1
|
Dutt TS, Choreño-Parra JA. Editorial: Tuberculosis and humoral immunity. Front Immunol 2025; 16:1562567. [PMID: 39995662 PMCID: PMC11847867 DOI: 10.3389/fimmu.2025.1562567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Affiliation(s)
- Taru S. Dutt
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - José Alberto Choreño-Parra
- Departamento de Enseñanza, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
2
|
Kelkar NS, Curtis NC, Lahey TP, Wieland-Alter W, Stout JE, Larson EC, Jauro S, Scanga CA, Darrah PA, Roederer M, Seder RA, von Reyn CF, Lee J, Ackerman ME. Humoral correlate of vaccine-mediated protection from tuberculosis identified in humans and non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627012. [PMID: 39713388 PMCID: PMC11661070 DOI: 10.1101/2024.12.05.627012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Development of an effective tuberculosis (TB) vaccine has been challenged by incomplete understanding of specific factors that provide protection against Mycobacterium tuberculosis (Mtb) and the lack of a known correlate of protection (CoP). Using a combination of samples from a vaccine showing efficacy (DarDar [NCT00052195]) and Bacille Calmette-Guerin (BCG)-immunized humans and nonhuman primates (NHP), we identify a humoral CoP that translates across species and vaccine regimens. Antibodies specific to the DarDar vaccine strain (M. obuense) sonicate (MOS) correlate with protection from the efficacy endpoint of definite TB. In humans, antibodies to MOS also scale with vaccine dose, are elicited by BCG vaccination, are observed during TB disease, and demonstrate cross-reactivity with Mtb; in NHP, MOS-specific antibodies scale with dose and serve as a CoP mediated by BCG vaccination. Collectively, this study reports a novel humoral CoP and specific antigenic targets that may be relevant to achieving vaccine-mediated protection from TB.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | | | - Timothy P. Lahey
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Wendy Wieland-Alter
- Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jason E. Stout
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - C. Fordham von Reyn
- Dartmouth International Vaccine Initiative, Geisel School of Medicine, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
3
|
Sefat KMSR, Kumar M, Kehl S, Kulkarni R, Leekha A, Paniagua MM, Ackart DF, Jones N, Spencer C, Podell BK, Ouellet H, Varadarajan N. An intranasal nanoparticle vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 2024; 42:125909. [PMID: 38704256 DOI: 10.1016/j.vaccine.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Mucosal vaccines have the potential to elicit protective immune responses at the point of entry of respiratory pathogens, thus preventing even the initial seed infection. Unlike licensed injectable vaccines, mucosal vaccines comprising protein subunits are only in development. One of the primary challenges associated with mucosal vaccines has been identifying and characterizing safe yet effective mucosal adjuvants that can effectively prime multi-factorial mucosal immunity. In this study, we tested NanoSTING, a liposomal formulation of the endogenous activator of the stimulator of interferon genes (STING) pathway, cyclic guanosine adenosine monophosphate (cGAMP), as a mucosal adjuvant. We formulated a vaccine based on the H1 antigen (fusion protein of Ag85b and ESAT-6) adjuvanted with NanoSTING. Intranasal immunization of NanoSTING-H1 elicited a strong T-cell response in the lung of vaccinated animals characterized by (a) CXCR3+ KLRG1- lung resident T cells that are known to be essential for controlling bacterial infection, (b) IFNγ-secreting CD4+ T cells which is necessary for intracellular bactericidal activity, and (c) IL17-secreting CD4+ T cells that can confer protective immunity against multiple clinically relevant strains of Mtb. Upon challenge with aerosolized Mycobacterium tuberculosis Erdman strain, intranasal NanoSTING-H1 provides protection comparable to subcutaneous administration of the live attenuated Mycobacterium bovis vaccine strain Bacille-Calmette-Guérin (BCG). Our results indicate that NanoSTING adjuvanted protein vaccines can elicit a multi-factorial immune response that protects from infection by M. tuberculosis.
Collapse
Affiliation(s)
- K M Samiur Rahman Sefat
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Monish Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Stephanie Kehl
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Rohan Kulkarni
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Ankita Leekha
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Melisa-Martinez Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole Jones
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Charles Spencer
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Cooper SK, Ackart DF, Lanni F, Henao-Tamayo M, Anderson GB, Podell BK. Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 2024; 15:1427472. [PMID: 39253081 PMCID: PMC11381408 DOI: 10.3389/fimmu.2024.1427472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The control of bacterial growth is key to the prevention and treatment of tuberculosis (TB). Granulomas represent independent foci of the host immune response that present heterogeneous capacity for control of bacterial growth. At the whole tissue level, B cells and CD4 or CD8 T cells have an established role in immune protection against TB. Immune cells interact within each granuloma response, but the impact of granuloma immune composition on bacterial replication remains unknown. Here we investigate the associations between immune cell composition, including B cell, CD4, and CD8 T cells, and the state of replicating Mycobacterium tuberculosis (Mtb) within the granuloma. A measure of ribosomal RNA synthesis, the RS ratio®, represents a proxy measure of Mtb replication at the whole tissue level. We adapted the RS ratio through use of in situ hybridization, to identify replicating and non-replicating Mtb within each designated granuloma. We applied a regression model to characterize the associations between immune cell populations and the state of Mtb replication within each respective granuloma. In the evaluation of nearly 200 granulomas, we identified heterogeneity in both immune cell composition and proportion of replicating bacteria. We found clear evidence of directional associations between immune cell composition and replicating Mtb. Controlling for vaccination status and endpoint post-infection, granulomas with lower CD4 or higher CD8 cell counts are associated with a higher percent of replicating Mtb. Conversely, changes in B cell proportions were associated with little change in Mtb replication. This study establishes heterogeneity across granulomas, demonstrating that certain immune cell types are differentially associated with control of Mtb replication. These data suggest that evaluation at the granuloma level may be imperative to identifying correlates of immune protection.
Collapse
Affiliation(s)
- Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - David Forrest Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Faye Lanni
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - G Brooke Anderson
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Consortium for Applied Microbial Metrics, Aurora, CO, United States
| |
Collapse
|
5
|
Niu Q, Wang M, Liu XS. The evolving landscape of IL-10, IL-22 and IL-26 in pleurisy especially in tuberculous pleurisy. Respir Res 2024; 25:275. [PMID: 39003443 PMCID: PMC11245850 DOI: 10.1186/s12931-024-02896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024] Open
Abstract
Pleurisy can be categorized as primary or secondary, arising from immunological, tumorous, or microbial conditions. It often results in lung structure damage and the development of various respiratory issues. Among the different types, tuberculous pleurisy has emerged as a prominent focus for both clinical and scientific investigations. The IL-10 family, known for its anti-inflammatory properties in the human immune system, is increasingly being studied for its involvement in the pathogenesis of pleurisy. This review aims to present a detailed overview of the intricate role of IL-10 family members (specifically IL-10, IL-22, and IL-26) in human and animal pleuritic diseases or relevant animal models. These insights could serve as valuable guidance and references for further studies on pleurisy and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Niu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Baoji Gaoxin Hospital, Baoji, 721000, China
| | - Xian-Sheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Wang Y, Jin F, Mao W, Yu Y, Xu W. Identification of diagnostic biomarkers correlate with immune infiltration in extra-pulmonary tuberculosis by integrating bioinformatics and machine learning. Front Microbiol 2024; 15:1349374. [PMID: 38384272 PMCID: PMC10879613 DOI: 10.3389/fmicb.2024.1349374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The diagnosis of tuberculosis depends on detecting Mycobacterium tuberculosis (Mtb). Unfortunately, recognizing patients with extrapulmonary tuberculosis (EPTB) remains challenging due to the insidious clinical presentation and poor performance of diagnostic tests. To identify biomarkers for EPTB, the GSE83456 dataset was screened for differentially expressed genes (DEGs), followed by a gene enrichment analysis. One hundred and ten DEGs were obtained, mainly enriched in inflammation and immune -related pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify 10 co-expression modules. The turquoise module, correlating the most highly with EPTB, contained 96 DEGs. Further screening with the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) narrowed down the 96 DEGs to five central genes. All five key genes were validated in the GSE144127 dataset. CARD17 and GBP5 had high diagnostic capacity, with AUC values were 0.763 (95% CI: 0.717-0.805) and 0.833 (95% CI: 0.793-0.869) respectively. Using single sample gene enrichment analysis (ssGSEA), we evaluated the infiltration of 28 immune cells in EPTB and explored their relationships with key genes. The results showed 17 immune cell subtypes with significant infiltrations in EPTB. CARD17, GBP5, HOOK1, LOC730167, and HIST1H4C were significantly associated with 16, 14, 12, 6, and 4 immune cell subtypes, respectively. The RT-qPCR results confirmed that the expression levels of GBP5 and CARD17 were higher in EPTB compared to control. In conclusion, CARD17 and GBP5 have high diagnostic efficiency for EPTB and are closely related to immune cell infiltration.
Collapse
Affiliation(s)
| | | | | | | | - Wenfang Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
7
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang D, Rosenberg JM, Klein EC, Gideon HP, Floyd-O’Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells are homeostatic regulators during Mtb reinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572669. [PMID: 38187598 PMCID: PMC10769325 DOI: 10.1101/2023.12.20.572669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.
Collapse
Affiliation(s)
- Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C. Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Sarah K. Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Roisin Floyd-O’Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Lead contact
| |
Collapse
|
8
|
Davuluri KS, Singh AK, Yadav VK, Singh AV, Singh SV, Chauhan DS. Dominant negative biologics normalise the tumour necrosis factor (TNF-α) induced angiogenesis which exploits the Mycobacterium tuberculosis dissemination. BMC Immunol 2023; 24:49. [PMID: 38036985 PMCID: PMC10691138 DOI: 10.1186/s12865-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF) is known to promote T cell migration and increase the expression of vascular endothelial growth factor (VEGF) and chemokines. The administration of Xpro-1595, a dominant-negative TNF (DN-TNF) engineered to selectively inactivate soluble TNF (solTNF), has been extensively studied and proven effective in reducing TNF production without suppressing innate immunity during infection. The literature also supports the involvement of glutamic acid-leucine-arginine (ELR+) chemokines and VEGF in angiogenesis and the spread of infections. MATERIALS AND METHODS In this study, we administered Xpro-1595 to guinea pigs to selectively inhibit solTNF, aiming to assess its impact on Mycobacterium tuberculosis (M.tb) dissemination, bacterial growth attenuation, and immunological responses. We conducted immunohistochemical analyses, immunological assays, and colony enumeration to comprehensively study the effects of Xpro-1595 by comparing with anti-TB drugs treated M.tb infected guinea pigs. Throughout the infection and treatment period, we measured the levels of Interleukin-12 subunit alpha (IL-12), Interferon-gamma (IFN-γ), TNF, Tumor growth factor (TGF), and T lymphocytes using ELISA. RESULTS Our findings revealed a reduction in M.tb dissemination and inflammation without compromising the immune response during Xpro-1595 treatment. Notably, Xpro-1595 therapy effectively regulated the expression of VEGFA and ELR + chemokines, which emerged as key factors contributing to infection dissemination. Furthermore, this treatment influenced the migration of CD4 T cells in the early stages of infection, subsequently leading to a reduced T cell response and controlled proinflammatory signalling, thus mitigating inflammation. CONCLUSION Our study underscores the pivotal role of solTNF in the dissemination of M.tb to other organs. This preliminary investigation sheds light on the involvement of solTNF in the mechanisms underlying M.tb dissemination, although further in-depth research is warranted to fully elucidate its role in this process.
Collapse
Affiliation(s)
- Kusuma Sai Davuluri
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department Biotechnology, GLA University, Mathura, India
| | - Amit Kumar Singh
- Department of Animal Experimentation Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Vimal Kumar Yadav
- Department of Animal Experimentation Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
| |
Collapse
|
9
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
11
|
Liu Z, Ran H, Yu X, Wu Q, Zhang C. Immunocyte count combined with CT features for distinguishing pulmonary tuberculoma from malignancy among non-calcified solitary pulmonary solid nodules. J Thorac Dis 2023; 15:386-398. [PMID: 36910060 PMCID: PMC9992615 DOI: 10.21037/jtd-22-1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
Background Tuberculoma is the most common type of surgically removed benign solid solitary pulmonary nodule (SPN) and can lead to a high risk of misdiagnoses for clinicians. This study aimed to discuss the value of the immunocyte count combined with computed tomography (CT) features in distinguishing pulmonary tuberculoma from malignancy among non-calcified solid SPNs. Methods Forty-eight patients with pulmonary tuberculoma and 52 patients with lung cancer were retrospectively included in our study. Univariate and multivariate analyses were conducted to screen the independent predictors. Receiver operating characteristic (ROC) analysis was performed to investigate the validity of the predictive model. Results The univariate and multivariate analyses revealed that a coarse margin, vacuole, lobulation, pleural indentation, cluster of differentiation (CD)3+ T-lymphocyte count, and CD4+ T-lymphocyte count were independent predictors for distinguishing pulmonary tuberculoma from malignancy. The sensitivity, specificity, accuracy, and the area under the ROC curve of the model comprising the CD3+ T-lymphocyte count were 79.2%, 75%, 74.5%, and 0.845 [95% confidence interval (CI), 0.759-0.910], respectively, and those of the model involving the CD4+ T-lymphocyte count were 77.1%, 78.8%, 77.1%, and 0.857 (95% CI, 0.773-0.919), respectively. Conclusions Immunocyte count combined with CT features is efficient in distinguishing pulmonary tuberculoma from malignancy among non-calcified solid SPNs and has applicable clinical value.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiran Yu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Davuluri KS, Singh SV, Chauhan D. Bacterial dissemination in Mycobacterium tuberculosis by CD+ T-cells & proinflammatory cytokines. Indian J Med Res 2023; 158:40-46. [PMID: 37602585 PMCID: PMC10550058 DOI: 10.4103/ijmr.ijmr_2143_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 08/03/2023] Open
Abstract
Background & objectives As CD4+ and CD8+ T lymphocyte numbers decline, the conventional, localized forms of tuberculosis shift to the atypical, disseminated forms. Variations in lymphocyte and immune cell expression levels affect how tuberculosis manifests in disseminated forms. Understanding the relationship between lymphocyte counts (CD4+ and CD8+) and pro-inflammatory cytokines such as tumour necrosis factor-alpha, interleukin-12 and interferon, we may therefore be able to shed light on how infections spread and suggest potential biomarkers for these immune factors. Methods In this study, 15 guinea pigs were infected with Mycobacterium tuberculosis (M.tb) H37Rv strain and grouped into three groups of five each for further investigation. Serum samples and bronchoalveolar lavage (BAL) fluid were examined for the expression of pro-inflammatory cytokines and T-cell subsets in guinea pigs infected with pulmonary tuberculosis and disseminated tuberculosis. Results We found that M.tb escapes macrophages due to pro-inflammatory cytokine dysregulation. Despite the protective immunity created by T-cells and cytokines, M.tb bacilli may spread to other organs due to inflammation induced by these immune components. A high number of T-cells and stimulated cytokine production are involved in triggering inflammation after necrotic tissue develops and tuberculosis spreads. Interpretation & conclusions Our findings imply that increased bacilli in the spleen at the 8th wk of infection may be caused by the overexpression of CD4+ T-cell lymphocyte subsets and cytokines that generated inflammation during the 4th wk of infection. This is a pilot study with a small sample size and less assertive inference. Larger studies would be helpful to validate the results of the present investigation.
Collapse
Affiliation(s)
- Kusuma Sai Davuluri
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
- Department Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - D.S. Chauhan
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
13
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
14
|
Zou S, Xiang Y, Guo W, Zhu Q, Wu S, Tan Y, Yan Y, Shen L, Feng Y, Liang K. Phenotype and function of peripheral blood γδ T cells in HIV infection with tuberculosis. Front Cell Infect Microbiol 2022; 12:1071880. [PMID: 36619740 PMCID: PMC9816428 DOI: 10.3389/fcimb.2022.1071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although γδ T cells play an essential role in immunity against Human Immunodeficiency Virus (HIV) or Mycobacterium tuberculosis (MTB), they are poorly described in HIV infection with tuberculosis (TB). Methods The phenotypic and functional properties of peripheral blood γδ T cells in patients with HIV/TB co-infection were analyzed compared to healthy controls and patients with HIV mono-infection or TB by direct intracellular cytokine staining (ICS). Results The percentage of Vδ1 subset in HIV/TB group was significantly higher than that in TB group, while the decreased frequency of the Vδ2 and Vγ2Vδ2 subsets were observed in HIV/TB group than in TB group. The percentage of CD4+CD8- Vδ2 subset in HIV/TB group was markedly lower than in TB group. However, the percentage of CD4+CD8+ Vδ2 subset in HIV/TB group was markedly higher than HIV group or TB group. A lower percentage TNF-α and a higher percentage of IL-17A of Vδ2 subset were observed in HIV/TB group than that in HIV mono-infection. The percentage of perforin-producing Vδ2 subset was significantly lower in HIV/TB group than that in HIV group and TB group. Conclusions Our data suggested that HIV/TB co-infection altered the balance of γδ T cell subsets. The influence of HIV/TB co-infection on the function of γδ T cells to produce cytokines was complicated, which will shed light on further investigations on the mechanisms of the immune response against HIV and/or MTB infection.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Wei Guo
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, United States,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Yong Feng
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China,Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| |
Collapse
|
15
|
Joslyn LR, Flynn JL, Kirschner DE, Linderman JJ. Concomitant immunity to M. tuberculosis infection. Sci Rep 2022; 12:20731. [PMID: 36456599 PMCID: PMC9713124 DOI: 10.1038/s41598-022-24516-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Some persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells. Further, we compare HostSim reinfection experiments to observational TB studies from the pre-antibiotic era to predict that the upper bound of the lifespan of resident memory T cells in human lung tissue is likely 2-3 years. To the authors' knowledge, this is the first estimate of resident memory T-cell lifespan in humans. Our findings are a first step towards demonstrating the important role of Trms in preventing disease and suggest that the induction of lung Trms is likely critical for vaccine success.
Collapse
Affiliation(s)
- Louis R. Joslyn
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, 1150W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620 USA
| | - JoAnne L. Flynn
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Denise E. Kirschner
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, 1150W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620 USA
| | - Jennifer J. Linderman
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136 USA
| |
Collapse
|
16
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
17
|
Li Q, Liu S, Li X, Yang R, Liang C, Yu J, Lin W, Liu Y, Yao C, Pang Y, Dai X, Li C, Tang S. The Association of Peripheral T Lymphocyte Subsets Disseminated Infection by Mycobacterium Tuberculosis in HIV-Negative Patients: A Retrospective Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1606. [PMID: 36363564 PMCID: PMC9692453 DOI: 10.3390/medicina58111606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024]
Abstract
Background and Objective: This study was performed to investigate the association of peripheral T lymphocyte subsets with disseminated infection (DI) by Mycobacterium tuberculosis (MTB) in HIV-negative patients. Methods and Materials: The study included 587 HIV-negative tuberculosis (TB) patients. Results: In TB patients with DI, the proportion of CD4+ T cells decreased, the proportion of CD8+ T cells increased, and the ratio of CD4+/CD8+ T cells decreased. According to univariate analysis, smoking, alcohol consumption, rifampicin-resistance, retreatment, and high sputum bacterial load were linked to lower likelihood of developing MTB dissemination. Multivariate analysis indicated that after adjustment for alcohol use, smoking, retreatment, smear, culture, rifampicin-resistance, and CD4+/CD8+, the proportion of CD8+ T cells (but not CD4+ T cells) was independently and positively associated with the prevalence of DI in HIV-negative pulmonary TB (PTB) patients. Conclusions: Examining T lymphocyte subsets is of great value for evaluating the immune function of HIV-negative TB patients, and an increase in the CD8+ T cell proportion may be a critical clue regarding the cause of DI in such patients.
Collapse
Affiliation(s)
- Qiao Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shengsheng Liu
- Department of Tuberculosis, Anhui Chest Hospital, Hefei 230022, China
| | - Xiaomeng Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ruifang Yang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chen Liang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jiajia Yu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Wenhong Lin
- Department of Tuberculosis, Anhui Chest Hospital, Hefei 230022, China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xiaowei Dai
- Beijing Center for Disease Prevention and Control, Beijing 100035, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shenjie Tang
- Multidisciplinary Diagnosis and Treatment Centre for Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
18
|
Scioscia G, Lacedonia D, Giuffreda E, Caccavo I, Quarato CMI, Soccio P, Tondo P, Sassani EV, Pescatore D, Foschino Barbaro MP. Adaptive immunity in different CT patterns of active tuberculosis and possible variability according to patients' geographic provenience. Front Med (Lausanne) 2022; 9:890609. [PMID: 36160177 PMCID: PMC9489992 DOI: 10.3389/fmed.2022.890609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIt is still unclear if low lymphocyte levels are directly related to immunological modifications induced by the TB infection or if they depend on the general pre-existing health impairment of affected patients. Our aim was to detect eventual differences in the immunological status of patients with pulmonary TB compared to an age and sex-matched group of hospitalized patients with other bacterial community-acquired pneumonia (CAP). In addition, we tried to assess an association between alterations in the peripheral lymphocyte subsets and the development of different CT patterns of active TB and to discover differences in the immunological status and in the radiological patterns of TB presentation between patients of different geographic proveniences.MethodsThis observational study included 48 patients with TB and 48 sex- and age-matched patients affected by other bacterial CAP. The presence of HIV/AIDS, other immunocompromising conditions, and confounding chronic pulmonary comorbidities was excluded. Flow cytometry was performed on all the enrolled subjects at admission, before starting the appropriate antibiotic therapy. Patients with TB also underwent a computed tomography (CT) scan.ResultsPatients with TB showed a decrease in the absolute count of all the lymphocyte subsets compared to the CAP group. Only the reduction in the percentage of CD4+ T-lymphocytes was significant, while the percentage of CD8+ T-lymphocytes was significantly increased. Patients presenting exudative forms with atypical locations of TB showed a significant reduction in the absolute count and percentage of CD19+ B-lymphocytes compared to those affected by productive TB forms with the typical location. Despite being younger, our black Sub-Saharan Africans showed a significant reduction in the CD4+ T-lymphocytes compartment and a higher prevalence of atypical and exudative forms of TB compared with white Europeans.ConclusionTuberculosis itself may alter peripheral blood lymphocyte subsets compared to other CAP. An impaired CD19+ B-lymphocyte compartment may result in an abnormal exudative response in atypical locations and a suboptimal bacterial control. Other constitutive or environmental causes may influence immunological differences found in patients with TB, particularly in case of different geographic origins. Anyhow, flow cytometry may be of great value in evaluating the immune function of these patients.
Collapse
Affiliation(s)
- Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy
| | - Ernesto Giuffreda
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy
| | - Incoronata Caccavo
- Internistic Department, Institute of Respiratory Disease, Azienda Ospedaliera Regionale San Carlo, Potenza, Italy
| | - Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy
- *Correspondence: Carla Maria Irene Quarato
| | - Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Dalila Pescatore
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy
| |
Collapse
|
19
|
Shen H, Yang E, Guo M, Yang R, Huang G, Peng Y, Sha W, Wang F, Shen L. Adjunctive Zoledronate+IL-2 administrations enhance anti-tuberculosis Vγ2Vδ2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis. Emerg Microbes Infect 2022; 11:1790-1805. [PMID: 35765887 PMCID: PMC9310823 DOI: 10.1080/22221751.2022.2095930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a refractory disease with high mortality rate due to no or few choices of antibiotics. Adjunctive immunotherapy may help improve treatment outcome of MDR-TB. Our decade-long studies demonstrated that phosphoantigen-specific Vγ2Vδ2 T cells play protective roles in immunity against TB. Here, we hypothesized that enhancing protective Vγ2Vδ2 T-effector cells could improve treatment outcome of MDR-TB. To address this, we employed clinically approved drugs Zoledronate (ZOL) and IL-2 to induce anti-TB Vγ2Vδ2 T-effector cells as adjunctive immunotherapy against MDR-TB infection of macaques. We found that adjunctive ZOL/IL-2 administrations during TB drugs treatment of MDR-TB-infected macaques significantly expanded Vγ2Vδ2 T cells and enhanced/sustained Vγ2Vδ2 T-effector subpopulation producing anti-TB cytokines until week 21. ZOL/IL-2 administrations, while expanding Vγ2Vδ2 T cells, significantly increased/sustained numbers of circulating CD4+ Th1 and CD8+ Th1-like effector populations, with some γδ T- or αβ T-effector populations trafficking to airway at week 3 until week 19 or 21 after MDR-TB infection. Adjunctive ZOL/IL-2 administrations after MDR-TB infection led to lower bacterial burdens in lungs than TB drugs alone, IL-2 alone or saline controls, and resulted in milder MDR-TB pathology/lesions. Thus, adjunctive Zoledronate + IL-2 administrations can enhance anti-TB Vγ2Vδ2 T- and αβ T-effector populations, and improve treatment outcome of MDR-TB.
Collapse
Affiliation(s)
- Hongbo Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Enzhuo Yang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Rui Yang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Guixian Huang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ying Peng
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Shen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Zou S, Tan Y, Xiang Y, Liu Y, Zhu Q, Wu S, Guo W, Luo M, Shen L, Liang K. The Role of CD4+CD8+ T Cells in HIV Infection With Tuberculosis. Front Public Health 2022; 10:895179. [PMID: 35712309 PMCID: PMC9195591 DOI: 10.3389/fpubh.2022.895179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Tuberculosis (TB) is an important opportunistic infection in acquired immunodeficiency diseases (AIDS). Although the frequency of CD4+CD8+ double-positive (DP) T cells has been observed to increase in pathological conditions, their role (phenotypic and functional) is poorly described, especially in human immunodeficiency virus (HIV) infection with TB (HIV/TB (HT) coinfection). Methods The percentage and phenotypic and functional properties of peripheral blood DP T cells in patients with HT coinfection in comparison to uninfected controls and to patients with HIV or TB mono-infection were analyzed by direct intracellular cytokine staining (ICS). Results Total and CD4lowCD8high DP T cells were significantly increased in patients with both HIV and TB mono-infection, especially in patients with HT coinfection. Compared with healthy controls (HCs), the percentage of DP T cells expressing chemokine receptor 5 (CCR5) in patients with HT coinfection was significantly higher. Compared with HCs and patients with TB, a lower percentage of tumor necrosis factor α (TNF-α) secreting DP T cells and a higher percentage of granzyme A-secreting DP T cells were observed in patients with HIV mono-infection and HT coinfection, respectively. In addition, DP T cells expressed more cytolytic markers (granzyme A and perforin) than CD4+ T cells, but similarly to CD8+ T cells in patients with HT coinfection. Conclusions Our data suggested that HT coinfection resulted in a marked increase in DP T cells, especially the CD4lowCD8high subpopulation. DP T cells may be susceptible to HT coinfection, and have the same cytotoxic function as CD8+ T cells.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- School of Economics and Management, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
- *Correspondence: Ling Shen
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
- Ke Liang
| |
Collapse
|
21
|
Joslyn LR, Linderman JJ, Kirschner DE. A virtual host model of Mycobacterium tuberculosis infection identifies early immune events as predictive of infection outcomes. J Theor Biol 2022; 539:111042. [PMID: 35114195 PMCID: PMC9169921 DOI: 10.1016/j.jtbi.2022.111042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of immune cells in the blood accurately reflect ongoing events during infection within human lungs. Herein, we utilize a systems biology approach by developing a whole-host model of the immune response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-scale model of the immune response following Mtb infection. We show that this model can capture various aspects of human and non-human primate TB disease and predict that biomarkers in the blood may only faithfully represent events in the lung at early time points after infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, offers a powerful computational tool that can be used in concert with experimental approaches to understand and predict events about various aspects of TB disease and therapeutics.
Collapse
Affiliation(s)
- Louis R Joslyn
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620; Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136.
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620.
| |
Collapse
|
22
|
N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan as Adjuvant Enhances the Immunogenicity of a VP2 Subunit Vaccine against Porcine Parvovirus Infection in Sows. Vaccines (Basel) 2021; 9:vaccines9091027. [PMID: 34579264 PMCID: PMC8472385 DOI: 10.3390/vaccines9091027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/16/2022] Open
Abstract
Porcine parvovirus (PPV) is the most important infectious agent causing infertility in pigs, which can be prevented by routine vaccination. Successful vaccination depends on the association with potent adjuvants that can enhance the immunogenicity of antigen and activate the immune system. Polysaccharide adjuvant has low toxicity and high safety, and they can enhance the humoral, cellular and mucosal immune responses. In the present study, we prepared the VP2 protein subunit vaccine against PPV (PPV/VP2/N-2-HACC) using water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) as the vaccine adjuvant, and the ability of the PPV/VP2/N-2-HACC to induce immune responses and protect sows from PPV infection was evaluated. In vivo immunization showed that the sows immunized with the PPV/VP2/N-2-HACC by intramuscular injection produced higher HI antibody levels and long-term immune protection compared with the other groups, while the subunit vaccine did not stimulate the proliferation of CD4+ and CD8+ T lymphocytes to trigger the secretion of higher levels of IL-2, IL-4, IFN-α, IFN-β, and IFN-γ, indicating that the PPV/VP2/N-2-HACC mainly induced humoral immunity rather than cellular immunity. PPV was not detected in the viscera of the sows immunized with the PPV/VP2/N-2-HACC, and the protective efficacy was 100%. Collectively, our findings suggested that the N-2-HACC was a potential candidate adjuvant, and the PPV/VP2/N-2-HACC had immense application value for the control of PPV.
Collapse
|
23
|
Qin S, Chen R, Jiang Y, Zhu H, Chen L, Chen Y, Shen M, Lin X. Multifunctional T cell response in active pulmonary tuberculosis patients. Int Immunopharmacol 2021; 99:107898. [PMID: 34333359 DOI: 10.1016/j.intimp.2021.107898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tuberculosis still threatens human health. We aimed to investigate the T cell immune status and the role of multifunctional T cells in pulmonary tuberculosis patients. METHODS Thirty active pulmonary tuberculosis (APTB) patients, 30 latent tuberculosis infection (LTBI) patients, 25 cured pulmonary tuberculosis (CPTB) patients and 25 healthy controls (HCs) enrolled in this study. Flow cytometer for detecting T cell phenotype and function. CBA Flex Set was used to measure chemokine. RESULTS Compared with HCs and LTBI patients, APTB patients had fewer CD4+ T and CD8+ T cells, but the expression of granzyme A, granzyme B and perforin on CD8+ T cells increased. Compared to LTBI and CPTB patients, Mycobacterium tuberculosis-specific CD8+ T cells in APTB patients appeared to be more differentiated CD45RA-CCR7- cells, and there were more multifunctional CD4+ T and CD8+ T cells. Importantly, the frequency of multifunctional CD4+ T cells in the pleural fluid of APTB patients was higher than that of peripheral blood. And the proportion of multifunctional CD4+ T cells expressing the migration receptor CXCR3 in the peripheral blood of APTB patients decreased, while the concentrations of its ligands, chemokine MIG, IP-10 and I-TAC increased significantly in plasma, especially in pleural fluid. CONCLUSIONS Decreased T lymphocytes in APTB patients may cause compensatory activation of CD8+ T cells. Multifunctional CD4+ T cells in peripheral blood could migrate to the lungs under the action of CXCR3 and associated chemokine. Multifunctional CD4+ T cells and Multifunctional CD8+ T cells were of great significance in monitoring disease treatment.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ruiqi Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yujie Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanfan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiangyang Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
24
|
Parveen S, Lun S, Urbanowski ME, Cardin M, Shen J, Murphy JR, Bishai WR. Effective host-directed therapy for tuberculosis by targeted depletion of myeloid-derived suppressor cells and related cells using a diphtheria toxin-based fusion protein. J Infect Dis 2021; 224:1962-1972. [PMID: 33955457 DOI: 10.1093/infdis/jiab235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in elevated numbers in TB patients and have been found to be permissive for Mycobacterium tuberculosis (Mtb) proliferation. To determine whether depletion of MDSCs may improve host control of TB, we used a novel diphtheria toxin-based fusion protein known as DABIL-4 that targets and depletes IL-4-receptor positive cells. We show that DABIL-4 depletes both PMN-MDSCs and M-MDSC, increases IFNγ + T-cells, and reduces the lung bacillary burden in the mouse TB model. These results indicate that MDSC-depleting therapies targeting the IL-4 receptor are beneficial in TB and offer an avenue towards host-directed TB therapy.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Shichun Lun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Michael E Urbanowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Mitchell Cardin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Jessica Shen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - John R Murphy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - William R Bishai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| |
Collapse
|
25
|
Yang R, Peng Y, Pi J, Liu Y, Yang E, Shen X, Yao L, Shen L, Modlin RL, Shen H, Sha W, Chen ZW. A CD4+CD161+ T-Cell Subset Present in Unexposed Humans, Not Tb Patients, Are Fast Acting Cells That Inhibit the Growth of Intracellular Mycobacteria Involving CD161 Pathway, Perforin, and IFN-γ/Autophagy. Front Immunol 2021; 12:599641. [PMID: 33732233 PMCID: PMC7959736 DOI: 10.3389/fimmu.2021.599641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
It remains undefined whether a subset of CD4+ T cells can function as fast-acting cells to control Mycobacterium tuberculosis (Mtb) infection. Here we show that the primary CD4+CD161+ T-cell subset, not CD4+CD161-, in unexposed healthy humans fast acted as unconventional T cells capable of inhibiting intracellular Mtb and BCG growth upon exposure to infected autologous and allogeneic macrophages or lung epithelial A549 cells. Such inhibition coincided with the ability of primary CD4+CD161+ T cells to rapidly express/secrete anti-TB cytokines including IFN-γ, TNF-α, IL-17, and perforin upon exposure to Mtb. Mechanistically, blockades of CD161 pathway, perforin or IFN-γ by blocking mAbs abrogated the ability of CD4+CD161+ T cells to inhibit intracellular mycobacterial growth. Pre-treatment of infected macrophages with inhibitors of autophagy also blocked the CD4+CD161+ T cell-mediated growth inhibition of mycobacteria. Furthermore, adoptive transfer of human CD4+CD161+ T cells conferred protective immunity against mycobacterial infection in SCID mice. Surprisingly, CD4+CD161+ T cells in TB patients exhibited a loss or reduction of their capabilities to produce perforin/IFN-γ and to inhibit intracellular growth of mycobacteria in infected macrophages. These immune dysfunctions were consistent with PD1/Tim3 up-regulation on CD4+CD161+ T cells in active tuberculosis patients, and the blockade of PD1/Tim3 on this subset cells enhanced the inhibition of intracellular mycobacteria survival. Thus, these findings suggest that a fast-acting primary CD4+CD161+T-cell subset in unexposed humans employs the CD161 pathway, perforin, and IFN-γ/autophagy to inhibit the growth of intracellular mycobacteria, thereby distinguishing them from the slow adaptive responses of conventional CD4+ T cells. The presence of fast-acting CD4+CD161+ T-cell that inhibit mycobacterial growth in unexposed humans but not TB patients also implicates the role of these cells in protective immunity against initial Mtb infection.
Collapse
Affiliation(s)
- Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.,Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, China
| | - Ying Peng
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Yidian Liu
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Enzhuo Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Xiaona Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Lan Yao
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Robert L Modlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
26
|
Millar JA, Butler JR, Evans S, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. Spatial Organization and Recruitment of Non-Specific T Cells May Limit T Cell-Macrophage Interactions Within Mycobacterium tuberculosis Granulomas. Front Immunol 2021; 11:613638. [PMID: 33552077 PMCID: PMC7855029 DOI: 10.3389/fimmu.2020.613638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is a worldwide health problem; successful interventions such as vaccines and treatment require a 2better understanding of the immune response to infection with Mycobacterium tuberculosis (Mtb). In many infectious diseases, pathogen-specific T cells that are recruited to infection sites are highly responsive and clear infection. Yet in the case of infection with Mtb, most individuals are unable to clear infection leading to either an asymptomatically controlled latent infection (the majority) or active disease (roughly 5%-10% of infections). The hallmark of Mtb infection is the recruitment of immune cells to lungs leading to development of multiple lung granulomas. Non-human primate models of TB indicate that on average <10% of T cells within granulomas are Mtb-responsive in terms of cytokine production. The reason for this reduced responsiveness is unknown and it may be at the core of why humans typically are unable to clear Mtb infection. There are a number of hypotheses as to why this reduced responsiveness may occur, including T cell exhaustion, direct downregulation of antigen presentation by Mtb within infected macrophages, the spatial organization of the granuloma itself, and/or recruitment of non-Mtb-specific T cells to lungs. We use a systems biology approach pairing data and modeling to dissect three of these hypotheses. We find that the structural organization of granulomas as well as recruitment of non-specific T cells likely contribute to reduced responsiveness.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - J Russell Butler
- Department of Health and Biomedical Sciences, AdventHealth University, Orlando, FL, United States
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis 2020; 26 Suppl 1:69-79. [PMID: 32862519 PMCID: PMC7570967 DOI: 10.1111/odi.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September –15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sharof Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srabanti Rakshit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annapurna Vyakarnam
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
28
|
Choreño-Parra JA, Jiménez-Álvarez LA, Muñoz-Torrico M, Ramírez-Martínez G, Jiménez-Zamudio LA, Salinas-Lara C, García-Latorre EA, Zúñiga J. Antigens of Mycobacterium tuberculosis Stimulate CXCR6+ Natural Killer Cells. Front Immunol 2020; 11:582414. [PMID: 33117393 PMCID: PMC7549382 DOI: 10.3389/fimmu.2020.582414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells participate in immunity against several pathogens by exerting cytotoxic and cytokine-production activities. Some NK cell subsets also mediate recall responses that resemble memory of adaptive lymphocytes against antigenic and non-antigenic stimuli. The C-X-C motif chemokine receptor 6 (CXCR6) is crucial for the development and maintenance of memory-like responses in murine NK cells. In humans, several subsets of tissue-resident and circulating NK cells with different functional properties express CXCR6. However, the role of CXCR6+ NK cells in immunity against relevant human pathogens is unknown. Here, we addressed whether murine and human CXCR6+ NK cells respond to antigens of Mycobacterium tuberculosis (Mtb). For this purpose, we evaluated the immunophenotype of hepatic and splenic CXCR6+ NK cells in mice exposed to a cell-wall (CW) extract of Mtb strain H37Rv. Also, we characterized the expression of CXCR6 in peripheral NK cells from active pulmonary tuberculosis (ATB) patients, individuals with latent TB infection (LTBI), and healthy volunteer donors (HD). Furthermore, we evaluated the responses of CXCR6+ NK cells from HD, LTBI, and ATB subjects to the in vitro exposure to CW preparations of Mtb H37Rv and Mtb HN878. Our results showed that murine hepatic CXCR6+ NK cells expand in vivo after consecutive administrations of Mtb H37Rv CW to mice. Remarkably, pooled hepatic and splenic, but not isolated splenic NK cells from treated mice, enhance their cytokine production capacity after an in vitro re-challenge with H37Rv CW. In humans, CXCR6+ NK cells were barely detected in the peripheral blood, although slightly significative increments in the percentage of CXCR6+, CXCR6+CD49a−, CXCR6+CD49a+, and CXCR6+CD69+ NK cells were observed in ATB patients as compared to HD and LTBI individuals. In contrast, the expansion of CXCR6+CD49a− and CXCR6+CD69+ NK cells in response to the in vitro stimulation with Mtb H37Rv was higher in LTBI individuals than in ATB patients. Finally, we found that Mtb HN878 CW generates IFN-γ-producing CXCR6+CD49a+ NK cells. Our results demonstrate that antigens of both laboratory-adapted and clinical Mtb strains are stimulating factors for murine and human CXCR6+ NK cells. Future studies evaluating the role of CXCR6+ NK cells during TB are warranted.
Collapse
Affiliation(s)
- José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Marcela Muñoz-Torrico
- Tuberculosis Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | | | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
29
|
Bickett TE, Karam SD. Tuberculosis-Cancer Parallels in Immune Response Regulation. Int J Mol Sci 2020; 21:ijms21176136. [PMID: 32858811 PMCID: PMC7503600 DOI: 10.3390/ijms21176136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis and cancer are two diseases with proclivity for the development of resistance to the host immune system. Mechanisms behind resistance can be host derived or disease mediated, but they usually depend on the balance of pro-inflammatory to anti-inflammatory immune signals. Immunotherapies have been the focus of efforts to shift that balance and drive the response required for diseases eradication. The immune response to tuberculosis has widely been thought to be T cell dependent, with the majority of research focused on T cell responses. However, the past decade has seen greater recognition of the importance of the innate immune response, highlighting factors such as trained innate immunity and macrophage polarization to mycobacterial clearance. At the same time, there has been a renaissance of immunotherapy treatments for cancer since the first checkpoint inhibitor passed clinical trials, in addition to work highlighting the importance of innate immune responses to cancer. However, there is still much to learn about host-derived responses and the development of resistance to new cancer therapies. This review examines the similarities between the immune responses to cancer and tuberculosis with the hope that their commonalities will facilitate research collaboration and discovery.
Collapse
|
30
|
Baluku JB, Musaazi J, Mulwana R, Mugabo AR, Bongomin F, Katagira W. Prevalence and Predictors of CD4+ T-Lymphocytopenia Among HIV-Negative Tuberculosis Patients in Uganda. Res Rep Trop Med 2020; 11:45-51. [PMID: 32612406 PMCID: PMC7323690 DOI: 10.2147/rrtm.s252550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose CD4+ T-lymphocytopenia is a risk for tuberculosis (TB) infection, reactivation and severe disease. We sought to determine the prevalence and predictors of CD4 T-lymphocytopenia among HIV-negative patients with bacteriologically confirmed TB in Uganda. Patients and Methods Eligible participants were adult HIV-negative patients with bacteriologically confirmed TB at the National TB Treatment Centre in Uganda. CD4+ and CD8+ T-lymphocyte counts were determined by flow cytometry. We defined CD4+ T-lymphocytopenia as a CD4+ T-lymphocyte count of <418 cells/mm3 as per the population estimate for Ugandans. We performed logistic regression analysis to determine predictors of CD4+ T-lymphocytopenia. Results We enrolled 216 participants whose mean age (standard deviation (±SD)) was 32.5 (±12.1) years, of whom 146 (67.6%) were males. The prevalence of CD4+ T-lymphocytopenia was 25% (54/216) (95% confidence interval (CI): 19.6-31.2%). Patients with anaemia (adjusted odds ratio (aOR): 3.83, 95% CI: 1.59-9.23, p = 0.003), weight loss (aOR: 3.61, 95% CI: 1.07-12.23, p = 0.039) and a low CD8+ T-cell count (aOR: 6.10, 95% CI: 2.68-13.89, p < 0.001) were more likely to have CD4+ T-lymphocytopenia while those with monocytosis (aOR: 0.35, 95% CI: 0.14-0.89, p = 0.028) were less likely to have CD4+ T-lymphocytopenia. Conclusion There was a high prevalence of CD4+ T-lymphocytopenia among HIV-negative TB patients. Patients with weight loss, anaemia and a low CD8+ count were more likely to have CD4+ T-lymphocytopenia while those with monocytosis were less likely to have CD4+ lymphocytopenia. The findings suggest that CD4+ lymphocytopenia is indicative of severe disease and globally impaired cell-mediated immune responses against TB.
Collapse
Affiliation(s)
- Joseph Baruch Baluku
- Mulago National Referral Hospital, Pulmonology Division, Kampala, Uganda.,Mildmay Uganda, Kampala, Uganda.,Makerere University Lung Institute, Kampala, Uganda
| | - Joseph Musaazi
- Makerere University Infectious Disease Institute, Kampala, Uganda
| | - Rose Mulwana
- Mulago National Referral Hospital, Pulmonology Division, Kampala, Uganda
| | | | - Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | | |
Collapse
|
31
|
Li K, Ran R, Jiang Z, Fan C, Li T, Yin Z. Changes in T-lymphocyte subsets and risk factors in human immunodeficiency virus-negative patients with active tuberculosis. Infection 2020; 48:585-595. [PMID: 32472529 PMCID: PMC7395032 DOI: 10.1007/s15010-020-01451-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/21/2020] [Indexed: 11/08/2022]
Abstract
Purpose Immune function imbalance is closely associated with the occurrence and development of infectious diseases. We studied the characteristics of changes in T-lymphocyte subsets and their risk factors in HIV-negative patients with active tuberculosis (ATB). Methods T-lymphocyte subsets in 275 HIV-negative ATB patients were quantitatively analyzed and compared with an Mycobacteriumtuberculosis-free control group. Single-factor and multifactor analyses of clinical and laboratory characteristics of patients were also conducted. Results In ATB patients, CD4 and CD8 T-cell counts decreased, and the levels were positively interrelated (r = 0.655, P < 0.0001). After 4 weeks of antituberculosis treatment, CD4 and CD8 T-cell counts increased significantly but remained lower than in the control group. CD4 and CD8 cell counts were negatively associated with the extent of lesions detected in the chest by computed tomography (all P < 0.05). Although not reflected in the CD4/CD8 ratio, CD4 and CD8 cell counts differed between drug-resistant TB patients and drug-susceptible TB patients (P = 0.030). The multivariate analysis showed prealbumin, alpha-1 globulin, body mass index, and platelet count were independent risk factors for decreased CD4 cell count (all P < 0.05), while age and platelet count were independent risk factors for decreased CD8 cell count (all P < 0.05). Conclusion CD4 and CD8 T-cell counts showed the evident value in predicting ATB severity. An increase in the CD4/CD8 ratio may be a critical clue of drug resistance in ATB. Although the factors influencing CD4 and CD8 are not identical, our results indicated the importance of serum protein and platelets to ATB patients’ immune function. Electronic supplementary material The online version of this article (10.1007/s15010-020-01451-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kui Li
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China.,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, Hubei, China
| | - Renyu Ran
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Zicheng Jiang
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China.,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, Hubei, China
| | - Chuanqi Fan
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Tao Li
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Zhiguo Yin
- Department of Pharmacy, Ankang Central Hospital, No. 85, South Jinzhou Road, Hanbin District, Ankang, 725000, Shaanxi, China.
| |
Collapse
|
32
|
Abstract
TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design. Tuberculosis (TB) represents the largest cause of death in human immunodeficiency virus (HIV)-infected individuals in part due to HIV-related CD4+ T cell loss, rendering patients immunocompromised and susceptible to a loss of Mycobacterium tuberculosis control. However, in light of increasing data pointing to a role for humoral immunity in controlling M. tuberculosis infection, here, we aimed to define whether HIV infection also alters the humoral immune response in subjects with active and latent TB. We show that in the setting of active TB, HIV-positive individuals have significantly lower IgG responses to LAM and Ag85 than HIV-negative individuals. Furthermore, significant isotype/subclass-specific differences were frequently observed, with active TB, HIV-positive individuals demonstrating compromised antigen-specific IgM titers. HIV-infected individuals with active TB also exhibited a significant loss of influenza hemagglutinin- and tetanus toxoid-specific antibody titers at the isotype/subclass level, a symptom of broad humoral immune dysfunction likely precipitated by HIV infection. Finally, we illustrated that despite the influence of HIV infection, differences in M. tuberculosis-specific antibody profiles persist between latent and active TB disease. Taken together, these findings reveal significant HIV-associated disruptions of the humoral immune response in HIV/TB-coinfected individuals. IMPORTANCE TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design.
Collapse
|
33
|
Zhou M, Qu W, Sun Y, Liang L, Jin Z, Cui S, Zhao K. Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunol Lett 2020; 223:26-32. [PMID: 32333964 DOI: 10.1016/j.imlet.2020.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
Porcine parvovirus (PPV) is one of the most common and important virus causes of infectious infertility in swine throughout the world. Inactivated PPV vaccine is broadly used, however, there is no appropriate immunomodulatory adjuvant for enhancing present vaccines and developing new ones. Therefore, in this study, the water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) was synthesized, the adjuvant potential of chitosan derivative was evaluated in inactivated PPV vaccine. Twenty adult healthy sows were assigned to four groups and vaccinated with synthesized PPV/N-2-HACC, commercial inactivated vaccine, N-2-HACC adjuvant and PBS. After insemination, all sows were challenged with the homologous PPV-H strain. In vivo immunization showed that sows immunized with the PPV/N-2-HACC induced more long-lasting HI antibodies and strong immune responses. Importantly, immunization of PPV/N-2-HACC significantly protected sows from homologous PPV-H strain infection. However, immunization of PPV/N-2-HACC didn't change the level of IL-2, IL-4 and IFN-γ and the production of CD4+, CD8 + T lymphocyte. The results indicated that PPV/N-2-HACC protect PPV infection mainly through enhancing the humoral immunity rather than cellular immunity. In addition, the mummified fetuses were observed from the control groups, but neither of the two vaccine groups. In conclusion, these results suggest that N-2-HACC can be exploited as an effective adjuvant for vaccine development, and the PPV/N-2-HACC are potent immunization candidates against PPV infection.
Collapse
Affiliation(s)
- Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Wanying Qu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Yanwei Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Lin Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangjin Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China.
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
34
|
Long non-coding RNA molecules in tuberculosis. Int J Biol Macromol 2020; 156:340-346. [PMID: 32283111 DOI: 10.1016/j.ijbiomac.2020.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), a chronic disease caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases in the world. Despite significant advances in detection techniques and therapeutic approaches for tuberculosis, there is still no suitable solution for early screening and reducing the number of individuals affected and their effective treatment. Various cellular events can disrupt the development of TB. The basis of these events is dysregulating of genes expression patterns related with specific molecules. Long non-coding RNAs (lncRNAs) are molecules discovered to regulate the expression of protein-coding genes and participate in gene silencing, cell cycle regulation and cellular differentiation processes. Dysregulation of lncRNAs has been found to be associated with many diseases, including cancers and infectious diseases. Thus, the recognition of lncRNAs as novel molecular biomarkers and therapeutic targets for tuberculosis is promising. In the present review, we try to summarize the current findings of lncRNA expression patterns and its role in tuberculosis infection process.
Collapse
|
35
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
36
|
Li K, Yang C, Jiang Z, Liu S, Liu J, Fan C, Li T, Dong X. Quantitative investigation of factors relevant to the T cell spot test for tuberculosis infection in active tuberculosis. BMC Infect Dis 2019; 19:673. [PMID: 31357953 PMCID: PMC6664742 DOI: 10.1186/s12879-019-4310-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023] Open
Abstract
Background Previous qualitative studies suggested that the false negative rate of the T cell spot test for tuberculosis infection (T-SPOT.TB) is associated with many risk factors in tuberculosis patients. However, more precise quantitative studies are lacking. The purpose of this study was to investigate the factors affecting quantified spot-forming cells (SFCs) to early secreted antigenic target 6 kDa (ESAT-6) or culture filtrate protein 10 kDa (CFP-10) in patients with active tuberculosis. Methods We retrospectively analyzed the data of 360 patients who met the inclusion criteria. Using the SFCs to ESAT-6 or CFP-10 levels as dependent variables, variables with statistical significance in the univariate analysis were subjected to optimal scaling regression analysis. The combination of ESAT-6 and CFP-10 (i.e., T-SPOT.TB) was analyzed by the exact logistic regression model. Results The results showed that the SFCs to ESAT-6 regression model had statistical significance (P < 0.001) and that previous treatment and CD4+ and platelet counts were its independent risk factors (all P < 0.05). Their importance levels were 0.095, 0.596 and 0.100, respectively, with a total of 0.791. The SFCs to CFP-10 regression model also had statistical significance (P < 0.001); platelet distribution width and alpha-2 globulin were its independent risk factors (all P < 0.05). Their importance levels were 0.287 and 0.247, respectively, with a total of 0.534. The quantification graph showed that quantified SFCs to ESAT-6 or CFP-10 grading had a linear correlation with risk factors. Albumin-globulin ratio, CD4+ and CD8+ were independent risk factors for false negative T-SPOT.TB (all P < 0.05). Conclusions In T-SPOT.TB-assisted diagnosis of patients with active tuberculosis, previous treatment, decreased CD4+ and platelet count might lead to the decreased SFCs to ESAT-6, decreased alpha-2 globulin and high platelet distribution width might lead to the decreased SFCs to CFP-10, decreased albumin-globulin ratio, CD4+ and CD8+ might lead to an increase in the false negative rate of the T-SPOT.TB. Electronic supplementary material The online version of this article (10.1186/s12879-019-4310-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kui Li
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China.,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Caiyong Yang
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China. .,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei Province, China.
| | - Zicheng Jiang
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China.,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Shengxi Liu
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China.,Department of Infectious Diseases, Ankang Central Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Jun Liu
- Laboratory of Molecular Pathology and Tuberculosis Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China
| | - Chuanqi Fan
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China
| | - Tao Li
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China
| | - Xuemin Dong
- Laboratory of Molecular Pathology and Tuberculosis Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
37
|
Kawahara JY, Irvine EB, Alter G. A Case for Antibodies as Mechanistic Correlates of Immunity in Tuberculosis. Front Immunol 2019; 10:996. [PMID: 31143177 PMCID: PMC6521799 DOI: 10.3389/fimmu.2019.00996] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis infects one quarter of the world's population and is the leading cause of death by a single infectious agent, responsible for a reported 1.3 million deaths in 2017. While Mycobacterium tuberculosis is treatable with antibiotic therapy, the increased prevalence of drug resistance, coupled with the variable efficacy of the only widely approved vaccine, has highlighted the need for creative approaches to therapeutic and vaccine development. Historically, a productive immune response to M. tuberculosis has been thought to be nearly entirely cell-mediated, with humoral immunity being largely dismissed. However, in this review, we will discuss the historical skepticism surrounding the role of the humoral immune response to M. tuberculosis, and examine more recent evidence suggesting that antibodies may play a valuable role in host defense against the pathogen. Despite the amount of data portraying antibodies in a negative light, emerging data have begun to highlight the unexpected role of antibodies in M. tuberculosis control. Specifically, it has become clear that antibody features of both the variable and constant domain (Fc) ultimately determine the extent to which antibodies modulate disease. Thus, a more precise definition of the antigen-binding and innate immune recruiting functions of antibodies that contribute to M. tuberculosis restriction, are sure to help guide the development of next-generation therapeutics and vaccines to curb this global epidemic.
Collapse
Affiliation(s)
- Jeffrey Y. Kawahara
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
38
|
Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proc Natl Acad Sci U S A 2019; 116:6371-6378. [PMID: 30850538 PMCID: PMC6442559 DOI: 10.1073/pnas.1811380116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the urgent need for a better tuberculosis (TB) vaccine, relevant protective mechanisms remain unknown. We previously defined protective phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)–specific Vγ2Vδ2 T cells as a unique subset in primates, and, here, we immunized them selectively for protection against TB. A single respiratory vaccination of macaques with attenuated HMBPP-producing Listeria monocytogenes (Lm ΔactA prfA*), but not an HMBPP-lacking ΔgcpE Listeria strain, expanded Vγ2Vδ2 T cells, elicited Th1-like Vγ2Vδ2 T cell responses, and reduced TB infection/pathology after moderate-dose TB challenge. Such protection correlated with rapid memory-like, Th1-like Vγ2Vδ2 T cell responses, the presence of tissue-resident Vγ2Vδ2 T effectors coproducing IFN-γ/perforin and inhibiting intracellular Mycobacterium tuberculosis growth, and enhanced CD4+/CD8+ T cell responses. These findings establish a concept incorporating immunization of human Vγ2Vδ2 T cells for TB vaccine development. Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.
Collapse
|
39
|
Yang E, Yang R, Guo M, Huang D, Wang W, Zhang Z, Chen C, Wang F, Ho W, Shen L, Xiao H, Chen ZW, Shen H. Multidrug-resistant tuberculosis (MDR-TB) strain infection in macaques results in high bacilli burdens in airways, driving broad innate/adaptive immune responses. Emerg Microbes Infect 2018; 7:207. [PMID: 30538219 PMCID: PMC6290002 DOI: 10.1038/s41426-018-0213-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) has become the most deadly infectious diseases due to epidemics of HIV/AIDS and multidrug-resistant/extensively drug-resistant TB (MDR-/XDR-TB). Although person-to-person transmission contributes to MDR-TB, it remains unknown whether infection with MDR strains resembles infection with drug-sensitive (DS) TB strains, manipulating limited or broad immune responses. To address these questions, macaques were infected with MDR strain V791 and a drug-sensitive Erdman strain of TB. MDR bacilli burdens in the airway were significantly higher than those of the Erdman control after pulmonary exposure. This productive MDR strain infection upregulated the expression of caspase 3 in macrophages/monocytes and induced appreciable innate-like effector responses of CD3-negative lymphocytes and Ag-specific γδ T-cell subsets. Concurrently, MDR strain infection induced broad immune responses of T-cell subpopulations producing Th1, Th17, Th22, and CTL cytokines. Furthermore, MDR bacilli, like the Erdman strain, were capable of inducing typical TB disease characterized by weight loss, lymphocytopenia, and severe TB lesions. For the first time, our results suggest that MDR-TB infection acts like DS to induce high bacterial burdens in the airway (transmission advantage), innate/adaptive immune responses, and disease processes. Because nonhuman primates are biologically closer to humans than other species, our data may provide useful information for predicting the effects of primary MDR strain infection after person-to-person transmission. The findings also support the hypothesis that a vaccine or host-directed adjunctive modality that is effective for drug-sensitive TB is likely to also impact MDR-TB.
Collapse
Affiliation(s)
- Enzhuo Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Unit of Anti-Tuberculosis Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Guo
- College of Medicine,Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Dan Huang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Wandang Wang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zhuoran Zhang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Crystal Chen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Feifei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenzhe Ho
- College of Medicine,Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Ling Shen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Heping Xiao
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zheng W Chen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Unit of Anti-Tuberculosis Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
40
|
Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018; 285:147-167. [PMID: 30129209 PMCID: PMC6292442 DOI: 10.1111/imr.12671] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.
Collapse
Affiliation(s)
- Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlin Hult
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louis R. Joslyn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jess A. Millar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M, Walzl G, Wilkinson RJ, Burgers WA, Hanekom WA. PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol 2018; 9:1995. [PMID: 30233588 PMCID: PMC6127207 DOI: 10.3389/fimmu.2018.01995] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023] Open
Abstract
Persistent antigen stimulation in chronic infections has been associated with antigen-specific T cell dysfunction and upregulation of inhibitory receptors, including programmed cell death protein 1 (PD-1). Pulmonary tuberculosis (TB) disease is characterized by high levels of Mycobacterium tuberculosis (Mtb), yet the relationship between bacterial load, PD-1 expression, and Mtb-specific T cell function in human TB has not been well-defined. Using peripheral blood samples from adults with LTBI and with pulmonary TB disease, we tested the hypothesis that PD-1 expression is associated with bacterial load and functional capacity of Mtb-specific T cell responses. We found that PD-1 was expressed at significantly higher levels on Th1 cytokine-producing Mtb-specific CD4 T cells from patients with smear-positive TB, compared with smear-negative TB and LTBI, which decreased after completion of anti-TB treatment. By contrast, expression of PD-1 on Mtb-specific CD8 T cells was significantly lower than on Mtb-specific CD4 T cells and did not differ by Mtb infection and disease status. In vitro stimulation of PBMC with Mtb antigens demonstrated that PD-1 is induced on proliferating Mtb-specific CD4 T cells and that Th1 cytokine production capacity is preferentially maintained within PD-1+ proliferating CD4 T cells, compared with proliferating Mtb-specific CD4 T cells that lack PD-1 expression. Together, these data indicate that expression of PD-1 on Mtb-specific CD4 T cells is indicative of mycobacterial antigen exposure and identifies a population of effector cells with Th1 cytokine production capacity. These studies provide novel insights into the role of the PD-1 pathway in regulating CD4 and CD8 T cell responses in Mtb infection and provide rationale for future studies to evaluate PD-1 expression on antigen-specific CD4 T cells as a potential biomarker for bacterial load and treatment response in human TB.
Collapse
Affiliation(s)
- Cheryl L Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deborah A Abrahams
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lynnett Stone
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Yang C, Zhang S, Yao L, Fan L. Evaluation of risk factors for false-negative results with an antigen-specific peripheral blood-based quantitative T cell assay (T-SPOT ®. TB) in the diagnosis of active tuberculosis: A large-scale retrospective study in China. J Int Med Res 2018. [PMID: 29529901 PMCID: PMC5991236 DOI: 10.1177/0300060518757381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the diagnostic efficacy of an interferon-γ release assay, T-SPOT®. TB, for diagnosing active tuberculosis (TB) and to identify risk factors for false-negative results. Methods This retrospective study enrolled consecutive patients with active TB and with non-TB respiratory diseases to evaluate the risk factors for false-negative results when using the T-SPOT®. TB assay for the diagnosis of active TB. Patients with active TB were categorized as having confirmed pulmonary TB, clinically diagnosed pulmonary TB or extrapulmonary TB (EPTB). Results This study analysed 4964 consecutive patients; 2425 with active TB and 2539 with non-TB respiratory diseases. Multivariate logistic regression analyses identified the following five factors that were all associated with an increased false-negative rate with the T-SPOT®. TB assay: increased age (odds ratio [OR] 1.018; 95% confidence interval [CI] 1.013, 1.024); decreased CD8+ count (OR 0.307; 95% CI 0.117, 0.803); negative sputum acid-fast bacilli (AFB) smear staining (OR 1.821; 95% CI 1.338, 2.477); negative mycobacterial cultures (OR 1.379; 95% CI 1.043, 1.824); and absence of EPTB (OR 1.291; 95% CI 1.026, 1.623). Conclusions Increased age, decreased CD8+ count, negative sputum AFB smear results, negative sputum mycobacterial cultures and absence of EPTB might lead to an increased false-negative rate when using the T-SPOT®. TB assay.
Collapse
Affiliation(s)
- Chi Yang
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaojun Zhang
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Yao
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D, Sutphin M, Schimel D, Via L, Barry CE, Wilder-Kofie T, Moore I, Moore R, Barber DL. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol 2018; 11:462-473. [PMID: 28745326 PMCID: PMC5785573 DOI: 10.1038/mi.2017.60] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/21/2017] [Indexed: 02/08/2023]
Abstract
Protection against Mycobacterium tuberculosis (Mtb) infection requires CD4 T cells to migrate into the lung and interact with infected macrophages. In mice, less-differentiated CXCR3+ CD4 T cells migrate into the lung and suppress growth of Mtb, whereas CX3CR1+ terminally differentiated Th1 cells accumulate in the blood vasculature and do not control pulmonary infection. Here we examine CD4 T-cell differentiation and lung homing during primary Mtb infection of rhesus macaques. Mtb-specific CD4 T cells simultaneously appeared in the airways and blood ∼21-28 days post exposure, indicating that recently primed effectors are quickly recruited into the lungs after entering circulation. Mtb-specific CD4 T cells in granulomas display a tissue-parenchymal CXCR3+CX3CR1-PD-1hiCTLA-4+ phenotype. However, most granuloma CD4 T cells are found within the outer lymphocyte cuff and few localize to the myeloid cell core containing the bacilli. Using the intravascular stain approach, we find essentially all Mtb-specific CD4 T cells in granulomas have extravasated across the vascular endothelium into the parenchyma. Therefore, it is unlikely to be that lung-homing defects introduced by terminal differentiation limit the migration of CD4 T cells into granulomas following primary Mtb infection of macaques. However, intralesional positioning defects within the granuloma may pose a major barrier to T-cell-mediated immunity during tuberculosis.
Collapse
Affiliation(s)
- Keith D. Kauffman
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Michelle A. Sallin
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Shunsuke Sakai
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Danielle Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Michelle Sutphin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Daniel Schimel
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Laura Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Temeri Wilder-Kofie
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Ian Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Rashida Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Daniel L. Barber
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
44
|
Liu Y, Ou Q, Liu Q, Gao Y, Wu J, Zhang B, Weng X, Shao L, Zhang W. The expressions and roles of different forms of IL-22 in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2017; 107:95-103. [PMID: 29050778 DOI: 10.1016/j.tube.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
Despite evidence suggesting an anti-Mycobacterium tuberculosis effector function of CD4+ T cells that produce and retain IL-22 in macaques, the general role of IL-22 in tuberculosis infection is still poorly characterized. To explore the immune mechanism in the pathogenesis of tuberculosis in humans, here we evaluated different forms of IL-22 in populations with different tuberculosis infection statuses. We enrolled 156 subjects including 49 patients with pulmonary tuberculosis, 27 patients with tuberculous pleurisy (TPE), 38 individuals with latent tuberculous infection (LTBI) and 42 healthy controls (HC). We found significantly higher IL-22 levels at the tuberculosis infection site than in the peripheral blood as well as higher antigen-specific IL-22 levels in the culture supernatant for patients with active tuberculosis than in healthy controls. The proportions of IL-22 + CD4+ T and IL-22 + CD8+ T cells in patients with active tuberculosis were significantly higher than those in the latent tuberculosis infection group and the healthy control group, based on intracellular cytokine staining. However, surprisingly, we found membrane-bound IL-22+ T cells, including CD4+ T cells and CD8+ T cells, by surface staining, especially in patients with active tuberculosis. Furthermore, the expression of membrane-bound IL-22 significantly decreased after drug therapy. In conclusion, our results suggest that IL-22 has various roles in tuberculosis immune responses. In particular, membrane-bound IL-22+ T cells may play important roles in the human immune response to Mycobacterium.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antitubercular Agents/therapeutic use
- Biomarkers/blood
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Case-Control Studies
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/microbiology
- Cells, Cultured
- Female
- Host-Pathogen Interactions
- Humans
- Interleukins/blood
- Interleukins/immunology
- Latent Tuberculosis/blood
- Latent Tuberculosis/drug therapy
- Latent Tuberculosis/immunology
- Latent Tuberculosis/microbiology
- Male
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Tuberculosis, Pleural/blood
- Tuberculosis, Pleural/drug therapy
- Tuberculosis, Pleural/immunology
- Tuberculosis, Pleural/microbiology
- Tuberculosis, Pulmonary/blood
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Young Adult
- Interleukin-22
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi No. 5 People's Hospital, Wuxi 214005, China
| | - Qianqian Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bingyan Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College, and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
45
|
The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 2017; 15:216-225. [PMID: 29176747 DOI: 10.1038/cmi.2017.128] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.
Collapse
|
46
|
Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 2017; 15:206-215. [PMID: 29151578 DOI: 10.1038/cmi.2017.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The lack of an effective preventative vaccine against tuberculosis (TB) presents a great challenge to TB control. Since it takes an extremely long time to accurately determine the protective efficacy of TB vaccines, there is a great need to identify the surrogate signatures of protection to facilitate vaccine development. Unfortunately, antigen-specific Th1 cytokines that are currently used to evaluate the protective efficacy of the TB vaccine, do not align with the protection and failure of TB vaccine candidates in clinical trials. In this review, we discuss the limitation of current Th1 cytokines as surrogates of protection and address the potential elements that should be considered to finalize the true functional signatures of protective immunity against TB.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guoliang Zhang
- Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong 518112, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
47
|
Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12:e0184563. [PMID: 28886145 PMCID: PMC5590973 DOI: 10.1371/journal.pone.0184563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings.
Collapse
|
48
|
Vyas SP, Goswami R. Striking the right immunological balance prevents progression of tuberculosis. Inflamm Res 2017; 66:1031-1056. [PMID: 28711989 DOI: 10.1007/s00011-017-1081-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) caused by infection with Mycobacterium tuberculosis (Mtb) is a major burden for human health worldwide. Current standard treatments for TB require prolonged administration of antimycobacterial drugs leading to exaggerated inflammation and tissue damage. This can result in the reactivation of latent TB culminating in TB progression. Thus, there is an unmet need to develop therapies that would shorten the duration of anti-TB treatment and to induce optimal protective immune responses to control the spread of mycobacterial infection with minimal lung pathology. FINDINGS Granulomata is the hallmark structure formed by the organized accumulation of immune cells including macrophages, natural killer cells, dendritic cells, neutrophils, T cells, and B cells to the site of Mtb infection. It safeguards the host by containing Mtb in latent form. However, granulomata can undergo caseation and contribute to the reactivation of latent TB, if the immune responses developed to fight mycobacterial infection are not properly controlled. Thus, an optimal balance between innate and adaptive immune cells might play a vital role in containing mycobacteria in latent form for prolonged periods and prevent the spread of Mtb infection from one individual to another. CONCLUSION Optimal and well-regulated immune responses against Mycobacterium tuberculosis may help to prevent the reactivation of latent TB. Moreover, therapies targeting balanced immune responses could help to improve treatment outcomes among latently infected TB patients and thereby limit the dissemination of mycobacterial infection.
Collapse
Affiliation(s)
| | - Ritobrata Goswami
- School of Bio Science, IIT Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
49
|
Yu Q, Wang X, Fan X. A New Adjuvant MTOM Mediates Mycobacterium tuberculosis Subunit Vaccine to Enhance Th1-Type T Cell Immune Responses and IL-2 + T Cells. Front Immunol 2017; 8:585. [PMID: 28572807 PMCID: PMC5436497 DOI: 10.3389/fimmu.2017.00585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/02/2017] [Indexed: 02/04/2023] Open
Abstract
The only licensed vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) cannot prevent the prevalence of tuberculosis (TB), which remains a major public health problem worldwide. A more effective TB vaccine than BCG is urgently needed. Subunit vaccine is a promising strategy, and suitable adjuvants will benefit the development of effective TB subunit vaccines. MTO, consisting of monophosphoryl lipid A (MPLA), trehalose-6,6′-dibehenate (TDB), and MF59, was developed as an adjuvant of TB vaccine because of its ability to evoke the Th1-type T cell responses, while it is insufficient to induce single and multifunctional IL-2+ T cells and has a limited ability to confer protection against Mycobacterium tuberculosis infection. Heat-killed Mycobacterium vaccae (Mv), which can evoke cytotoxic CD8+ and CD4+ T cell responses and has adjuvanticity, was, in this study, combined with MTO to produce a new adjuvant, called MTOM. The TB fusion protein Rv3407-PhoY2-Ag85A-Rv2626c-RpfB (WH121) was mixed with MTO, Mv, and MTOM to produce three subunit vaccines, and the protective efficacy and immune responses were compared in C57BL/6 mice. WH121/MTOM provided better protection against TB than the other two vaccines, matching the performance of BCG vaccine. MTOM showed stronger ability to increase single and multifunctional IL-2+ T cells and induce Th1-type responses than MTO or Mv. Therefore, MTOM might be a promising adjuvant that could contribute to the development of TB subunit vaccines.
Collapse
Affiliation(s)
- Qi Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,School of Basic Medicine, Guiyang Traditional Chinese Medical College, Guiyang, China
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
50
|
Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 + T Cells. Infect Immun 2017; 85:IAI.01023-16. [PMID: 28115505 PMCID: PMC5364311 DOI: 10.1128/iai.01023-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) due to Mycobacterium tuberculosis remains a major global infectious disease problem, and a more efficacious vaccine is urgently needed for the control and prevention of disease caused by this organism. We previously reported that a genetically modified strain of Mycobacterium smegmatis called IKEPLUS is a promising TB vaccine candidate. Since protective immunity induced by IKEPLUS is dependent on antigen-specific CD4+ T cell memory, we hypothesized that the specificity of the CD4+ T cell response was a critical feature of this protection. Using in vitro assays of interferon gamma production (enzyme-linked immunosorbent spot [ELISPOT] assays) by splenocytes from IKEPLUS-immunized C57BL/6J mice, we identified an immunogenic peptide within the mycobacterial ribosomal large subunit protein RplJ, encoded by the Rv0651 gene. In a complementary approach, we generated major histocompatibility complex (MHC) class II-restricted T cell hybridomas from IKEPLUS-immunized mice. Screening of these T cell hybridomas against IKEPLUS and ribosomes enriched from IKEPLUS suggested that the CD4+ T cell response in IKEPLUS-immunized mice was dominated by the recognition of multiple components of the mycobacterial ribosome. Importantly, CD4+ T cells specific for mycobacterial ribosomes accumulate to significant levels in the lungs of IKEPLUS-immunized mice following aerosol challenge with virulent M. tuberculosis, consistent with a role for these T cells in protective host immunity in TB. The identification of CD4+ T cell responses to defined ribosomal protein epitopes expands the range of antigenic targets for adaptive immune responses to M. tuberculosis and may help to inform the design of more effective vaccines against tuberculosis.
Collapse
|