1
|
Jaworska J, Tobolski D, Salem SE, Kahler A, Wocławek-Potocka I, de Mestre AM. Single-cell atlas of the pregnant equine endometrium before and after implantation†. Biol Reprod 2025; 112:458-473. [PMID: 39756438 DOI: 10.1093/biolre/ioaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse. Single-cell RNA sequencing was used to characterize the transcriptome of nearly 97,000 endometrial cells collected from biopsies of the endometrium at the beginning (day 33 of gestation) and after embryo implantation (day 42 of gestation) in mares. Sixteen immune and 24 non-immune cell clusters were identified, representing known major cell populations as well as novel subpopulations of horse immune cells such as resident innate lymphoid cells and mucosal-associated invariant T cells. Contrary to current knowledge, endometrial natural killer (eNK) cells were the most abundant endometrial leukocyte population during implantation in horses. Moreover, eNK cells not only expressed genes that may interact with fetal MHC I, such as LY49F, but also exert immunoregulatory functions independent of MHC I expression, such as CD96/TIGIT. Analogous to other species studied, upregulation of CXCR4 was found in several subpopulations of immune cells. Our results suggest that despite distinctive and later placentation compared with humans, horses share some key similarities in the mechanisms of embryo implantation.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Dawid Tobolski
- Department of Large Animal Diseases and Clinic, University of Life Sciences, Warsaw, Poland
| | - Shebl E Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY USA
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Amanda M de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
2
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Long D, Mao C, Xu Y, Zhu Y. The emerging role of neutrophil extracellular traps in ulcerative colitis. Front Immunol 2024; 15:1425251. [PMID: 39170617 PMCID: PMC11335521 DOI: 10.3389/fimmu.2024.1425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Cao Y, Chen M, Jiao X, Li S, Wang D, Zhan Y, Li J, Hao Z, Li Q, Liu Y, Feng Y, Li R, Wang H, Liu M, Fu Q, Li Y. Neutrophil extracellular traps mediate the crosstalk between plaque microenvironment and unstable carotid plaque formation. Exp Mol Med 2024; 56:1717-1735. [PMID: 39085350 PMCID: PMC11372095 DOI: 10.1038/s12276-024-01281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 08/02/2024] Open
Abstract
The development of unstable carotid atherosclerotic plaques is associated with the induction of neutrophil extracellular traps (NETs) via the activation of diverse inflammatory mediators in the circulating bloodstream. However, the underlying mechanisms through which NETs influence the microenvironment of atherosclerotic plaques and contribute to the development of unstable carotid plaques remain largely elusive. The objective of this study was to elucidate the role of myeloid differentiation protein 1 (MD-1, LY86)-induced NETs underlying the crosstalk between unstable plaque formation and the plaque microenvironment. We employed bioinformatics analysis to identify key genes associated with carotid-unstable plaque, followed by comprehensive validation using various experimental approaches on tissue specimens and plasma samples classified based on pathological characteristics. Patients with carotid-unstable plaques exhibited elevated plasma concentrations of MD-1 (LY86), while patients with stable plaques demonstrated comparatively lower levels. Furthermore, soluble MD-1 was found to induce the formation of NETs through activation of Toll-like receptor signaling pathway. The proliferative and immature vascularization effects of NETs on endothelial cells, as well as their inhibitory impact on cell migration, are directly correlated with the concentration of NETs. Additionally, NETs were found to activate the NF-κB signaling pathway, thereby upregulating ICAM1, VCAM1, MMP14, VEGFA, and IL6 expression in both Human umbilical vein endothelial cells (HUVECs) and HAECs. Subsequently, a significant increase in intraplaque neovascularization by NETs results in poor carotid plaque stability, and NETs in turn stimulate macrophages to produce more MD-1, generating a harmful positive feedback loop. Our findings suggest that soluble MD-1 in the bloodstream triggers the production of NETs through activation of the Toll-like receptor signaling pathway and further indicate NETs mediate a crosstalk between the microenvironment of the carotid plaque and the neovascularization of the intraplaque region. Inhibiting NETs formation or MD-1 secretion may represent a promising strategy to effectively suppress the development of unstable carotid plaques.
Collapse
Affiliation(s)
- Yu Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Minghui Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xinyu Jiao
- Department of Ultrasound, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150076, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yongxuan Zhan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiaju Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhongfei Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yan Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ruiyan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Mingli Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Yongli Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
5
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
6
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Shrestha S, Hong CW. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw 2023; 23:e38. [PMID: 37970234 PMCID: PMC10643328 DOI: 10.4110/in.2023.23.e38] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
Neutrophils are professional phagocytes that provide defense against invading pathogens through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil extracellular traps (NETs). Although long been considered as short-lived effector cells with limited biosynthetic activity, recent studies have revealed that neutrophils actively communicate with other immune cells. Neutrophils employ various types of soluble mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular communication. Furthermore, extracellular vesicles play a crucial role as mediators of neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils and their roles in crosstalk with other cells.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
8
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
9
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
10
|
van der Borg G, Warner H, Ioannidis M, van den Bogaart G, Roos WH. PLA 3D Printing as a Straightforward and Versatile Fabrication Method for PDMS Molds. Polymers (Basel) 2023; 15:1498. [PMID: 36987277 PMCID: PMC10059908 DOI: 10.3390/polym15061498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
3D printing is gaining traction in research and development as a way to quickly, cheaply, and easily manufacture polydimethylsiloxane (PDMS) molds. The most commonly used method is resin printing, which is relatively expensive and requires specialized printers. This study shows that polylactic acid (PLA) filament printing is a cheaper, more readily available alternative to resin printing, that does not inhibit the curing of PDMS. As a proof of concept, a PLA mold for PDMS-based wells was designed, and 3D printed. We introduce an effective method to smooth the printed PLA mold, based on chloroform vapor treatment. After this chemical post-processing step, the smoothened mold was used to cast a ring of PDMS prepolymer. The PDMS ring was attached to a glass coverslip after oxygen plasma treatment. The PDMS-glass well showed no leakage and was well suited to its intended use. When used for cell culturing, monocyte-derived dendritic cells (moDCs) showed no morphological anomalies, as tested by confocal microscopy, nor did they show an increase in cytokines, as tested using ELISA. This underlines the versatility and strength of PLA filament printing and exemplifies how it can be valuable to a researcher's toolset.
Collapse
Affiliation(s)
- Guus van der Borg
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Wouter H. Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Abstract
While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.
Collapse
Affiliation(s)
- Serena Bert
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suchita Nadkarni
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
12
|
Wang K, Liao Y, Li X, Wang R, Zeng Z, Cheng M, Gao L, Xu D, Wen F, Wang T, Chen J. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease. Int Immunopharmacol 2023; 114:109537. [PMID: 36495695 DOI: 10.1016/j.intimp.2022.109537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important public health challenge worldwide, and is usually caused by significant exposure to noxious agents, particularly cigarette smoke. Recent studies have revealed that excessive production of neutrophil extracellular traps (NETs) in the airways is associated with disease severity in COPD patients. NETs are extracellular neutrophil-derived structures composed of chromatin fibers decorated with histones and granule proteases including neutrophil elastase (NE). However, the effective prevention of NET formation in COPD remains elusive. Here, we demonstrated that treatment with GW311616A, a potent and selective inhibitor of NE, prevented cigarette smoke extract (CSE)-induced NET formation in human neutrophils by blocking NE nuclear translocation and subsequent chromatin decondensation. Inhibition of NE also abrogated CSE-induced ROS production and migration impairment of neutrophils. Administration of GW311616A in vivo substantially reduced pulmonary generation of NETs while attenuating the key pathological changes in COPD, including airway leukocyte infiltration, mucus-secreting goblet cell hyperplasia, and emphysema-like alveolar destruction in a mouse model of COPD induced by chronic cigarette smoke exposure. Mice treated with GW311616A also showed significant attenuation of neutrophil numbers and percentages and the levels of neutrophil chemotactic factors (LTB4, KC, and CXCL5) and proinflammatory cytokines (IL-1β, and TNF-α) in bronchoalveolar lavage fluid compared to mice treated with cigarette smoke exposure only. Furthermore, GW311616A treatment considerably improved lung function in the COPD mouse model, including preventing the decline of FEV100/FVC and delta PEF as well as inhibiting the increase in FRC, TLC, and FRC/TLC. Overall, our study suggests that NE plays a critical role in cigarette smoke-induced NET formation by neutrophils and that inhibition of NE is a promising strategy to suppress NET-mediated pathophysiological changes in COPD.
Collapse
Affiliation(s)
- Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoou Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int J Mol Sci 2022; 23:ijms232315030. [PMID: 36499356 PMCID: PMC9740415 DOI: 10.3390/ijms232315030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Neutrophils are effector cells involved in the innate immune response against infection; they kill infectious agents in the intracellular compartment (phagocytosis) or in the extracellular milieu (degranulation). Moreover, neutrophils release neutrophil extracellular traps (NETs), complex structures composed of a scaffold of decondensed DNA associated with histones and antimicrobial compounds; NETs entrap infectious agents, preventing their spread and promoting their clearance. NET formation is triggered by microbial compounds, but many microorganisms have evolved several strategies for NET evasion. In addition, the dysregulated production of NETs is associated with chronic inflammatory diseases. Mycoplasmas are reduced genome bacteria, able to induce chronic infections with recurrent inflammatory symptoms. Mycoplasmas' parasitic lifestyle relies on metabolite uptake from the host. Mycoplasmas induce NET release, but their surface or secreted nucleases digest the NETs' DNA scaffold, allowing them to escape from entrapment and providing essential nucleotide precursors, thus promoting the infection. The presence of Mycoplasma species has been associated with chronic inflammatory disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, and cancer. The persistence of mycoplasma infection and prolonged NET release may contribute to the onset of chronic inflammatory diseases and needs further investigation and insights.
Collapse
|
14
|
Niyonsaba F. Editorial: The role of neutrophils and its NETosis in autoimmunity and autoinflammation. Front Immunol 2022; 13:1035624. [DOI: 10.3389/fimmu.2022.1035624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
|
15
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
16
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
17
|
Dömer D, Walther T, Möller S, Behnen M, Laskay T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front Immunol 2021; 12:636954. [PMID: 34168641 PMCID: PMC8217666 DOI: 10.3389/fimmu.2021.636954] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.
Collapse
Affiliation(s)
- Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tabea Walther
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
19
|
Adjuvants and Vaccines Used in Allergen-Specific Immunotherapy Induce Neutrophil Extracellular Traps. Vaccines (Basel) 2021; 9:vaccines9040321. [PMID: 33915724 PMCID: PMC8066953 DOI: 10.3390/vaccines9040321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Aluminum hydroxide (alum) and monophosphoryl-lipid A (MPLA) are conventional adjuvants in vaccines for allergen-specific immunotherapy (AIT). Alum triggers the release of neutrophil extracellular traps (NETs) by neutrophils. NETs contain expelled decondensed chromatin associated with granular material and may act as danger-associated molecular patterns and activate antigen-presenting cells. We investigated whether adjuvant-induced NETs contribute to innate responses to AIT-vaccines. Human neutrophils were incubated with alum, MPLA and adjuvant-containing AIT-vaccine preparations. NETs were verified by time-lapse and confocal fluorescence microscopy and quantitatively assessed by DNA and elastase release and ROS production. In contrast to MPLA, alum represented a potent trigger for NET release. Vaccine formulations containing alum resulted in less NET release than alum alone, whereas the vaccine containing MPLA induced stronger NET responses than MPLA alone. NETs and alum alone and synergistically increased the expression of molecules involved in antigen presentation, i.e., CD80, CD86 and CD83, by peripheral blood monocytes. Monocyte priming with NETs resulted in individually differing IL-1β- and IL-6-responses. Thus, NETs induced by adjuvants in AIT-vaccines can provide autonomous and cooperative effects on early innate responses. The high diversity of individual innate responses to adjuvants and AIT-vaccines may affect their therapeutic efficacy.
Collapse
|
20
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Neutrophils are the most numerous and the first responder cells of the innate immune system. Evidence suggests that neutrophils may play an essential role in the pathogenesis of multiple systemic diseases. A novel mechanism of neutrophil extracellular traps (NETs) leading to breaking of self-tolerance and generation of autoimmune responses in predisposed individuals has been described in various autoimmune conditions. The purpose of the review is to identify these important mechanisms of NETs leading to autoimmunity in various rheumatic diseases. RECENT FINDINGS NETs contain histone and chromatin, which contain important autoantigens. Many autoimmune conditions are associated with increased NET-generating capacity, unique low-density granulocyte population, and impaired NET degradation leading to persistent inflammation and tissue damage. NETs can also activate other immune cells, and their components may amplify the inflammatory response by activation of complement pathways and inflammasomes. NETs can also contribute to autoantibody formation in disorders such as rheumatoid arthritis, ANCA-associated vasculitis, and systemic lupus erythematosus by providing a constant source of autoantigens. NETs can also serve as biomarkers providing insights into disease diagnosis and therapeutics. NETs seem to play a primary role in inflammatory disease pathogenesis. Identification of different NET pathogenic pathways in various rheumatic conditions could provide new insights into disease pathogenesis and therapeutic targets could be developed towards the future treatment of inflammatory autoimmune diseases.
Collapse
|
22
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
23
|
Mojoli A, Gonçalves BS, Temerozo JR, Cister-Alves B, Geddes V, Herlinger A, Aguiar RS, Pilotto JH, Saraiva EM, Bou-Habib DC. Neutrophil extracellular traps from healthy donors and HIV-1-infected individuals restrict HIV-1 production in macrophages. Sci Rep 2020; 10:19603. [PMID: 33177532 PMCID: PMC7658358 DOI: 10.1038/s41598-020-75357-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils release extracellular traps (NETs) after interaction with microorganisms and physiological or synthetic products. NETs consist of decondensed chromatin complexed with proteins, some of them with microbicidal properties. Because NETs can modulate the functioning of HIV-1 target cells, we aimed to verify whether they modify HIV-1 replication in macrophages. We found that exposure of HIV-1-infected macrophages to NETs resulted in significant inhibition of viral replication. The NET anti-HIV-1 action was independent of other soluble factors released by the activated neutrophils, but otherwise dependent on the molecular integrity of NETs, since NET-treatment with protease or DNase abolished this effect. NETs induced macrophage production of the anti-HIV-1 β-chemokines Rantes and MIP-1β, and reduced the levels of integrated HIV-1 DNA in the macrophage genome, which may explain the decreased virus production by infected macrophages. Moreover, the residual virions released by NET-treated HIV-1-infected macrophages lost infectivity. In addition, elevated levels of DNA-elastase complexes were detected in the plasma from HIV-1-infected individuals, and neutrophils from these patients released NETs, which also inhibited HIV-1 replication in in vitro infected macrophages. Our results reveal that NETs may function as an innate immunity mechanism able to restrain HIV-1 production in macrophages.
Collapse
Affiliation(s)
- Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Barbara Simonson Gonçalves
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Bruno Cister-Alves
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor Geddes
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alice Herlinger
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Henrique Pilotto
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Paulo de Goes Institute of Microbiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco D/D1-44, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil. .,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Majai GE, Gogolák P, Tóth M, Hodrea J, Horváth D, Fésüs L, Rajnavölgyi É, Bácsi A. Autologous apoptotic neutrophils inhibit inflammatory cytokine secretion by human dendritic cells, but enhance Th1 responses. FEBS Open Bio 2020; 10:1492-1502. [PMID: 32473089 PMCID: PMC7396436 DOI: 10.1002/2211-5463.12904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
Neutrophils represent the most abundant cell type in peripheral blood and exhibit a remarkably brief (6–8 h) half‐life in circulation. The fundamental role of these professional phagocytes has been established in acute inflammation, based on their potential to both initiate and receive inflammatory signals. Furthermore, neutrophils also take part in maintaining chronic inflammatory processes, such as in various autoimmune diseases. Here, we demonstrate that human autologous apoptotic neutrophils are readily engulfed by immature monocyte‐derived dendritic cells (moDCs) with similar efficiency as allogeneic apoptotic neutrophils [Majai G et al. (2010) J Leukoc Biol 88, 981–991]. Interestingly, in contrast to the allogeneic system, exposure of moDCs to autologous apoptotic neutrophils inhibits LPS + IFN‐γ‐induced production of inflammatory cytokines in a phagocytosis‐independent manner. Autologous apoptotic neutrophil‐primed DCs are able to modulate T‐cell responses by inducing the generation of IFN‐γ‐secreting cells while hampering that of IL‐17A‐producing cells. Our observations indicate that capture of autologous apoptotic neutrophils by immature DCs may impede further neutrophil‐mediated phagocytosis and tissue damage, and allow increased clearance of dying cells by macrophages.
Collapse
Affiliation(s)
- Gyöngyike Emese Majai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Hungary
| | - Judit Hodrea
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Dorottya Horváth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
26
|
Parackova Z, Zentsova I, Vrabcova P, Klocperk A, Sumnik Z, Pruhova S, Petruzelkova L, Hasler R, Sediva A. Neutrophil Extracellular Trap Induced Dendritic Cell Activation Leads to Th1 Polarization in Type 1 Diabetes. Front Immunol 2020; 11:661. [PMID: 32346380 PMCID: PMC7172866 DOI: 10.3389/fimmu.2020.00661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Neutrophils releasing neutrophil extracellular traps (NETs) infiltrate the pancreas prior to type 1 diabetes (T1D) onset; however, the precise nature of their contribution to disease remains poorly defined. To examine how NETs affect immune functions in T1D, we investigated NET composition and their effect on dendritic cells (DCs) and T lymphocytes in T1D children. We showed that T1D patient NET composition differs substantially from that of healthy donors and that the presence of T1D-NETs in a mixed peripheral blood mononuclear cell culture caused a strong shift toward IFNγ-producing T lymphocytes, mediated through activation of innate immunity cells in T1D samples. Importantly, in a monocyte-derived DC (moDC) culture, NETs induced cytokine production, phenotypic change and IFNγ-producing T cells only in samples from T1D patients but not in those from healthy donors. RNA-seq analysis revealed that T1D-NETs presence causes TGFβ downregulation and IFNα upregulation and creates pro-T1D signature in healthy moDCs.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Robert Hasler
- Institute of Clinical Molecular Biology, University Hospital in Schleswig-Holstein, Kiel, Germany.,Christian-Albrecht University of Kiel, Kiel, Germany
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| |
Collapse
|
27
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
28
|
Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal 2019; 17:147. [PMID: 31727175 PMCID: PMC6854633 DOI: 10.1186/s12964-019-0471-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neutrophils have long been considered as cells playing a crucial role in the immune defence against invading pathogens. Accumulating evidence strongly supported the direct and indirect regulatory effects of neutrophils on adaptive immunity. Exogenous cytokines or cytokines produced in an autocrine manner as well as a cell-to-cell contact between neutrophils and T cells could induce the expression of MHC-II and costimulatory molecules on neutrophils, supporting that neutrophils may function as antigen-presenting cells (APCs) in respects of presenting antigens and activating T cells. In addition to the inflammatory roles, neutrophils also have the propensity and ability to suppress the immune response through different mechanisms. In this review, we will mainly highlight the heterogeneity and functional plasticity of neutrophils and the antigen-presenting capacity of different neutrophil subsets. We also discuss mechanisms relevant to the regulatory effects of neutrophils on adaptive immunity. Understanding how neutrophils modulate adaptive immunity may provide novel strategies and new therapeutic approaches for diseases associated with neutrophils.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Lazzaretto B, Fadeel B. Intra- and Extracellular Degradation of Neutrophil Extracellular Traps by Macrophages and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2276-2290. [PMID: 31519860 DOI: 10.4049/jimmunol.1800159] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins are involved in the extracellular killing of pathogens. Excessive NET formation has been implicated in several noninfectious pathological conditions. The disposal of NETs is, therefore, important to prevent inadvertent effects resulting from the continued presence of NETs in the extracellular environment. In this study, we investigated the interaction of NETs released by freshly isolated, PMA-stimulated primary human neutrophils with primary human monocyte-derived macrophages or dendritic cells (DCs). NETs were internalized by macrophages, and removal of the protein component prevented engulfment of NETs, whereas complexation with LL-37 restored the uptake of "naked" (protein-free) NETs. NETs were also found to dampen the bacterial LPS-induced maturation of DCs. Cytokine profiling was conducted by using a multiplex array following the interaction of NETs with macrophages or DCs, and NETs alone were found to be noninflammatory, whereas immunomodulatory effects were noted in the presence of LPS with significant upregulation of IL-1β secretion, and a marked suppression of other LPS-induced factors including vascular endothelial growth factor (VEGF) in both cell types. Moreover, macrophage digestion of NETs was dependent on TREX1 (also known as DNaseIII), but not DNaseII, whereas extracellular DNase1L3-mediated degradation of NETs was observed for DCs. Collectively, these findings shed light on the interactions between NETs and phagocytic cells and provide new insights regarding the clearance of NETs, double-edged swords of innate immunity.
Collapse
Affiliation(s)
- Beatrice Lazzaretto
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
30
|
Helou DG, Braham S, De Chaisemartin L, Granger V, Damien MH, Pallardy M, Kerdine-Römer S, Chollet-Martin S. Nrf2 downregulates zymosan-induced neutrophil activation and modulates migration. PLoS One 2019; 14:e0216465. [PMID: 31419224 PMCID: PMC6697320 DOI: 10.1371/journal.pone.0216465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first line of defense against pathogens and their activation needs to be tightly regulated in order to limit deleterious effects. Nrf2 (Nuclear factor (erythroïd-derived 2)-like 2) transcription factor regulates oxidative stress and/or represses inflammation in various cells such as dendritic cells or macrophages. However, its involvement in PMN biology is still unclear. Using Nrf2 KO mice, we thus aimed to investigate the protective role of Nrf2 in various PMN functions such as oxidative burst, netosis, migration, cytokine production and phagocytosis, mainly in response to zymosan. We found that zymosan induced Nrf2 accumulation in PMNs leading to the upregulation of some target genes including Hmox-1, Nqo1 and Cat. Nrf2 was able to decrease zymosan-induced PMN oxidative burst; sulforaphane-induced Nrf2 hyperexpression confirmed its implication. Tnfα, Ccl3 and Cxcl2 gene transcription was decreased in zymosan-stimulated Nrf2 KO PMNs, suggesting a role for Nrf2 in the regulation of proinflammatory cytokine production. However, Nrf2 was not involved in phagocytosis. Finally, spontaneous migration of Nrf2 KO PMNs was lower than that of WT PMNs. Moreover, in response to low concentrations of CXCL2 or CXCL12, Nrf2 KO PMN migration was decreased despite similar CXCR2 and CXCR4 expression and ATP levels in PMNs from both genotypes. Nrf2 thus seems to be required for an optimal migration. Altogether these results suggest that Nrf2 has a protective role in several PMN functions. In particular, it downregulates their activation in response to zymosan and is required for an adequate migration.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sarah Braham
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Luc De Chaisemartin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Vanessa Granger
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Marie-Hélène Damien
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Orchestration of Adaptive T Cell Responses by Neutrophil Granule Contents. Mediators Inflamm 2019; 2019:8968943. [PMID: 30983883 PMCID: PMC6431490 DOI: 10.1155/2019/8968943] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in peripheral blood and respond rapidly to danger, infiltrating tissues within minutes of infectious or sterile injury. Neutrophils were long thought of as simple killers, but now we recognise them as responsive cells able to adapt to inflammation and orchestrate subsequent events with some sophistication. Here, we discuss how these rapid responders release mediators which influence later adaptive T cell immunity through influences on DC priming and directly on the T cells themselves. We consider how the release of granule contents by neutrophils—through NETosis or degranulation—is one way in which the innate immune system directs the phenotype of the adaptive immune response.
Collapse
|
32
|
Ribon M, Seninet S, Mussard J, Sebbag M, Clavel C, Serre G, Boissier MC, Semerano L, Decker P. Neutrophil extracellular traps exert both pro- and anti-inflammatory actions in rheumatoid arthritis that are modulated by C1q and LL-37. J Autoimmun 2019; 98:122-131. [PMID: 30704942 DOI: 10.1016/j.jaut.2019.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Neutrophil extracellular traps (NET), produced by activated polymorphonuclear neutrophils (PMN), are supposed to play a role in the pathogenesis of rheumatoid arthritis (RA), a chronic inflammatory autoimmune disease characterized by anti-citrullinated protein antibodies (ACPA). Indeed, NET contain citrullinated autoantigens and some RA autoantibodies recognize NET. However, the mechanisms by which NET trigger or perpetuate the inflammatory process in RA are hitherto not elucidated. We hypothesized that, in addition to citrullination, NET might also contain stimulatory proteins and directly activate inflammatory target cells, as PMN and macrophages. METHODS NET antigenic and inflammatory properties were analyzed in 157 healthy donors (HD) and RA patients, the largest analysis reported so far. Primary PMN and monocyte-derived macrophages were isolated and immunoglobulin G (IgG) purified. NET were induced (NETosis), isolated and quantified. NET antigenicity was analyzed by fluorescence microscopy. PMN and macrophages were stimulated with NET with/without ACPA, C1q, LL-37 or lipopolysaccharide (LPS) and cell activation was estimated by flow cytometry and ELISA. RESULTS PMN from RA patients produced more NET than HD PMN. We next dissected how NET mechanistically affect inflammatory cells. Particularly, we show for the first time that RA and HD NET activated both resting macrophages and PMN, but importantly RA NET were more stimulatory, leading to secretion of inflammatory cytokines and up-regulation of HLA/CD86/CD11b. IgG from ACPA-positive RA patients specifically recognized RA and even HD NET. Nevertheless, NET-induced cell activation occurs independently of immune complex formation with ACPA. Likewise, endosomal acidification was not required. Notably, we also report that complement C1q increased the NET stimulatory activity on macrophages only, due to higher expression of C1q receptors, which was further supported by the LL-37 antimicrobial peptide. In contrast, NET specifically inhibited interleukin (IL)-6 secretion by LPS-activated macrophages and not PMN, especially with C1q/LL-37. This inhibition was not mediated by NET-derived proteases or LPS neutralization and was associated with the simultaneous induction of IL-10 secretion. CONCLUSION We show that NET possess both pro- and anti-inflammatory properties depending on target cells, their activation levels and C1q/LL-37. Thus, independently of ACPA, NET modulate RA chronic inflammation via this new dual activity we identified. In addition, NET may trigger autoimmunity in RA as ACPA recognize NET antigens but not non-activated PMN. Therefore, we conclude that excess of NETosis together with enhanced NET activity participate to RA pathogenesis at different levels.
Collapse
Affiliation(s)
- Matthieu Ribon
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France
| | - Sarra Seninet
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France
| | - Julie Mussard
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France
| | - Mireille Sebbag
- University of Toulouse, Toulouse, France; Inserm UMR 1056, Toulouse, France; Inserm UMR 1220, Toulouse, France
| | - Cyril Clavel
- University of Toulouse, Toulouse, France; Inserm UMR 1056, Toulouse, France
| | - Guy Serre
- University of Toulouse, Toulouse, France; Inserm UMR 1056, Toulouse, France
| | - Marie-Christophe Boissier
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France; Avicenne Hospital, Rheumatology Department, AP-HP, Bobigny, France
| | - Luca Semerano
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France; Avicenne Hospital, Rheumatology Department, AP-HP, Bobigny, France
| | - Patrice Decker
- University of Paris 13, Sorbonne Paris Cité, Bobigny, France; Inserm UMR 1125, Li2P, Bobigny, France.
| |
Collapse
|
33
|
Dong Y, Lagarde J, Xicota L, Corne H, Chantran Y, Chaigneau T, Crestani B, Bottlaender M, Potier MC, Aucouturier P, Dorothée G, Sarazin M, Elbim C. Neutrophil hyperactivation correlates with Alzheimer's disease progression. Ann Neurol 2019; 83:387-405. [PMID: 29369398 DOI: 10.1002/ana.25159] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Recent studies have underlined the effect of systemic inflammation on the pathophysiology of Alzheimer's disease (AD). Neutrophils are key components of early innate immunity and contribute to uncontrolled systemic inflammation if not tightly regulated. The aim of our study was to fully characterize human circulating neutrophils at different disease stages in AD. METHODS We analyzed neutrophil phenotypes and functions in 42 patients with AD (16 with mild cognitive impairment and 26 with dementia), and compared them to 22 age-matched healthy subjects. This study was performed directly in whole blood to avoid issues with data interpretation related to cell isolation procedures. RESULTS Blood samples from AD patients with dementia revealed neutrophil hyperactivation associated with increased reactive oxygen species production and increased levels of intravascular neutrophil extravascular traps. The homeostasis of circulating neutrophils in these patients also changed: The ratio between the harmful hyperreactive CXCR4high /CD62Llow senescent and the CD16bright /CD62Ldim immunosuppressive neutrophil subsets rose in the later stage of the disease. These abnormalities were greater in fast-decliner than in slow-decliner patients. INTERPRETATION Our results indicate that the inflammatory properties of circulating neutrophils shift as the percentage of aged neutrophils expands in patients with AD-changes that may play an instrumental role in establishing systemic chronic inflammation. Most important, our data strongly suggest that the neutrophil phenotype may be associated with the rate of cognitive decline and may thus constitute an innovative and prognostic blood biomarker in patients with AD. Ann Neurol 2018;83:387-405.
Collapse
Affiliation(s)
- Yuan Dong
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France
| | - Laura Xicota
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Hélène Corne
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yannick Chantran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Thomas Chaigneau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, Centre de référence des maladies pulmonaires rares, Paris, France
| | - Michel Bottlaender
- Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France.,UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à I'Energie Atomique, Gif-sur-Yvette, France
| | - Marie-Claude Potier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Pierre Aucouturier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Guillaume Dorothée
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France
| | - Carole Elbim
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
34
|
Imaging and Manipulation of Extracellular Traps by Atomic Force Microscopy. Methods Mol Biol 2018. [PMID: 30374869 DOI: 10.1007/978-1-4939-8894-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neutrophil extracellular traps (NETs) are part of an immunological response and one of the mechanisms by which neutrophils protect the host from pathogen invasion and proliferation. Notwithstanding their protective role, NETs have also been linked to the development of a variety of disorders, including cardiovascular and autoimmune diseases. Since the first reports on NETs in 2004 it has been possible to image NETs by a variety of imaging techniques. Despite this, such reports seldomly include contact probe methods, and therefore lack the unique insights such techniques typically provide. In fact, more than 10 years have passed since the discovery of NETs, and although their importance as part of a unique cellular response mechanism has become very clear, studies that attempt to address them by atomic force microscopy (AFM) remain very limited. Particularly striking is the almost absent information on the mechanical properties of NETs, and factors that may influence them. The fact that NETs are a particularly adhesive network of filaments poses a considerable technical challenge for contact probe methods and can limit advances involving either imaging or manipulation of NETs by AFM. The current set of protocols aims at aiding a knowledgeable AFM operator to obtain AFM images and to perform force spectroscopy experiments with such samples. A variety of different topics, including sample preparation and data analysis, are discussed.
Collapse
|
35
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
36
|
Zhang J, Oueslati R, Cheng C, Zhao L, Chen J, Almeida R, Wu J. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor. Biosens Bioelectron 2018; 112:48-53. [PMID: 29698808 DOI: 10.1016/j.bios.2018.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Abstract
Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 102 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis.
Collapse
Affiliation(s)
- Jian Zhang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China; Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Rania Oueslati
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Cheng Cheng
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| | - Raul Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
37
|
Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol 2017; 317:1-8. [PMID: 28511921 PMCID: PMC5665680 DOI: 10.1016/j.cellimm.2017.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Myeloperoxidase (MPO) is the most toxic enzyme found in the azurophilic granules of neutrophils. MPO utilizes H2O2 to generate hypochlorous acid (HClO) and other reactive moieties, which kill pathogens during infections. In contrast, in the setting of sterile inflammation, MPO and MPO-derived oxidants are thought to be pathogenic, promoting inflammation and causing tissue damage. In contrast, evidence also exists that MPO can limit the extent of immune responses. Elevated MPO levels and activity are observed in a number of autoimmune diseases including in the central nervous system (CNS) of multiple sclerosis (MS) and the joints of rheumatoid arthritis (RA) patients. A pathogenic role for MPO in driving autoimmune inflammation was demonstrated using mouse models. Mechanisms whereby MPO is thought to contribute to disease pathogenesis include tuning of adaptive immune responses and/or the induction of vascular permeability.
Collapse
Affiliation(s)
- Anna Strzepa
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
38
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Guimarães-Costa AB, Rochael NC, Oliveira F, Echevarria-Lima J, Saraiva EM. Neutrophil Extracellular Traps Reprogram IL-4/GM-CSF-Induced Monocyte Differentiation to Anti-inflammatory Macrophages. Front Immunol 2017; 8:523. [PMID: 28567039 PMCID: PMC5434169 DOI: 10.3389/fimmu.2017.00523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived dendritic cells (mo-DCs) are essential for the development of a Th1 protective immune response against Leishmania parasites. It is well known that IL-4 and GM-CSF drive differentiation of human monocytes to dendritic cells (DCs). Here, we investigate if neutrophil extracellular traps (NETs) disrupt this process. NETs-enriched supernatants, generated after human neutrophil activation by Leishmania promastigotes, were added to monocytes and differentiation monitored by expression of molecules associated with macrophage and DCs phenotypes, cytokine production, and parasite killing. We found that NETs addition to IL-4/GM-CSF-treated monocytes prevented then to fully differentiate into DCs. No effect was observed if NETs were treated with DNase or by filtering the traps. Moreover, NETs closely interact with monocytes and downregulate the expression of the IL-4 receptor, which in turn disrupts fully differentiation of monocytes into DCs. Neutrophil elastase inhibition rescues the monocytes to DCs differentiation. Monocytes cultured with IL-4/GM-CSF and NETs differentiated into macrophages, as observed by the increased expression of CD68, CD32, and CD163, and decreased expression of CD80. Moreover, NET addition to IL-4/GM-CSF-treated monocytes rendered these cells less efficient to kill Leishmania parasites. Altogether, our results show that NETs interfere with IL-4/GM-CSF driven differentiation, reprogramming the generation of mo-DCs to an anti-inflammatory macrophage.
Collapse
Affiliation(s)
- Anderson B Guimarães-Costa
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Malaria and Vector Research, Vector Molecular Biology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Natalia C Rochael
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, Vector Molecular Biology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Juliana Echevarria-Lima
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Sabbione F, Keitelman IA, Iula L, Ferrero M, Giordano MN, Baldi P, Rumbo M, Jancic C, Trevani AS. Neutrophil Extracellular Traps Stimulate Proinflammatory Responses in Human Airway Epithelial Cells. J Innate Immun 2017; 9:387-402. [PMID: 28467984 DOI: 10.1159/000460293] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Tissue injury leads to the release of uric acid (UA). At high local concentrations, UA can form monosodium urate crystals (MSU). MSU and UA stimulate neutrophils to release extracellular traps (NET). Here, we investigated whether these NET could be involved in the development of inflammation by stimulating cytokine release by airway epithelial cells. We found that NET significantly increased the secretion of CXCL8/IL-8 and IL-6 by alveolar and bronchial epithelial cells. These effects were not observed when NETosis was inhibited by Diphenyleneiodonium, elastase inhibitor, or Cl-amidine. Similar findings were made with NET induced by cigarette smoke extract, suggesting that NET proinflammatory capacity is independent of the inducing stimulus. Furthermore, NET affected neither the viability and morphology of epithelial cells nor the barrier integrity of polarized cells. The epithelial stimulatory capacity of NET was not affected by degradation of DNA with micrococcal nuclease, treatment with heparin, or inhibition of the elastase immobilized to DNA, but it was significantly reduced by pretreatment with an anti-HMGB-1 blocking antibody. Altogether, our findings indicate that NET exert direct proinflammatory effects on airway epithelial cells that might contribute in vivo to the further recruitment of neutrophils and the perpetuation of inflammation upon lung tissue damage.
Collapse
Affiliation(s)
- Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Granger V, Faille D, Marani V, Noël B, Gallais Y, Szely N, Flament H, Pallardy M, Chollet-Martin S, de Chaisemartin L. Human blood monocytes are able to form extracellular traps. J Leukoc Biol 2017; 102:775-781. [PMID: 28465447 DOI: 10.1189/jlb.3ma0916-411r] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular DNA filaments formed during neutrophil activation. This process, called netosis, was originally associated with neutrophil antibacterial properties. However, several lines of evidence now suggest a major role for netosis in thrombosis, autoimmune diseases, and cancer. We demonstrate here that highly purified human blood monocytes are also capable of extracellular trap (ET) release in response to several stimuli. Monocyte ETs display a morphology analogous to NETs and are associated with myeloperoxidase (MPO), lactoferrin (LF), citrullinated histones, and elastase. Monocyte ET release depends on oxidative burst but not on MPO activity, in contrast to neutrophils. Moreover, we demonstrate procoagulant activity for monocyte ETs, a feature that could be relevant to monocyte thrombogenic properties. This new cellular mechanism is likely to have implications in the multiple pathologic contexts where monocytes are implicated, such as inflammatory disorders, infection, or thrombosis.
Collapse
Affiliation(s)
- Vanessa Granger
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Dorothée Faille
- Assistance Publique Hopitaux de Paris, Bichat Hospital, Hematology Department, Paris, France
| | - Vanessa Marani
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Benoît Noël
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Yann Gallais
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Natacha Szely
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Héloïse Flament
- Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Marc Pallardy
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Luc de Chaisemartin
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France; .,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| |
Collapse
|
42
|
Shaul ME, Fridlender ZG. Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol 2017; 102:343-349. [PMID: 28264904 DOI: 10.1189/jlb.5mr1216-508r] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
In recent years, the role of immune cells in tumor progression has been a matter of increasing interest. Neutrophils constitute an important portion of the immune cells infiltrating the tumor microenvironment. Traditionally viewed as the first line of defense against infections, it is now well accepted that neutrophils also have an important role in multiple aspects of cancer biology. Multiple and heterogeneous neutrophil subsets have been identified in tumors and in circulation. Evidence from many studies now supports the notion that tumor-associated neutrophils (TANs) show functional plasticity driven by multiple factors present in the tumor microenvironment. In this review, we first concisely discuss the pro-tumor vs. anti-tumor nature of neutrophils in cancer, their functional plasticity, and the mechanisms that regulate neutrophil polarization. We then expand on the various crosstalks and mutual effects between TANs and other tumor-infiltrating immune cell types, emphasizing the active role of neutrophils as regulators of the immune system, promoting or inhibiting the establishment of a permissive tumor microenvironment. Finally, the possible modulation of cancer-related neutrophils by therapies directed toward immune checkpoints is discussed briefly.
Collapse
Affiliation(s)
- Merav E Shaul
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus Res 2016; 228:124-133. [PMID: 27923601 DOI: 10.1016/j.virusres.2016.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant cells in the context of innate immunity; they are one of the first cells to arrive at the site of viral infection constituting the first line of defense in response to invading pathogens. Indeed, neutrophils are provided with several defense mechanisms including release of cytokines, cytotoxic granules and the last recently described neutrophil extracellular traps (NETs). The main components of NETs are DNA, granular antimicrobial peptides, and nuclear and cytoplasmic proteins, that together play an important role in the innate immune response. While NETs were first described as a mechanism against bacteria and fungi, recently, several studies are beginning to elucidate how NETs are involved in the host antiviral response and the prominent characteristics of this new mechanism are discussed in the present review.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Fafutis-Morris Mary
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
44
|
Zhao X, Shi X, Zhang Z, Ma H, Yuan X, Ding Y. Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats. Clin Res Hepatol Gastroenterol 2016; 40:730-738. [PMID: 27637473 DOI: 10.1016/j.clinre.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/19/2016] [Accepted: 04/19/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND The imbalance of immunity is an important pathogenesis of acute liver failure (ALF). Neutrophils are the hallmark of acute inflammation, which have an essential role in immune regulation. Mesenchymal stem cell (MSC) transplantation is a promising therapy in ALF treatment. Recent studies indicated a considerable connection between MSCs and neutrophils in immune regulation. AIM To investigate changes in neutrophils in ALF rats after MSC transplantation, and to explore the therapeutic effect and mechanism of the combined treatment with MSC transplantation and neutrophil depletion in ALF. METHODS We employed monotherapy and the combination therapy with MSCs and anti-PMN serum in D-galactosamine (D-GalN)/lipopolysaccharides (LPS)-induced ALF rats. Rats were sacrificed at 6, 12 and 24h, respectively. Blood samples and liver tissues were collected. Hepatic injury, inflammatory cytokines (TNF-α, IL-1β and IL-10), chemokines (CXCL1 and CXCL2), the number and activity of neutrophils and animal survival were assessed at fixed times. RESULTS MSC transplantation can effectively improve the liver function of ALF rats and reduce the number and activity of neutrophils in both peripheral blood and liver. Compared with MSC transplantation alone, anti-PMN treatment and co-treatment had a better result in diminishing neutrophils. The co-treatment also exhibited a better therapeutical effect in ALF rats compared with monotherapy. In this process, the expressions of inflammatory cytokines in the liver were consistent with liver function. CONCLUSIONS The regulation of the neutrophil-related microenvironment is affected in D-GalN/LPS-induced ALF rats after MSC transplantation. The combined treatment with MSC transplantation and neutrophil depletion may have a better therapeutic effect in ALF rats.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Zhiheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Hucheng Ma
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
45
|
Espinasse MA, Hajage D, Montravers P, Piednoir P, Dufour G, Tubach F, Granger V, de Chaisemartin L, Noël B, Pallardy M, Chollet-Martin S, Biola-Vidamment A. Neutrophil expression of glucocorticoid-induced leucine zipper (GILZ) anti-inflammatory protein is associated with acute respiratory distress syndrome severity. Ann Intensive Care 2016; 6:105. [PMID: 27807817 PMCID: PMC5093102 DOI: 10.1186/s13613-016-0210-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Background Glucocorticoid-induced leucine zipper (GILZ) is a potent anti-inflammatory protein involved in neutrophil apoptosis and the resolution of inflammation. Given the numerous pathophysiologic roles of neutrophils in the acute respiratory distress syndrome (ARDS), we postulated that neutrophil GILZ expression might be induced during ARDS, to modulate the inflammatory process and participate in lung repair. Methods This single-center, prospective, observational cohort study took place in the surgical intensive care unit of Bichat Hospital (Paris, France) and involved 17 ARDS patients meeting the Berlin criteria at inclusion, and 14 ventilated controls without ARDS. Serial blood samples were obtained every 2 days until extubation or death (from 1 to 9 samples per patient). GILZ protein and gene expression was quantified in blood neutrophils, along with markers of inflammation (CRP, extracellular DNA) or its resolution (Annexin A1). Results Neutrophil GILZ expression was detected at the transcriptional and/or translational level in 9/17 ARDS patients (in particular 7/10 severe ARDS) and in 2/14 ventilated controls. The highest mRNA levels were observed in the most severely ill patients (p < 0.028). GILZ was expressed in about ¾ of the corticosteroid-treated patients and its expression could also occur independently of corticosteroids, suggesting that inflammatory signals may also induce neutrophil GILZ expression in vivo. Conclusions In this pilot study, we show for the first time that blood neutrophils from patients with ARDS can express GILZ, in keeping with an anti-inflammatory and regulatory endogenous role of GILZ in humans. Contrary to some markers of inflammation or its resolution, the levels of gilz gene expression were related to ARDS severity.
Collapse
Affiliation(s)
- Marie-Alix Espinasse
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France
| | - David Hajage
- Département d'Epidémiologie et Recherche Clinique, Assistance Publique-Hôpitaux de Paris Hôpital Bichat, INSERM, CIE 801, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Philippe Montravers
- Département d'Anesthésie-Réanimation, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascale Piednoir
- Département d'Anesthésie-Réanimation, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Dufour
- Département d'Anesthésie-Réanimation, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Florence Tubach
- Département d'Epidémiologie et Recherche Clinique, Assistance Publique-Hôpitaux de Paris Hôpital Bichat, INSERM, CIE 801, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vanessa Granger
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France.,Laboratoire d'immunologie, «Autoimmunité et hypersensibilités», Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Luc de Chaisemartin
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France.,Laboratoire d'immunologie, «Autoimmunité et hypersensibilités», Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Benoît Noël
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France
| | - Marc Pallardy
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France
| | - Sylvie Chollet-Martin
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France.,Laboratoire d'immunologie, «Autoimmunité et hypersensibilités», Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Armelle Biola-Vidamment
- INSERM UMR-996 - Inflammation, Chemokines and Immunopathology, Univ Paris-Sud, Faculté de pharmacie, Université Paris-Saclay, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France.
| |
Collapse
|
46
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
47
|
Different Leishmania Species Drive Distinct Neutrophil Functions. Trends Parasitol 2016; 32:392-401. [DOI: 10.1016/j.pt.2016.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
|
48
|
Pionnier N, Brotin E, Karadjian G, Hemon P, Gaudin-Nomé F, Vallarino-Lhermitte N, Nieguitsila A, Fercoq F, Aknin ML, Marin-Esteban V, Chollet-Martin S, Schlecht-Louf G, Bachelerie F, Martin C. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae. PLoS Negl Trop Dis 2016; 10:e0004605. [PMID: 27111140 PMCID: PMC4844152 DOI: 10.1371/journal.pntd.0004605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/12/2016] [Indexed: 01/06/2023] Open
Abstract
Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. Filariases are chronic debilitating diseases caused by parasitic nematodes affecting more than 150 million people worldwide. None of the current drugs are selective, neither able to eliminate the parasites nor to prevent new infections once the drug pressure has waned. Therefore, blocking the entry and the migration of the infective larvae (L3) could be an efficient way to control the infection. In the present study we investigated the early interaction between the host and the L. sigmodontis murine filariasis with a focus on the neutrophils in the innate host responses. We uncovered a key role of neutrophils in the control of infection provided by the CXCR4-gain-of-function mice (Cxcr4+/1013) that display a blood neutropenia as well as an accumulation of skin-infiltrating neutrophils. Overall, we reveal that in the early phase of filariasis, i.e. after L3 are delivered into the skin and before they reach their site for reproduction, neutrophils are critical elements of the host innate protective response arsenal. A better understanding of their indirect and/or effector role(s) may provide mechanistic clues to host factors implicated in parasitic nematode entry and potentially lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Emilie Brotin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Patrice Hemon
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d’Innovation Thérapeutique (IPSIT), Inserm, CNRS, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Françoise Gaudin-Nomé
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d’Innovation Thérapeutique (IPSIT), Inserm, CNRS, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Marie-Laure Aknin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Viviana Marin-Esteban
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Géraldine Schlecht-Louf
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Françoise Bachelerie
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- * E-mail: (FB); (CM)
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
- * E-mail: (FB); (CM)
| |
Collapse
|
49
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Noncanonical intercellular communication in immune response. World J Immunol 2016; 6:67-74. [DOI: 10.5411/wji.v6.i1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
The classical view of signaling between cells of immune system includes two major routes of intercellular communication: Through the release of extracellular molecules or a direct interaction between membrane bound receptor and its membrane bound ligand, which initiate a cascade of signaling in target cell. However, recent studies indicate that besides these canonical modes of signaling there are also noncanonical routs of intercellular communications through membrane stripping/membrane exchange/trogocytosis, extracellular traps, exosomes and ectososmes/microparticles. In this review we discuss what are the components of noncanonical pathways of signaling and what role they play in immune cells interactions.
Collapse
|
50
|
Wang H, Sha LL, Ma TT, Zhang LX, Chen M, Zhao MH. Circulating Level of Neutrophil Extracellular Traps Is Not a Useful Biomarker for Assessing Disease Activity in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. PLoS One 2016; 11:e0148197. [PMID: 26840412 PMCID: PMC4739550 DOI: 10.1371/journal.pone.0148197] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of life-threatening disorders, and frequently affects the kidneys. This study investigated whether the circulating neutrophil extracellular traps (NETs) levels were associated with disease activity of AAV. We collected serum samples from 34 patients with AAV in active stage and 62 patients with AAV in remission. Cell free DNA in serum was quantified using the Quant-iT PicoGreen assay. NETs associated MPO-DNA complexes, citrullinated-histone H3-DNA (cit-H3-DNA) complexes and the concentration of deoxyribonuclease I (DNase I) were quantified using ELISA. The activity of DNase I was quantified using radial enzyme-diffusion method. Associations between circulating levels of NETs with clinico-pathological parameters were analyzed. Serum levels of NETs in active AAV patients were significantly higher than those in healthy controls, and the level of cell free DNA correlated with C-reactive protein (CRP). However, no correlation was found between MPO-DNA complexes or cit-H3-DNA complexes level and CRP. Also there was no significant correlation between NETs level and initial serum creatinine, estimated glomerular filtration rate (eGFR), crescents formation or Birmingham Vasculitis Activity Score (BVAS). Furthermore, there was no significant difference of serum levels of cell free DNA or MPO-DNA complexes between active stage and remission of AAV. In conclusion, circulating levels of NETs cannot be used as a biomarker to assess disease activity in AAV patients.
Collapse
Affiliation(s)
- Huan Wang
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Li-Li Sha
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Guizhou Medical University, Guiyang 550004, China
| | - Tian-Tian Ma
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- * E-mail:
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University, First Hospital, Beijing 100034, China
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100034, China
| |
Collapse
|