1
|
Barlow KA, Battles MB, Brown ME, Canfield K, Lu X, Lynaugh H, Morrill M, Rappazzo CG, Reyes SP, Sandberg C, Sharkey B, Strong C, Zhao J, Sivasubramanian A. Design of orthogonal constant domain interfaces to aid proper heavy/light chain pairing of bispecific antibodies. MAbs 2025; 17:2479531. [PMID: 40126074 PMCID: PMC11934185 DOI: 10.1080/19420862.2025.2479531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
The correct pairing of cognate heavy and light chains is critical to the efficient manufacturing of IgG-like bispecific antibodies (bsAbs) from a single host cell. We present a general solution for the elimination of heavy chain (HC):light chain (LC) mispairs in bsAbs with κ LCs via the use of two orthogonal constant domain (CH1:Cκ ) interfaces comprising computationally designed amino acid substitutions. Substitutions were designed by Rosetta to introduce novel hydrogen bond (H-bond) networks at the CH1:Cκ interface, followed by Rosetta energy calculations to identify designs with enhanced pairing specificity and interface stability. Our final design, featuring a total of 11 amino acid substitutions across two Fab constant regions, was tested on a set of six IgG-like bsAbs featuring a diverse set of unmodified human antibody variable domains. Purity assessments showed near-complete elimination of LC mispairs, including in cases with high baseline mispairing with wild-type constant domains. The engineered bsAbs broadly recapitulated the antigen-binding and biophysical developability properties of their monospecific counterparts and no adverse immunogenicity signal was identified by an in vitro assay. Fab crystal structures containing engineered constant domain interfaces revealed no major perturbations relative to the wild-type coordinates and validated the presence of the designed hydrogen bond interactions. Our work enables the facile assembly of independently discovered IgG-like bispecific antibodies in a single-cell host and demonstrates a streamlined and generalizable computational and experimental workflow for redesigning conserved protein:protein interfaces.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Lu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | | | | | | | | | | - Beth Sharkey
- High-Throughput Expression, Adimab, Lebanon, NH, USA
| | | | | | - Arvind Sivasubramanian
- Computational Biology, Adimab, Mountain View, CA, USA
- Platform Technologies, Adimab, Lebanon, NH, USA
| |
Collapse
|
2
|
Cattaneo I, Choblet S, Valgardsdottir R, Roth M, Massafra A, Beeg M, Gobbi M, Duonor-Cerutti M, Golay J. Development of a Bispecific IgG1 Antibody Targeting BCMA and PDL1. Antibodies (Basel) 2024; 13:15. [PMID: 38390876 PMCID: PMC10885062 DOI: 10.3390/antib13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
We designed, produced, and purified a novel IgG1-like, bispecific antibody (bsAb) directed against B-cell maturation antigen (BCMA), expressed by multiple myeloma (MM) cells, and an immune checkpoint inhibitor (ICI), PDL1, expressed in the MM microenvironment. The BCMA×PDL1 bsAb was fully characterized in vitro. BCMA×PDL1 bound specifically and simultaneously, with nM affinity, to both native membrane-bound antigens and to the recombinant soluble antigen fragments, as shown by immunophenotyping analyses and surface plasmon resonance (SPR), respectively. The binding affinity of bsAb for PDL1 and BCMA was similar to each other, but PDL1 affinity was about 10-fold lower in the bsAb compared to parent mAb, probably due to the steric hindrance associated with the more internal anti-PDL1 Fab. The bsAb was also able to functionally block both antigen targets with IC50 in the nM range. The bsAb Fc was functional, inducing human-complement-dependent cytotoxicity as well as ADCC by NK cells in 24 h killing assays. Finally, BCMA×PDL1 was effective in 7-day killing assays with peripheral blood mononuclear cells as effectors, inducing up to 75% of target MM cell line killing at a physiologically attainable, 6 nM, concentration. These data provide the necessary basis for future optimization and in vivo testing of this novel bsAb.
Collapse
Affiliation(s)
- Irene Cattaneo
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Rut Valgardsdottir
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Muriel Roth
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Annamaria Massafra
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Martine Duonor-Cerutti
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Josée Golay
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| |
Collapse
|
3
|
Lee E, Lee S, Park S, Son YG, Yoo J, Koh Y, Shin DY, Lim Y, Won J. Asymmetric anti-CLL-1×CD3 bispecific antibody, ABL602 2+1, with attenuated CD3 affinity endows potent antitumor activity but limited cytokine release. J Immunother Cancer 2023; 11:e007494. [PMID: 37848261 PMCID: PMC10582864 DOI: 10.1136/jitc-2023-007494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of leukemia in adults with a high mortality rate and poor prognosis. Although targeted therapeutics, chemotherapy, and hematopoietic stem cell transplantation can improve the prognosis, the recurrence rate is still high, with a 5-year survival rate of approximately 40%. This study aimed to develop an IgG-based asymmetric bispecific antibody that targets CLL-1 and CD3 for treating AML. METHODS ABL602 candidates were compared in terms of binding activity, T-cell activation, and tumor-killing activities. ABL602-mediated T-cell activation and tumor-killing activities were determined by measuring the expression of activation markers, cytokines, cytolytic proteins, and the proportion of dead cells. We evaluated in vivo tumor growth inhibitory activity in two mouse models bearing subcutaneously and orthotopically engrafted human AML. Direct tumor-killing activity and T-cell activation in patient-derived AML blasts were also evaluated. RESULTS ABL602 2+1 showed a limited CD3 binding in the absence of CLL-1, suggesting that steric hindrance on the CD3 binding arm could reduce CLL-1 expression-independent CD3 binding. Although the CD3 binding activity was attenuated compared with that of 1+1, ABL602 2+1 exhibited much stronger T-cell activation and potent tumor-killing activities in AML cell lines. ABL602 2+1 efficiently inhibited tumor progression in subcutaneously and orthotopically engrafted AML mouse models. In the orthotopic mouse model, tumor growth inhibition was observed by gross measurement of luciferase activity, as well as a reduced proportion of AML blasts in the bone marrow, as determined by flow cytometry and immunohistochemistry (IHC) staining. ABL602 2+1 efficiently activated T cells and induced the lysis of AML blasts, even at very low effector:target (E:T) ratios (eg, 1:50). Compared with the reference 1+1 antibody, ABL602 did not induce the release of cytokines including interleukin-6 and tumor necrosis factor-α in the healthy donor-derived peripheral blood mononuclear cell. CONCLUSIONS With its potent tumor-killing activity and reduced cytokine release, ABL602 2+1 is a promising candidate for treating patients with AML and warrants further study.
Collapse
Affiliation(s)
- Eunhee Lee
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Shinai Lee
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | | | | | - Jiseon Yoo
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Yangmi Lim
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Jonghwa Won
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| |
Collapse
|
4
|
Ziegengeist T, Orth J, Kroll K, Schneider M, Spindler N, Dimova D, Handschuh S, Brandenburg A, Ossola R, Furtmann N, Birkenfeld J, Beil C, Hoffmann D, Schmidt T, Sendak R, Fischer M, Hölper S, Kühn J. High-Throughput and Format-Agnostic Mispairing Assay for Multispecific Antibodies Using Intact Mass Spectrometry. Anal Chem 2023. [PMID: 37369001 DOI: 10.1021/acs.analchem.3c00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Multispecific antibodies have gained significant importance in a broad indication space due to their ability to engage multiple epitopes simultaneously and to thereby overcome therapeutic barriers. With growing therapeutic potential, however, the molecular complexity increases, thus intensifying the demand for innovative protein engineering and analytical strategies. A major challenge for multispecific antibodies is the correct assembly of light and heavy chains. Engineering strategies exist to stabilize the correct pairing, but typically individual engineering campaigns are required to arrive at the anticipated format. Mass spectrometry has proven to be a versatile tool to identify mispaired species. However, due to manual data analysis procedures, mass spectrometry is limited to lower throughputs. To keep pace with increasing sample numbers, we developed a high-throughput-capable mispairing workflow based on intact mass spectrometry with automated data analysis, peak detection, and relative quantification using Genedata Expressionist. This workflow is capable of detecting mispaired species of ∼1000 multispecific antibodies in three weeks and thus is applicable to complex screening campaigns. As a proof of concept, the assay was applied to engineering a trispecific antibody. Strikingly, the new setup has not only proved successful in mispairing analysis but has also revealed its potential to automatically annotate other product-related impurities. Furthermore, we could confirm the assay to be format-agnostic, as shown by analyzing several different multispecific formats in one run. With these comprehensive capabilities, the new automated intact mass workflow can be applied as a universal tool to detect and annotate peaks in a format-agnostic approach and in high-throughput, thus enabling complex discovery campaigns.
Collapse
Affiliation(s)
- Tanja Ziegengeist
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Jennifer Orth
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Katja Kroll
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Marion Schneider
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Nadja Spindler
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Dilyana Dimova
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Severin Handschuh
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | | | | | - Norbert Furtmann
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Joerg Birkenfeld
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
- Perspix Biotech GmbH FiZ Frankfurt Innovation Center Biotechnology, Frankfurt 60438, Germany
| | - Christian Beil
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Dietmar Hoffmann
- Large Molecules Research Platform, Sanofi, Cambridge, Massachusetts 02141, United States
| | - Thorsten Schmidt
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Rebecca Sendak
- Large Molecules Research Platform, Sanofi, Cambridge, Massachusetts 02141, United States
| | - Melanie Fischer
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Soraya Hölper
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Jennifer Kühn
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| |
Collapse
|
5
|
Harwardt J, Carrara SC, Bogen JP, Schoenfeld K, Grzeschik J, Hock B, Kolmar H. Generation of a symmetrical trispecific NK cell engager based on a two-in-one antibody. Front Immunol 2023; 14:1170042. [PMID: 37081888 PMCID: PMC10110854 DOI: 10.3389/fimmu.2023.1170042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Biologics Technology and Development, Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Björn Hock
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
6
|
Arulanandam A, Lin L, Chang HM, Cerutti M, Choblet S, Gao P, Rath A, Bensussan A, Kadouche J, Teper D, Mandelboim O, Li W. Derivation and Preclinical Characterization of CYT-303, a Novel NKp46-NK Cell Engager Targeting GPC3. Cells 2023; 12:cells12070996. [PMID: 37048069 PMCID: PMC10093649 DOI: 10.3390/cells12070996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal antigen that is highly expressed in multiple solid tumors, including hepatocellular carcinoma, and is barely expressed in adult normal tissues except the placenta. NKp46 activation receptor is expressed in all-natural killer (NK) cells, including tumor-infiltrating NK cells. FLEX-NKTM is a platform for the production of tetravalent multifunctional antibody NK cell engagers (NKE). CYT-303 was designed using the FLEX-NK scaffold, incorporating a novel humanized NKp46 binder that does not induce NKp46 internalization and a humanized GPC3 binder that targets the membrane-proximal lobe to mediate NK cell-redirected killing of HCC tumors. CYT-303 shows sub-nanomolar binding affinities to both GPC3 and NKp46. CYT-303 was highly potent and effective in mediating NK cell-redirected cytotoxicity against multiple HCC tumor cell lines and tumor spheroids. More interestingly, it can reverse the dysfunction induced in NK cells following repeated rounds of serial killing of tumors. It also mediated antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity against GPC3-expressing HCC tumors. In vivo, CYT-303 showed no toxicity or cytokine release in cynomolgus monkeys up to the highest dose (60 mg/kg), administered weekly by intravenous infusion for 28 days. These results demonstrate the potential of CYT-303 to be a safe and effective therapy against HCC.
Collapse
Affiliation(s)
| | - Liang Lin
- Cytovia Therapeutics, Inc., Natick, MA 01760, USA
| | | | - Martine Cerutti
- Baculovirus and Therapy, UAR3426 Biocampus, Centre National De La Recherche Scientifique (CNRS), 34293 Montpellier CEDEX 5, France
| | - Sylvie Choblet
- Baculovirus and Therapy, UAR3426 Biocampus, Centre National De La Recherche Scientifique (CNRS), 34293 Montpellier CEDEX 5, France
| | - Peng Gao
- Cytovia Therapeutics, Inc., Natick, MA 01760, USA
| | - Armin Rath
- Cytovia Therapeutics, Inc., Natick, MA 01760, USA
| | - Armand Bensussan
- CLCC de Reims, U976 and Institut Godinot, The Institut National de la Santé et de la Recherche Médicale (Inserm), 1 Rue Du General Koenig, 51726 Reims CEDEX, France
| | | | - Daniel Teper
- Cytovia Therapeutics, Inc., Natick, MA 01760, USA
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Wei Li
- Cytovia Therapeutics, Inc., Natick, MA 01760, USA
| |
Collapse
|
7
|
Iwasaki YW, Tharakaraman K, Subramanian V, Khongmanee A, Hatas A, Fleischer E, Rurak TT, Ngok-ngam P, Tit-oon P, Ruchirawat M, Satayavivad J, Fuangthong M, Sasisekharan R. Generation of bispecific antibodies by structure-guided redesign of IgG constant regions. Front Immunol 2023; 13:1063002. [PMID: 36703993 PMCID: PMC9871890 DOI: 10.3389/fimmu.2022.1063002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (BsAbs) form an exciting class of bio-therapeutics owing to their multispecificity. Although numerous formats have been developed, generation of hetero-tetrameric IgG1-like BsAbs having acceptable safety and pharmacokinetics profiles from a single cell culture system remains challenging due to the heterogeneous pairing between the four chains. Herein, we employed a structure-guided approach to engineer mutations in the constant domain interfaces (CH1-CL and CH3-CH3) of heavy and κ light chains to prevent heavy-light mispairing in the antigen binding fragment (Fab) region and heavy-heavy homodimerization in the Fc region. Transient co-transfection of mammalian cells with heavy and light chains of pre-existing antibodies carrying the engineered constant domains generates BsAbs with percentage purity ranging from 78% to 85%. The engineered BsAbs demonstrate simultaneous binding of both antigens, while retaining the thermal stability, Fc-mediated effector properties and FcRn binding properties of the parental antibodies. Importantly, since the variable domains were not modified, the mutations may enable BsAb formation from antibodies belonging to different germline origins and isotypes. The rationally designed mutations reported in this work could serve as a starting point for generating optimized solutions required for large scale production.
Collapse
Affiliation(s)
- Yordkhwan W. Iwasaki
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kannan Tharakaraman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vidya Subramanian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Amnart Khongmanee
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Andrew Hatas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Eduardo Fleischer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Troy T. Rurak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patchara Ngok-ngam
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Phanthakarn Tit-oon
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jutamaad Satayavivad
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand,Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mayuree Fuangthong
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,*Correspondence: Mayuree Fuangthong, ; Ram Sasisekharan,
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States,*Correspondence: Mayuree Fuangthong, ; Ram Sasisekharan,
| |
Collapse
|
8
|
A novel therapeutic bispecific format based on synthetic orthogonal heterodimers enables T cell activity against Acute myeloid leukemia. Oncogene 2023; 42:26-34. [PMID: 36357573 DOI: 10.1038/s41388-022-02532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Many therapeutic bispecific T-cell engagers (BiTEs) are in clinical trials. A modular and efficient process to create BiTEs would accelerate their development and clinical applicability. In this study, we present the design, production, and functional activity of a novel bispecific format utilizing synthetic orthogonal heterodimers to form a multichain modular design. Further addition of an immunoglobulin hinge region allowed a stable covalent linkage between the heterodimers. As proof-of-concept, we utilized CD33 and CD3 binding scFvs to engage leukemia cells and T-cells respectively. We provide evidence that this novel bispecific T-cell engager (termed IgGlue-BiTE) could bind both CD3+ and CD33+ cells and facilitates robust T-cell mediated cytotoxicity on AML cells in vitro. In a mouse model of minimal residual disease, we showed that the novel IgGlue-BiTE greatly extended survival, and mice of this treatment group were free of leukemia in the bone marrow. These findings suggest that the IgGlue-BiTE allows for robust simultaneous engagement with both antigens of interest in a manner conducive to T cell cytotoxicity against AML. These results suggest a compelling modular system for bispecific antibodies, as the CD3- and CD33-binding domains can be readily swapped with domains binding to other cancer- or immune cell-specific antigens.
Collapse
|
9
|
Rabia E, Garambois V, Dhommée C, Larbouret C, Lajoie L, Buscail Y, Jimenez-Dominguez G, Choblet-Thery S, Liaudet-Coopman E, Cerutti M, Jarlier M, Ravel P, Gros L, Pirot N, Thibault G, Zhukovsky EA, Gérard PE, Pèlegrin A, Colinge J, Chardès T. Design and selection of optimal ErbB-targeting bispecific antibodies in pancreatic cancer. Front Immunol 2023; 14:1168444. [PMID: 37153618 PMCID: PMC10157173 DOI: 10.3389/fimmu.2023.1168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.
Collapse
Affiliation(s)
- Emilia Rabia
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Christine Dhommée
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurie Lajoie
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Yoan Buscail
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Réseau d’Histologie Expérimentale de Montpellier, BioCampus, Université de Montpellier, UAR3426 CNRS-US09 INSERM, Montpellier, France
| | - Gabriel Jimenez-Dominguez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Sylvie Choblet-Thery
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Martine Cerutti
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
| | - Marta Jarlier
- ICM, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Patrice Ravel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- CNRS, Centre National de la Recherche Scientifique, Paris, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Réseau d’Histologie Expérimentale de Montpellier, BioCampus, Université de Montpellier, UAR3426 CNRS-US09 INSERM, Montpellier, France
| | - Gilles Thibault
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Eugene A. Zhukovsky
- Biomunex Pharmaceuticals, Incubateur Paris Biotech santé, Hopital Cochin, Paris, France
| | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
- CNRS, Centre National de la Recherche Scientifique, Paris, France
- *Correspondence: Thierry Chardès,
| |
Collapse
|
10
|
Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies (Basel) 2022; 11:antib11030046. [PMID: 35892706 PMCID: PMC9326665 DOI: 10.3390/antib11030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are an emerging and very active frontier in clinical oncology, with hundred molecules currently in use or being tested. These treatments have already revolutionized clinical outcomes in both solid and hematological malignancies. However, identifying patients who are most likely to benefit from mAbs treatment is currently challenging and limiting the impact of such therapies. To overcome this issue, and to fulfill the expectations of mAbs therapies, it is urgently required to develop proper culture models capable of faithfully reproducing the interactions between tumor and its surrounding native microenvironment (TME). Three-dimensional (3D) models which allow the assessment of the impact of drugs on tumors within its TME in a patient-specific context are promising avenues to progressively fill the gap between conventional 2D cultures and animal models, substantially contributing to the achievement of personalized medicine. This review aims to give a brief overview of the currently available 3D models, together with their specific exploitation for therapeutic mAbs testing, underlying advantages and current limitations to a broader use in preclinical oncology.
Collapse
Affiliation(s)
- Virginia Guzzeloni
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Science, Faculty of Dentistry Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Federica Pedica
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
- Correspondence:
| |
Collapse
|
11
|
Underwood DJ, Bettencourt J, Jawad Z. The manufacturing considerations of bispecific antibodies. Expert Opin Biol Ther 2022; 22:1043-1065. [PMID: 35771976 DOI: 10.1080/14712598.2022.2095900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibody therapies have made huge strides in providing safe and efficacious drugs for autoimmune, cancer and infectious disease. These bispecific antibodies can be assembled from the basic building blocks of IgGs, resulting in dozens of formats. AREAS COVERED It is important to consider the manufacturability of these formats early in the antibody discovery phases. Broadly categorizing bispecific antibodies into IgG-like, fragment-based, appended and hybrid formats can help in looking at early manufacturability considerations. EXPERT OPINION Ideally, bispecific antibody manufacturing should contain a minimal number of steps, with processes that give high yields of protein with no contaminants. Many of these have been determined for the fragment-based bispecific blinatumomab and the IgG-like bispecifics from hybridomas. However, for new formats, these need to be considered early in the research and development pipeline. The hybrid formats offer an unusual alternative in generating high pure yields of bispecific molecules if the engineering challenges can be deciphered.
Collapse
Affiliation(s)
| | | | - Zahra Jawad
- Agenus inc., 3 Forbes Road, Lexington, MA, 02421-7305, United States.,Creasallis ltd, Babraham Research Campus, Babraham, Cambridgeshire, CB22 3AT, United Kingdom
| |
Collapse
|
12
|
Medjouel Khlifi H, Guia S, Vivier E, Narni-Mancinelli E. Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Front Immunol 2022; 13:898745. [PMID: 35757695 PMCID: PMC9231431 DOI: 10.3389/fimmu.2022.898745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors. Several activating NK cell receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response triggered by these activating receptors has made them attractive targets for exploitation in immunotherapy. In this review, we will discuss the different activating receptors associated with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the tumor context and the various therapeutic tools developed to boost NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Hakim Medjouel Khlifi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma Research Laboratories, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
13
|
Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing. Sci Rep 2021; 11:19411. [PMID: 34593913 PMCID: PMC8484483 DOI: 10.1038/s41598-021-98855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.
Collapse
|
14
|
Interdonato A, Choblet S, Sana M, Valgardsdottir R, Cribioli S, Alzani R, Roth M, Duonor-Cerutti M, Golay J. BL-01, an Fc-bearing, tetravalent CD20 × CD5 bispecific antibody, redirects multiple immune cells to kill tumors in vitro and in vivo. Cytotherapy 2021; 24:161-171. [PMID: 34538717 DOI: 10.1016/j.jcyt.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS The authors describe here a novel therapeutic strategy combining a bispecific antibody (bsAb) with cytokine-induced killer (CIK) cells. METHODS The authors have designed, produced and purified a novel tetravalent IgG1-like CD20 × CD5 bsAb called BL-01. The bsAb is composed of a fused heavy chain and two free light chains that pair correctly to the heavy chain sequences thanks to complementary mutations in the monoclonal antibody 2 CH1/CL sequences. RESULTS The authors show that BL-01 can bind specifically to CD20 and CD5 with an affinity of 4-6 nM, demonstrating correct pairing of two light chains to the fused heavy chain. The CD20 × CD5 BL-01 bsAb has a functional human IgG1 Fc and can induce up to 65% complement-dependent cytotoxicity of a CD20+ lymphoma cell line in the presence of human complement, similar to anti-CD20 rituximab. The bsAb also induces significant natural killer cell activation and antibody-dependent cytotoxicity of up to 25% as well as up to 65% phagocytosis by human macrophages in the presence of CD20+ tumor cells. The BL-01 bsAb binds to CD20 and CD5 simultaneously and can redirect CIK cells in vitro to kill CD20+ targets, increasing the cytotoxicity of CIK cells by about 3-fold. The authors finally show that the CD20 × CD5 BL-01 bsAb synergizes with CIK cells in vivo in controlling tumor growth and prolonging survival of nonobese diabetic/severe combined immunodeficiency mice inoculated with a patient-derived, aggressive diffuse large B-cell lymphoma xenograft. CONCLUSIONS The authors suggest that the efficacy of bsAb in vivo is due to the combined activation of innate immunity by Fc and redirection of CIK cells to kill the tumor target.
Collapse
Affiliation(s)
- Antonella Interdonato
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Mirco Sana
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Rut Valgardsdottir
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Muriel Roth
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Martine Duonor-Cerutti
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Josée Golay
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy.
| |
Collapse
|
15
|
Chauvin M, Garambois V, Choblet S, Colombo PE, Chentouf M, Gros L, De Brauwere DP, Duonor-Cerutti M, Dumas K, Robert B, Jarlier M, Martineau P, Navarro-Teulon I, Pépin D, Chardès T, Pèlegrin A. Anti-Müllerian hormone concentration regulates activin receptor-like kinase-2/3 expression levels with opposing effects on ovarian cancer cell survival. Int J Oncol 2021; 59:43. [PMID: 34013359 PMCID: PMC8131086 DOI: 10.3892/ijo.2021.5223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/11/2021] [Indexed: 11/27/2022] Open
Abstract
Anti‑Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor‑like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434‑AMHRII, SKOV3‑AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434‑AMHRII and SKOV3‑AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3‑AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1‑like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434‑AMHRII tumor cell xenograft growth was significantly reduced in all BsAb‑treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4‑3D7; P=0.001 for all other BsAbs). However, the growth of COV434‑AMHRII tumor cell xenografts was slower in mice treated with the anti‑AMRII‑ALK2 BsAb 12G4‑2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti‑AMHRII/anti‑AMHRI BsAbs.
Collapse
Affiliation(s)
- Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Sylvie Choblet
- CNRS UPS3044 Baculovirus et Thérapie, F-30380 Saint-Christol-Lèz Alès, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Myriam Chentouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | | | | | | | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| |
Collapse
|
16
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Design of a Trispecific Checkpoint Inhibitor and Natural Killer Cell Engager Based on a 2 + 1 Common Light Chain Antibody Architecture. Front Immunol 2021; 12:669496. [PMID: 34040611 PMCID: PMC8141644 DOI: 10.3389/fimmu.2021.669496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Natural killer cell engagers gained enormous interest in recent years due to their potent anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived antibodies entered clinical studies paving the way for avian-derived therapeutics. In this study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-derived antibody targeting EGFR, followed by utilization of the same light chain for the isolation of CD16a- and PD-L1-specific monoclonal antibodies. The resulting binders target their respective antigen with single-digit nanomolar affinity while blocking the ligand binding of all three respective receptors. Following library-based humanization, bispecific and trispecific variants in a standard 1 + 1 or a 2 + 1 common light chain format were generated, simultaneously targeting EGFR, CD16a, and PD-L1. The trispecific antibody mediated an elevated antibody-dependent cellular cytotoxicity (ADCC) in comparison to the EGFR×CD16a bispecific variant by effectively bridging EGFR/PD-L1 double-positive cancer cells with CD16a-positive effector cells. These findings represent, to our knowledge, the first detailed report on the generation of a trispecific 2 + 1 antibodies exhibiting a common light chain and illustrate synergistic effects of trispecific antigen binding. Overall, this generic procedure paves the way for the engineering of tri- and oligospecific therapeutic antibodies derived from avian immunizations.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Specificity
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Chickens
- Cytotoxicity, Immunologic/drug effects
- Drug Design
- Epitopes
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Immune Checkpoint Inhibitors/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immunization
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Light Chains/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Key Features Defining the Disposition of Bispecific Antibodies and Their Efficacy In Vivo. Ther Drug Monit 2021; 42:57-63. [PMID: 31283557 DOI: 10.1097/ftd.0000000000000668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bispecific antibodies (BsAbs) are novel drugs, with only a few approved for clinical use. BsAbs are versatile molecules that come in many different forms and are designed and produced via genetic engineering. Although BsAbs share several pharmacokinetic (PK) and pharmacodynamic (PD) properties with monoclonal antibodies, they have their own unique characteristics based on their overall structure and specificities. BsAbs are generally more complex to investigate and develop than monoclonal antibodies, because they recognize at least 2 different antigens. Understanding their relative affinities to each target is crucial for determining their mechanism of action and efficacy. Moreover, the presence or absence of an Fc region determines, in part, their in vivo stability, distribution, and half-life. This study summarizes several PK and PD aspects that are specific for BsAbs and are important for the success of these new drugs. We emphasize previous PK/PD studies that have been fundamental for the correct prediction of appropriate dosages and schedules of these new drugs in clinical trials or for defining which drugs may take advantage of individualized and standardized drug monitoring for improved efficacy and safety.
Collapse
|
18
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
19
|
|
20
|
Bringing the Heavy Chain to Light: Creating a Symmetric, Bivalent IgG-Like Bispecific. Antibodies (Basel) 2020; 9:antib9040062. [PMID: 33172091 PMCID: PMC7709125 DOI: 10.3390/antib9040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
Bispecific molecules are biologically significant, yet their complex structures pose important manufacturing and pharmacokinetic challenges. Nevertheless, owing to similarities with monoclonal antibodies (mAbs), IgG-like bispecifics conceptually align well with conventional expression and manufacturing platforms and often exhibit potentially favorable drug metabolism and pharmacokinetic (DMPK) properties. However, IgG-like bispecifics do not possess target bivalency and current designs often require tedious engineering and purification to ensure appropriate chain pairing. Here, we present a near-native IgG antibody format, the 2xVH, which can create bivalency for each target or epitope and requires no engineering for cognate chain pairing. In this modality, two different variable heavy (VH) domains with distinct binding specificities are grafted onto the first constant heavy (CH1) and constant light (CL) domains, conferring the molecule with dual specificity. To determine the versatility of this format, we characterized the expression, binding, and stability of several previously identified soluble human VH domains. By grafting these domains onto an IgG scaffold, we generated several prototype 2xVH IgG and Fab molecules that display similar properties to mAbs. These molecules avoided the post-expression purification necessary for engineered bispecifics while maintaining a capacity for simultaneous dual binding. Hence, the 2xVH format represents a bivalent, bispecific design that addresses limitations of manufacturing IgG-like bispecifics while promoting biologically-relevant dual target engagement.
Collapse
|
21
|
Golay J, Andrea AE. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies (Basel) 2020; 9:E17. [PMID: 32443877 PMCID: PMC7345008 DOI: 10.3390/antib9020017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies for the treatment of cancer came of age in 1997, with the approval of anti-CD20 Rituximab. Since then, a wide variety of antibodies have been developed with many different formats and mechanisms of action. Among these, antibodies blocking immune checkpoint inhibitors (ICI) have revolutionized the field, based on the novelty of their concept and their demonstrated efficacy in several types of cancer otherwise lacking effective immunotherapy approaches. ICI are expressed by tumor, stromal or immune cells infiltrating the tumor microenvironment, and negatively regulate anti-tumor immunity. Antibodies against the first discovered ICI, CTLA-4, PD-1 and PD-L1, have shown significant activity in phase III studies against melanoma and other solid cancers, alone or in combination with chemotherapy or radiotherapy. However, not all cancers and not all patients respond to these drugs. Therefore, novel antibodies targeting additional ICI are currently being developed. In addition, CTLA-4, PD-1 and PD-L1 blocking antibodies are being combined with each other or with other antibodies targeting novel ICI, immunostimulatory molecules, tumor antigens, angiogenic factors, complement receptors, or with T cell engaging bispecific antibodies (BsAb), with the aim of obtaining synergistic effects with minimal toxicity. In this review, we summarize the biological aspects behind such combinations and review some of the most important clinical data on ICI-specific antibodies.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy “G. Lanzani”, UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
- Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| |
Collapse
|
22
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Seifert O, Rau A, Beha N, Richter F, Kontermann RE. Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules. MAbs 2019; 11:919-929. [PMID: 30951400 DOI: 10.1080/19420862.2019.1603024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multivalent mono- or bispecific antibodies are of increasing interest for therapeutic applications, such as efficient receptor clustering and activation, or dual targeting approaches. Here, we present a novel platform for the generation of Ig-like molecules, designated diabody-Ig (Db-Ig). The antigen-binding site of Db-Ig is composed of a diabody in the VH-VL orientation stabilized by fusion to antibody-derived homo- or heterodimerization domains, e.g., CH1/CL or the heavy chain domain 2 of IgE (EHD2) or IgM (MHD2), further fused to an Fc region. In this study, we applied the Db-Ig format for the generation of tetravalent bispecific antibodies (2 + 2) directed against EGFR and HER3 and utilizing different dimerization domains. These Db-Ig antibodies retained the binding properties of the parental antibodies and demonstrated unhindered simultaneous binding of both antigens. The Db-Ig antibodies could be purified by a single affinity chromatography resulting in a homogenous preparation. Furthermore, the Db-Igs were highly stable in human plasma. Importantly, only one short peptide linker (5 aa) per chain is required to generate a Db-Ig molecule, reducing the potential risk of immunogenicity. The presence of a fully functional Fc resulted in IgG-like pharmacokinetic profiles of the Db-Ig molecules. Besides tetravalent bispecific molecules, this modular platform technology further allows for the generation of other multivalent molecules of varying specificity and valency, including mono-, bi-, tri- and tetra-specific molecules, and thus should be suitable for numerous applications.
Collapse
Affiliation(s)
- Oliver Seifert
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center System Biology , University of Stuttgart , Stuttgart , Germany
| | - Alexander Rau
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| | - Nadine Beha
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| | - Fabian Richter
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center System Biology , University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center System Biology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
24
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
25
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
26
|
Mach JP. Recombinant Monoclonal Antibodies, from Tumor Targeting to Cancer Immunotherapy: A Critical Overview. Mol Biol 2017. [DOI: 10.1134/s0026893317060115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 665] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
28
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
29
|
Gong S, Ren F, Wu D, Wu X, Wu C. Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. MAbs 2017; 9:1118-1128. [PMID: 28692328 DOI: 10.1080/19420862.2017.1345401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the development of bispecific antibody (bsAb) has become a major trend in the biopharmaceutical industry. By simultaneously engaging 2 molcular targets, bsAbs show unique mechanisms of action that could lead to clinical benefits unattainable by conventional monoclonal antibodies. Various bsAb generation formats have been described, and several are being investigated in clinical development. However, some bsAb constructs have proven to be problematic due to their unfavorable physicochemical and pharmacokinetic properties, as well as poor manufacturing efficiencies. We describe here a new bispecific design, Fabs-in-tandem immunoglobulin (FIT-Ig), in which 2 antigen-binding fragments are fused directly in a crisscross orientation without any mutations or use of peptide linkers. This unique design provides a symmetric IgG-like bispecific molecule with correct association of 2 sets of VH/VL pairs. We show that FIT-Ig molecules exhibit favorable drug-like properties, in vitro and in vivo functions, as well as manufacturing efficiency for commercial development.
Collapse
Affiliation(s)
| | - Fang Ren
- a EpimAb Biotherapeutics , Shanghai , China
| | - Danqing Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | - Xuan Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | | |
Collapse
|