 DOI: 10.3389/fphys.2013.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/21/2013] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus, show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT) and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1), showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus, contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal stem cell therapies.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA ; Department of Anesthesiology, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jiyeon K Denninger
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Kotaro Takeda
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Morgan E Carlson
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA ; Drug Discovery, Genomics Institute of the Novartis Research Foundation San Diego, CA, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|