1
|
Odhiambo DA, Fan S, Hirbe AC. UBR5 in Tumor Biology: Exploring Mechanisms of Immune Regulation and Possible Therapeutic Implications in MPNST. Cancers (Basel) 2025; 17:161. [PMID: 39857943 PMCID: PMC11764400 DOI: 10.3390/cancers17020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare but aggressive soft-tissue sarcoma characterized by poor response to therapy. The primary treatment remains surgical resection with negative margins. Nonetheless, in the setting of neurofibromatosis type 1 (NF1), the five-year survival rate is at 20-50%, with recurrence occurring in up to 50% of individuals. For patients with metastatic and unresectable disease, current treatment options include cytotoxic chemotherapy, which offers minimal benefit, and most patients die within five years of diagnosis. Despite advances in targeted therapy focusing on inhibiting Ras signaling and its downstream effectors, clinical trials report minimal clinical benefit, highlighting the need to explore alternative pathways in MPNST pathogenesis. Here, we discuss the role of the E3 ubiquitin ligase, UBR5, in cancer progression and immune modulation across various malignancies, including breast, lung, and ovarian cancer. We focus on mechanisms by which UBR5 contributes to tumorigenesis, focusing on its influence on tumor microenvironment and immune modulation. Additionally, we explore UBR5's roles in normal tissue function, DNA damage response, metastasis, and therapeutic resistance, illustrating its multifaceted contribution to cancer biology. We discuss evidence implicating UBR5 in immune evasion and highlight its potential as a therapeutic target to enhance the efficacy of immune checkpoint blockade (ICB) therapy in MPNST, a tumor typically characterized by an immune cold microenvironment. We outline current immune-based strategies and challenges in MPNST management, ongoing efforts to shift the immune landscape in MPNST, and ultimately, we suggest that targeting UBR5 could be a novel strategy to potentiate ICB therapy-mediated anti-tumor immune response and clinical outcomes, particularly in MPNST patients with inoperable or metastatic disease.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; (D.A.O.); (S.F.)
| |
Collapse
|
2
|
Zeng H, Geng X, Wan H, Qu X, Tang S, Zhang R, Zhou M, Yu Z, Pan J, Zheng H, Zhu Y, Huang S, Huang D. A Molecular Signature of the Ubiquitin-Proteasome System for Forecasting Prognosis in Thyroid Carcinoma Patients. J Inflamm Res 2024; 17:10397-10419. [PMID: 39654864 PMCID: PMC11627108 DOI: 10.2147/jir.s499820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background The ubiquitin-proteasome system (UPS) is vital for protein quality control and its dysregulation is linked to diseases, including cancer. Targeting the UPS is becoming a promising approach in cancer therapy. However, the role of UPS modulation in thyroid carcinoma (THCA) remains to be fully elucidated. Methods Initially, we utilized data from The Cancer Genome Atlas (TCGA) database to employ weighted gene co-expression network analysis (WGCNA) with LASSO regression to develop a prognostic model for core UPS genes implicated in THCA. Subsequently, we stratified the THCA training set into two distinct subtypes based on ubiquitin-proteasome system prognostic model score (UPS-PMS) characteristics. Key genes within the model were then subjected to functional analysis, immunotherapy evaluation, and drug sensitivity studies. Results We delineated a prognostic model of the UPS comprising six genes, which we subsequently demonstrated was capable of forecasting patient prognosis. Moreover, our findings indicated a substantial correlation between UPS-PMS and immune microenvironmental factors, notably a negative correlation with myeloid immune cells and a potential influence on the Th1 to Th2 cells ratio. Especially, we observed a significant association between high UPS-PMS and an immunosuppressive microenvironment. Then, we elucidated the biological distinctions among various THCA sample subtypes, highlighting that the cluster_1 subtype is associated with an unfavorable prognosis. Of note, KCNA1 was identified as a pivotal prognostic gene within the UPS-PMS framework. We constructed a three-tiered regulatory network centered on KCNA1-related competing endogenous RNA (ceRNA). Furthermore, our results suggested that KCNA1 has potential as a target for immunotherapeutic strategies. Concurrently, drug sensitivity analyses demonstrated that high KCNA1 expression promoted gemcitabine resistance in patients, while KCNA1 knockdown increased sensitivity to gemcitabine. Conclusion In conclusion, we developed a novel UPS-based prognostic model for THCA, identified key gene KCNA1, and assessed immunotherapy and drug sensitivity, revealing new therapeutic targets.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hao Wan
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiaoyu Qu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Shengwei Tang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ruiyu Zhang
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jingying Pan
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
3
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
4
|
Gu D, Cao T, Yi S, Li X, Liu Y. Transcription suppression of GABARAP mediated by lncRNA XIST-EZH2 interaction triggers caspase-11-dependent inflammatory injury in ulcerative colitis. Immunobiology 2024; 229:152796. [PMID: 38484431 DOI: 10.1016/j.imbio.2024.152796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND We have previously found that enhancer of zeste homolog 2 (EZH2) is correlated with inflammatory infiltration and mucosal cell injury in ulcerative colitis (UC). This study aims to analyze the role of X-inactive specific transcript (XIST), a possible interactive long non-coding RNA of EZH2, in UC and to explore the mechanisms. METHODS C57BL/6N mice were treated with dextran sulfate sodium (DSS), and mouse colonic mucosal epithelial cells were treated with DSS and lipopolysaccharide (LPS) for UC modeling. The UC-related symptoms in mice, and the viability and apoptosis of mucosal epithelial cells were determined. Inflammatory injury in animal and cellular models were assessed through the levels of ACS, occludin, IL-1β, IL-18, TNF-α, caspase-1, and caspase-11. Molecular interactions between XIST, EZH2, and GABA type A receptor-associated protein (GABARAP) were verified by immunoprecipitation assays, and their functions in inflammatory injury were determined by gain- or loss-of-function assays. RESULTS XIST was highly expressed in DSS-treated mice and in DSS + LPS-treated mucosal epithelial cells. It recruited EZH2, which mediated gene silencing of GABARAP through H3K27me3 modification. Silencing of XIST alleviated body weight loss, colon shortening, and disease active index of mice and reduced inflammatory injuries in their colon tissues. Meanwhile, it reduced apoptosis and inflammation in mucosal epithelial cells. However, these alleviating effects were blocked by either EZH2 overexpression or GABARAP knockdown. Rescue experiments identified caspase-11 as a key effector mediating the inflammatory injury following GABARAP loss. CONCLUSION This study suggests that the XIST-EZH2 interaction-mediated GABARAP inhibition activates caspase-11-dependent inflammatory injury in UC.
Collapse
Affiliation(s)
- Dan Gu
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ting Cao
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Shijie Yi
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiaoqian Li
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ya Liu
- Department of Anorectal Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
5
|
Wang W, Yang Y, Shi Y, Xiang T, Xie J. E3 ubiquitin ligase STUB1 affects the mTORC1 pathway through p62 and participates in regulating the differentiation of follicular helper T cells in rheumatoid arthritis. Clin Immunol 2023; 255:109736. [PMID: 37604355 DOI: 10.1016/j.clim.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE The abnormal expansion of Tfh cells plays a key role in chronic inflammation of RA joint. We speculated that STUB1 is an important regulatory factor in promoting the differentiation of Tfh cells in RA. CONTENT AND METHODS The proportion of Tfh cells and the level of STUB1 in Tfh cells was measured. CD4+T cells were isolated from PBMCs of RA patients, and the percentage of Tfh cells was detected after up- or down-regulating the expression of STUB1. The levels of mTORC1 pathway activator p-mTOR and p-S6K were measured by Western blot. The ubiquitination of p62 by STUB1 and its ubiquitination type as well as the activation of mTORC1 was detected in vitro, and the activation of the mTORC1 and the differentiation of Tfh cells was detected in STUB1-upregulated CD4+ T cells with overexpressed p62. RESULTS The level of STUB1 is elevated in Tfh cells of patients. Up-regulation of STUB1 can promote the differentiation of Tfh cells. STUB1 promotes the degradation of p62 via K48-linked ubiquitination and promotes the activation of mTORC1. Overexpression of p62 can reverse the promoting effect of STUB1 on the differentiation of Tfh cells and the activation of mTORC1. CONCLUSION STUB1 can promote the differentiation of Tfh cells in RA by mediating the activation of mTORC1 pathway through ubiquitination of p62.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujia Shi
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
A20 (Tnfaip3) expressed in CD4 + T cells suppresses Th2 cell-mediated allergic airway inflammation in mice. Biochem Biophys Res Commun 2022; 629:47-53. [PMID: 36099784 DOI: 10.1016/j.bbrc.2022.08.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
A20 (Tnfaip3), a ubiquitin-editing enzyme, inhibits NF-κB signaling pathways in response to pro-inflammatory cytokines. Previous studies have proved the anti-inflammatory roles of A20 in various cell types, including T cells, B cells, dendritic cells, and intestinal epithelial cells. Moreover, recent studies have shown that A20 expressed in lung epithelial cells is required for LPS-induced protection from asthma. In humans, a single-nucleotide polymorphism in TNFAIP3 is associated with asthma risk. However, the role of A20 expressed in T cells in asthmatic responses has not been elucidated. We addressed this point by generating mice lacking A20 expression in T cells (CD4-CreA20 fl/fl mice). We found that house dust mite (HDM)-induced allergic airway inflammation, mucus production, airway hyperresponsiveness, and Th2 cytokine production were significantly exacerbated in CD4-CreA20 fl/fl mice compared with those in control A20 fl/fl mice. In vitro differentiation of Th2 cells but not of Th1 cells or Th17 cells was enhanced in CD4+ T cells by the absence of A20. Consistently, enforced expression of A20 inhibited the differentiation of Th2 cells but not of Th1 cells or Th17 cells. Notably, the expression of GATA3 was significantly enhanced in A20-deficient CD4+ T cells, and the enhanced GATA3 expression was partly canceled by IL-2 neutralization. These results suggest that A20 functions as a stabilizing factor maintaining GATA3 levels during the induction of Th2 cells to prevent excessive Th2 cell differentiation.
Collapse
|
7
|
Marchingo JM, Cantrell DA. Protein synthesis, degradation, and energy metabolism in T cell immunity. Cell Mol Immunol 2022; 19:303-315. [PMID: 34983947 PMCID: PMC8891282 DOI: 10.1038/s41423-021-00792-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
T cell activation, proliferation, and differentiation into effector and memory states involve massive remodeling of T cell size and molecular content and create a massive increase in demand for energy and amino acids. Protein synthesis is an energy- and resource-demanding process; as such, changes in T cell energy production are intrinsically linked to proteome remodeling. In this review, we discuss how protein synthesis and degradation change over the course of a T cell immune response and the crosstalk between these processes and T cell energy metabolism. We highlight how the use of high-resolution mass spectrometry to analyze T cell proteomes can improve our understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Julia M Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
8
|
Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramírez-Suástegui C, Bhattacharyya S, Simon H, Greenbaum JA, Peters B, Seumois G, Ay F, Chandra V, Vijayanand P. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol 2022; 7:eabm2508. [PMID: 35213211 PMCID: PMC9035271 DOI: 10.1126/sciimmunol.abm2508] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of genetic variants on cells challenged in biologically relevant contexts has not been fully explored. Here, we activated CD4+ T cells from 89 healthy donors and performed a single-cell RNA sequencing assay with >1 million cells to examine cell type-specific and activation-dependent effects of genetic variants. Single-cell expression quantitative trait loci (sc-eQTL) analysis of 19 distinct CD4+ T cell subsets showed that the expression of over 4000 genes is significantly associated with common genetic polymorphisms and that most of these genes show their most prominent effects in specific cell types. These genes included many that encode for molecules important for activation, differentiation, and effector functions of T cells. We also found new gene associations for disease-risk variants identified from genome-wide association studies and highlighted the cell types in which their effects are most prominent. We found that biological sex has a major influence on activation-dependent gene expression in CD4+ T cell subsets. Sex-biased transcripts were significantly enriched in several pathways that are essential for the initiation and execution of effector functions by CD4+ T cells like TCR signaling, cytokines, cytokine receptors, costimulatory, apoptosis, and cell-cell adhesion pathways. Overall, this DICE (Database of Immune Cell Expression, eQTLs, and Epigenomics) subproject highlights the power of sc-eQTL studies for simultaneously exploring the activation and cell type-dependent effects of common genetic variants on gene expression (https://dice-database.org).
Collapse
Affiliation(s)
| | - Cristian Gonzalez-Colin
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Job Rocha
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | | | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
9
|
Lu Y, Qi Y, Li L, Yan Y, Wei J, Yao D, Wu J, Deng H, Deng J, Ye S, Chen H, Chen Q, Gao H, Han L, Lu C. The Gene Expression Analysis of Peripheral Blood Monocytes From Psoriasis Vulgaris Patients With Different Traditional Chinese Medicine Syndromes. Front Pharmacol 2022; 12:759741. [PMID: 35126107 PMCID: PMC8807547 DOI: 10.3389/fphar.2021.759741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is chronic skin disease and an important health concern. Traditional Chinese Medicine (TCM) has shown great promise in the treatment of psoriasis. However, the correlation between TCM Syndromes and genomics of psoriasis has not been evaluated. Here, we analyzed gene expression profiling of monocytes from psoriasis vulgaris patients with different TCM syndrome types to reveal the molecular basis of different psoriasis syndromes. Of the 62 cases of psoriasis vulgaris recruited, 16, 23, and 23 cases were of blood-heat syndrome, blood stasis syndrome, and blood-dryness syndrome, respectively; 10 healthy controls were recruited as controls. Affymertix’s Gene Chip ®clariom D gene chip was used to detect the gene expression profile of peripheral blood monocytes collected from recruited individuals. Compared with the healthy control group, 1570 genes were up-regulated and 977 genes were down-regulated in the psoriasis vulgaris patients group; 798 genes and 108 genes were up- and down-regulated in the blood-heat syndrome group respectively; 319 and 433 genes were up- and down-regulated in the blood-dryness syndrome group, respectively; and 502 and 179 genes were up-and down-regulated in the blood-stasis syndrome group. Our analyses indicated not only common differential genes and pathways between psoriasis syndrome groups and healthy controls, but also syndrome-specific genes and pathways. The results of this study link the three syndromes at the gene level and will be useful for clarifying the molecular basis of TCM syndromes of psoriasis.Clinical Trial Registration: (http://www.chictr.org.cn/showproj.aspx?proj=4390), identifier (ChiCTR-TRC-14005185).
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, China
| | - Li Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianan Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danni Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hengjun Gao
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| |
Collapse
|
10
|
Suehiro KI, Suto A, Suga K, Furuya H, Iwata A, Iwamoto T, Tanaka S, Kageyama T, Suzuki K, Hirose K, Lefebvre V, Nakajima H. Sox12 enhances Fbw7-mediated ubiquitination and degradation of GATA3 in Th2 cells. Cell Mol Immunol 2021; 18:1729-1738. [PMID: 32152552 PMCID: PMC8245422 DOI: 10.1038/s41423-020-0384-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Allergic asthma that is caused by inhalation of house dust mites (HDMs) is mainly mediated by Th2 cells. Recently, the roles of Sox (SRY-related high-mobility-group (HMG)-box) family members in various immune responses have been investigated. However, the roles of Sox12, a member of the SoxC group, in Th2 cell differentiation and allergic airway inflammation, remain unknown. We showed that Sox12 mRNA was significantly increased during Th2 cell differentiation. In vivo, HDM-induced eosinophil infiltration into the lung and Th2 cell differentiation were exacerbated in Sox12-/- mice compared with those in control Sox12+/- mice. In vitro, Sox12-/- CD4+ T cells that were cultured under Th2 conditions had increased production of Th2 cytokines and GATA3 protein compared with those of control Sox12+/- CD4+ T cells. Importantly, forced expression of Sox12 decreased the protein levels of GATA3 in CD4+ T cells under Th2 conditions without affecting mRNA expression. Furthermore, Sox12 induced degradation of GATA3 through the proteasome pathway in CD4+ T cells. Consistently, Sox12 enhanced ubiquitination of GATA3, which was mediated by the E3 ligase Fbw7. Finally, we found that Fbw7 knockdown partly abrogated Sox12-mediated GATA3 suppression in CD4+ T cells. Taken together, these results suggest that Sox12 suppresses Th2 cell differentiation by accelerating Fbw7-mediated GATA3 degradation, and attenuates HDM-induced allergic inflammation.
Collapse
Affiliation(s)
- Ken-Ichi Suehiro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan.
- Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| | - Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Hiroki Furuya
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Taro Iwamoto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
11
|
Lee JH, Zou L, Yang R, Han J, Wan Q, Zhang X, El Baghdady S, Roman A, Elly C, Jin HS, Park Y, Croft M, Liu YC. The deubiquitinase CYLD controls protective immunity against helminth infection by regulation of Treg cell plasticity. J Allergy Clin Immunol 2020; 148:209-224.e9. [PMID: 33309741 DOI: 10.1016/j.jaci.2020.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Collapse
Affiliation(s)
- Jee H Lee
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif.
| | - Le Zou
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jihye Han
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Qingqing Wan
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xian Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sarah El Baghdady
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Andrea Roman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hyung-Seung Jin
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Park
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Chitrakar A, Budda SA, Henderson JG, Axtell RC, Zenewicz LA. E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1009-1023. [PMID: 32690659 PMCID: PMC8167928 DOI: 10.4049/jimmunol.2000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Von Hippel-Lindau (VHL) is an E3 ubiquitin ligase that targets proteins, including HIF-1α, for proteasomal degradation. VHL and HIF regulate the balance between glycolysis and oxidative phosphorylation, which is critical in highly dynamic T cells. HIF-1α positively regulates Th17 differentiation, a complex process in which quiescent naive CD4 T cells undergo transcriptional changes to effector cells, which are commonly dysregulated in autoimmune diseases. The role of VHL in Th17 cells is not known. In this study, we hypothesized VHL negatively regulates Th17 differentiation and deletion of VHL in CD4 T cells would elevate HIF-1α and increase Th17 differentiation. Unexpectedly, we found that VHL promotes Th17 differentiation. Mice deficient in VHL in their T cells were resistant to an autoimmune disease, experimental autoimmune encephalomyelitis, often mediated by Th17 cells. In vitro Th17 differentiation was impaired in VHL-deficient T cells. In the absence of VHL, Th17 cells had decreased activation of STAT3 and SMAD2, suggesting that VHL indirectly or directly regulates these critical signaling molecules. Gene expression analysis revealed that in Th17 cells, VHL regulates many cellular pathways, including genes encoding proteins involved indirectly or directly in the glycolysis pathway. Compared with wild-type, VHL-deficient Th17 cells had elevated glycolysis and glycolytic capacity. Our finding has implications on the design of therapeutics targeting the distinct metabolic needs of T cells to combat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Scott A Budda
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jacob G Henderson
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
13
|
An Integrated Strategy for Identifying Targets of Ubiquitin-Mediated Degradation in CD4+ T Cells. Methods Mol Biol 2020; 2111:239-256. [PMID: 31933212 DOI: 10.1007/978-1-0716-0266-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitination is a crucial component of many immune processes. While ubiquitin-mediated degradation is essential to T cell activation via T cell receptor signaling, the specific E3 ligases and substrates involved are not well-understood. Here, we describe a strategy integrating RNA, protein, and posttranslational modification datasets to identify targets of ubiquitin-mediated degradation. When integrated, these assays can provide broad insight into how this posttranslational modification regulates protein function and influences T cell biology.
Collapse
|
14
|
Chao J, Han X, Liu K, Li Q, Peng Q, Lu S, Zhu X, Hu G, Dong Y, Hu C, Chen Y, Chen J, Khan FA, Chen H, Guo AA. Calves Infected with Virulent and Attenuated Mycoplasma bovis Strains Have Upregulated Th17 Inflammatory and Th1 Protective Responses, Respectively. Genes (Basel) 2019; 10:genes10090656. [PMID: 31466385 PMCID: PMC6770603 DOI: 10.3390/genes10090656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Mycoplasma bovis is a critical bovine pathogen, but its pathogenesis remains poorly understood. Here, the virulent HB0801 (P1) and attenuated HB0801-P150 (P150) strains of M. bovis were used to explore the potential pathogenesis and effect of induced immunity from calves’ differential transcriptomes post infection. Nine one-month-old male calves were infected with P1, P150, or mock-infected with medium and euthanized at 60 days post-infection. Calves in P1 group exhibited other clinical signs and pathological changes compared to the other two groups. Transcriptome profiles of peripheral blood mononuclear cells revealed seven and 10 hub differentially expressed genes (DEGs) in P1 and P150 groups compared with mock-infected group, respectively. Then, P1-induced pathogenesis was predicted to be associated with enhanced Th17, and P150-induced immunity with Th1 response and expression of ubiquitination-associated enzymes. Association analysis showed that 14 and 11 DEGs were positively and negatively correlated with pathological changes, respectively. Furthermore, up-regulated expression in molecules critical to differentiation of pathogenic Th17 cells in lung and peripheral blood mononuclear cells in P1 group was validated at RNA and protein levels. The results confirmed virulent and attenuated strains might be associated with biased differentiation of pro-inflammatory pathogenic Th17 and Th1 subsets respectively.
Collapse
Affiliation(s)
- Jin Chao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxiao Han
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingni Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Siyi Lu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - And Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Layman AAK, Deng G, O'Leary CE, Tadros S, Thomas RM, Dybas JM, Moser EK, Wells AD, Doliba NM, Oliver PM. Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nat Commun 2017; 8:15677. [PMID: 28580955 PMCID: PMC5465375 DOI: 10.1038/ncomms15677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Foxp3+ T regulatory (Treg) cells suppress immune cell activation and establish normal immune homeostasis. How Treg cells maintain their identity is not completely understood. Here we show that Ndfip1, a coactivator of Nedd4-family E3 ubiquitin ligases, is required for Treg cell stability and function. Ndfip1 deletion in Treg cells results in autoinflammatory disease. Ndfip1-deficient Treg cells are highly proliferative and are more likely to lose Foxp3 expression to become IL-4-producing TH2 effector cells. Proteomic analyses indicate altered metabolic signature of Ndfip1-deficient Treg cells and metabolic profiling reveals elevated glycolysis and increased mTORC1 signalling. Ndfip1 restricts Treg cell metabolism and IL-4 production via distinct mechanisms, as IL-4 deficiency does not prevent hyperproliferation or elevated mTORC1 signalling in Ndfip1-deficient Treg cells. Thus, Ndfip1 preserves Treg lineage stability and immune homeostasis by preventing the expansion of highly proliferative and metabolically active Treg cells and by preventing pathological secretion of IL-4 from Treg cells.
Collapse
Affiliation(s)
- Awo Akosua Kesewa Layman
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biomedical Graduate Studies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guoping Deng
- Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Claire E. O'Leary
- Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Samuel Tadros
- Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Rajan M. Thomas
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Joseph M. Dybas
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Emily K. Moser
- Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Andrew D. Wells
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Nicolai M. Doliba
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Paula M. Oliver
- Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Kesewa Layman AA, L. Sprout S, Phillips D, Oliver PM. Ndfip1 restricts Th17 cell potency by limiting lineage stability and proinflammatory cytokine production. Sci Rep 2017; 7:39649. [PMID: 28051111 PMCID: PMC5209687 DOI: 10.1038/srep39649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
While Th17 cells can protect against colonization by pathogenic organisms, they also have the potential to become pathogenic and promote autoimmune and inflammatory diseases. Mechanisms that control their pathogenic potential remain poorly understood. Here we show that Ndfip1, a co-activator of the E3 ubiquitin ligase Itch, restricts the frequency and pathogenicity of Th17 cells. Mice lacking Ndfip1 have increased numbers of Th17 cells, and this increase is cell intrinsic. We found that Ndfip1 restricts production of the proinflammatory cytokines in Th17 cells. Increased cytokine production correlated with reduced degradation and accumulation of RORγT. When transferred in vivo, Th17 cells lacking Ndfip1 were more likely to maintain their ability to make IL-17, were more potent proinflammatory cytokine producers, and were powerful inducers of colitis. Together our data support an essential role for Ndfip1 in degrading RORγT and suppressing Th17 lineage stability, proinflammatory cytokine production, and pathogenicity.
Collapse
Affiliation(s)
- Awo Akosua Kesewa Layman
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
- Biomedical graduate Studies, Immunology Graduate Group, 357 Biomedical Research Building II/III, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie L. Sprout
- The Children’s Hospital of Philadelphia, Cell Pathology Division, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Dylan Phillips
- The Children’s Hospital of Philadelphia, Cell Pathology Division, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Paula M. Oliver
- The Children’s Hospital of Philadelphia, Cell Pathology Division, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
|