1
|
Huang YM, Shih LJ, Hsieh TW, Tsai KW, Lu KC, Liao MT, Hu WC. Type 2 hypersensitivity disorders, including systemic lupus erythematosus, Sjögren's syndrome, Graves' disease, myasthenia gravis, immune thrombocytopenia, autoimmune hemolytic anemia, dermatomyositis, and graft-versus-host disease, are THαβ-dominant autoimmune diseases. Virulence 2024; 15:2404225. [PMID: 39267271 PMCID: PMC11409508 DOI: 10.1080/21505594.2024.2404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The THαβ host immunological pathway contributes to the response to infectious particles (viruses and prions). Furthermore, there is increasing evidence for associations between autoimmune diseases, and particularly type 2 hypersensitivity disorders, and the THαβ immune response. For example, patients with systemic lupus erythematosus often produce anti-double stranded DNA antibodies and anti-nuclear antibodies and show elevated levels of type 1 interferons, type 3 interferons, interleukin-10, IgG1, and IgA1 throughout the disease course. These cytokines and antibody isotypes are associated with the THαβ host immunological pathway. Similarly, the type 2 hypersensitivity disorders myasthenia gravis, Graves' disease, graft-versus-host disease, autoimmune hemolytic anemia, immune thrombocytopenia, dermatomyositis, and Sjögren's syndrome have also been linked to the THαβ pathway. Considering the potential associations between these diseases and dysregulated THαβ immune responses, therapeutic strategies such as anti-interleukin-10 or anti-interferon α/β could be explored for effective management.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei city, Taiwan
| | - Teng-Wei Hsieh
- Division of Immunology, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Nguyen JT, Jessri M, Costa-da-Silva AC, Sharma R, Mays JW, Treister NS. Oral Chronic Graft-Versus-Host Disease: Pathogenesis, Diagnosis, Current Treatment, and Emerging Therapies. Int J Mol Sci 2024; 25:10411. [PMID: 39408739 PMCID: PMC11476840 DOI: 10.3390/ijms251910411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a multisystem disorder that occurs in recipients of allogeneic hematopoietic (alloHCT) stem cell transplants and is characterized by both inflammatory and fibrotic manifestations. It begins with the recognition of host tissues by the non-self (allogeneic) graft and progresses to tissue inflammation, organ dysfunction and fibrosis throughout the body. Oral cavity manifestations of cGVHD include mucosal features, salivary gland dysfunction and fibrosis. This review synthesizes current knowledge on the pathogenesis, diagnosis and management of oral cGVHD, with a focus on emerging trends and novel therapeutics. Data from various clinical studies and expert consensus are integrated to provide a comprehensive overview.
Collapse
Affiliation(s)
- Joe T. Nguyen
- Nguyen Laboratory, Head and Neck Cancer Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Maryam Jessri
- Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD 4029, Australia;
- Department of Oral Medicine and Pathology, School of Dentistry, The University of Queensland, Herston, QLD 4072, Australia
| | - Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Rubina Sharma
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Jacqueline W. Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Nathaniel S. Treister
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02114, USA
| |
Collapse
|
3
|
Cheng XJ, Ji R, Huan RH, Huang SQ, Fan W, Zhao YC, Yuan RD, Wang XQ, Zhang X. [Clinical study of the cytokine panel in the diagnosis of ocular chronic graft-versus-host disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:242-248. [PMID: 38716595 PMCID: PMC11078663 DOI: 10.3760/cma.j.cn121090-20231031-00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 08/21/2024]
Abstract
Objective: To investigate the association between cytokines and ocular chronic graft-versus-host disease (cGVHD) and identify specific biomarkers for ocular cGVHD to enhance clinical diagnosis, treatment, and evaluation. Methods: A mouse model of cGVHD was established to explore the correlation between cGVHD and serum cytokines. Based on the findings from the animal experiments and literature review, a panel of 16 cytokine combinations was identified. Enzyme-linked immunosorbent assay (ELISA) was used to compare the cytokine concentrations in the serum and tear samples from patients who underwent allogeneic hematopoietic stem cell transplantation from June 2017 to March 2022 at the Medical Center of Hematology, Xinqiao Hospital, Army Medical University. Results: ① Compared with the control group, mice with cGVHD exhibited elevated serum IL-1β, IL-6, IL-8, IL-17, IFN-γ, CX3CL1, CXCL11, CXCL13, CCL11, and CCL19 concentrations (all P<0.05). ② Analysis of the cytokine profiles of the serum and tear samples revealed that compared with patients without ocular cGVHD, those with ocular cGVHD exhibited increased serum IL-8 [P=0.032, area under the curve (AUC) =0.678]; decreased serum IL-10 (P=0.030, AUC=0.701) ; elevated IL-8, IFN-γ, CXCL9, and CCL17 in tear samples; and lower IL-10 and CCL19 in tear samples (all P<0.05, all AUC>0.7). Moreover, cytokines in tear samples showed correlations with ocular surface parameters related to ocular cGVHD. Conclusions: Tear fluid demonstrates greater specificity and sensitivity as a biomarker for diagnosing ocular cGVHD than serum biomarkers. Among the identified cytokines in tear samples, IL-8, IL-10, IFN-γ, CXCL9, CCL17, and CCL19 serve as diagnostic biomarkers for ocular cGVHD post-transplantation, offering practical reference value for diagnosis.
Collapse
Affiliation(s)
- X J Cheng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - R Ji
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - R H Huan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - S Q Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - W Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Y C Zhao
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - R D Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - X Q Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Micoenvironment, State Key Laboatory of Trauma and Chemical Poisoning, Chongqing 400037, China Jinfeng Laboratory, Chongqing 400037, China
| |
Collapse
|
4
|
Rosenstein RK, Rose JJ, Brooks SR, Tsai WL, Gadina M, Pavletic SZ, Nagao K, Cowen EW. Identification of Fibroinflammatory and Fibrotic Transcriptomic Subsets of Human Cutaneous Sclerotic Chronic Graft-Versus-Host Disease. JID INNOVATIONS 2024; 4:100246. [PMID: 38357212 PMCID: PMC10864809 DOI: 10.1016/j.xjidi.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 02/16/2024] Open
Abstract
Cutaneous sclerotic chronic graft-versus-host disease (cGVHD) is a common and highly morbid complication of allogeneic hematopoietic stem cell transplantation. Our goals were to identify signals active in the skin of patients with sclerotic cGVHD in an effort to better understand how to treat this manifestation and to explore the heterogeneity of the disease. We identified genes that are significantly upregulated in the skin of patients with sclerotic cGVHD (n = 17) compared with those in the skin of patients who underwent allogeneic hematopoietic stem cell transplantation without cutaneous cGVHD (n = 9) by bulk RNA sequencing. Sclerotic cGVHD was most associated with T helper 1, phagocytic, and fibrotic pathways. In addition, different transcriptomic groups of affected patients were discovered: those with fibrotic and inflammatory/T helper 1 gene expression (the fibroinflammatory group) and those with predominantly fibrotic/TGFβ-associated expression (the fibrotic group). Further study will help elucidate whether these gene expression findings can be used to tailor treatment decisions. Multiple proteins encoded by highly induced genes in the skin (SFRP4, SERPINE2, COMP) were also highly induced in the plasma of patients with sclerotic cGVHD (n = 16) compared with those in plasma of control patients who underwent allogeneic hematopoietic stem cell transplantation without sclerotic cGVHD (n = 17), suggesting these TGFβ and Wnt pathway mediators as candidate blood biomarkers of the disease.
Collapse
Affiliation(s)
- Rachel K. Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Medicine, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | - Stephen R. Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wanxia L. Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Kim M, Renert-Yuval Y, Stepensky P, Even-Or E, Zaidman I, Fachler T, Neumark M, Zamir M, NandyMazumdar M, Gour D, Facheris P, Carroll B, Liu Y, Yu Ekey ML, Andrews E, Meariman M, Angelov M, Bose S, Estrada YD, Molho-Pessach V, Guttman-Yassky E. Sclerotic-Type Cutaneous Chronic Graft-Versus-Host Disease Exhibits Activation of T Helper 1 and OX40 Cytokines. J Invest Dermatol 2024; 144:563-572.e9. [PMID: 37742913 PMCID: PMC11447555 DOI: 10.1016/j.jid.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023]
Abstract
Sclerotic-type cutaneous chronic graft-versus-host disease is a severe complication of allogeneic hematopoietic stem cell transplantation, with profound morbidity. A dearth of effective, targeted treatment options necessitates further investigation into the molecular mechanisms underlying this T-cell-mediated disease. In this study, we compared the transcriptome in skin biopsies from pediatric and young adult (aged <25 years) patients with sclerotic-type cutaneous chronic graft-versus-host disease (n = 7) with that in demographically matched healthy controls (n = 8) and patients with atopic dermatitis (n = 10) using RNA sequencing with RT-PCR and immunohistochemistry validation. Differential expression was defined as fold change > 1.5 and false discovery rate < 0.05. Sclerotic-type cutaneous chronic graft-versus-host disease exhibited strong and significant T helper (Th)1 skewing through key related cytokines and chemokines (CXCL9/10/11, IFNG/IFN-γ, STAT1/signal transducer and activator of transcription 1). Several markers related to the TSLP-OX40 axis were significantly upregulated relative to those in both controls and lesional atopic dermatitis, including TNFSF4/OX40L, TSLP, and IL33, as well as fibroinflammatory signatures characterized in a prior study in systemic sclerosis. Gene set variation analysis reflected marker-level findings, showing the greatest enrichment of the Th1 and fibroinflammatory pathways, with no global activation identified in Th2 or Th17/Th22. Cell-type deconvolution revealed a significant representation of macrophages and vascular endothelial cells. Sclerotic-type cutaneous chronic graft-versus-host disease in young patients may therefore be characterized by strong Th1-related upregulation with a unique TSLP-OX40 signature, suggesting new therapeutic avenues for this devastating disease.
Collapse
Affiliation(s)
- Madeline Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Even-Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tahel Fachler
- Department of Dermatology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Neumark
- Department of Dermatology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mariana Zamir
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Monali NandyMazumdar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Digpal Gour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Britta Carroll
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mitchelle L Yu Ekey
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elizabeth Andrews
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marguerite Meariman
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Angelov
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swaroop Bose
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vered Molho-Pessach
- Department of Dermatology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
6
|
Logan BR, Fu D, Howard A, Fei M, Kou J, Little MR, Adom D, Mohamed FA, Blazar BR, Gafken PR, Paczesny S. Validated graft-specific biomarkers identify patients at risk for chronic graft-versus-host disease and death. J Clin Invest 2023; 133:e168575. [PMID: 37526081 PMCID: PMC10378149 DOI: 10.1172/jci168575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUNDChronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic hematopoietic cell transplantation (HCT). More accurate information regarding the risk of developing cGVHD is required. Bone marrow (BM) grafts contribute to lower cGVHD, which creates a dispute over whether risk biomarker scores should be used for peripheral blood (PB) and BM.METHODSDay 90 plasma proteomics from PB and BM recipients developing cGVHD revealed 5 risk markers that were added to 8 previous cGVHD markers to screen 982 HCT samples of 2 multicenter Blood and Marrow Transplant Clinical Trials Network (BMTCTN) cohorts. Each marker was tested for its association with cause-specific hazard ratios (HRs) of cGVHD using Cox-proportional-hazards models. We paired these clinical studies with biomarker measurements in a mouse model of cGVHD.RESULTSSpearman correlations between DKK3 and MMP3 were significant in both cohorts. In BMTCTN 0201 multivariate analyses, PB recipients with 1-log increase in CXCL9 and DKK3 were 1.3 times (95% CI: 1.1-1.4, P = 0.001) and 1.9 times (95%CI: 1.1-3.2, P = 0.019) and BM recipients with 1-log increase in CXCL10 and MMP3 were 1.3 times (95%CI: 1.0-1.6, P = 0.018 and P = 0.023) more likely to develop cGVHD. In BMTCTN 1202, PB patients with high CXCL9 and MMP3 were 1.1 times (95%CI: 1.0-1.2, P = 0.037) and 1.2 times (95%CI: 1.0-1.3, P = 0.009) more likely to develop cGVHD. PB patients with high biomarkers had increased likelihood to develop cGVHD in both cohorts (22%-32% versus 8%-12%, P = 0.002 and P < 0.001, respectively). Mice showed elevated circulating biomarkers before the signs of cGVHD.CONCLUSIONBiomarker levels at 3 months after HCT identify patients at risk for cGVHD occurrence.FUNDINGNIH grants R01CA168814, R21HL139934, P01CA158505, T32AI007313, and R01CA264921.
Collapse
Affiliation(s)
- Brent R. Logan
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Denggang Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Howard
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Mingwei Fei
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Jianqun Kou
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Morgan R. Little
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Philip R. Gafken
- Proteomics & Metabolomics shared resource, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Cuvelier GDE, Ng B, Abdossamadi S, Nemecek ER, Melton A, Kitko CL, Lewis VA, Schechter T, Jacobsohn DA, Harris AC, Pulsipher MA, Bittencourt H, Choi SW, Caywood EH, Kasow KA, Bhatia M, Oshrine BR, Chaudhury S, Coulter D, Chewning JH, Joyce M, Savaşan S, Pawlowska AB, Megason GC, Mitchell D, Cheerva AC, Lawitschka A, Ostroumov E, Schultz KR. A diagnostic classifier for pediatric chronic graft-versus-host disease: results of the ABLE/PBMTC 1202 study. Blood Adv 2023; 7:3612-3623. [PMID: 36219586 PMCID: PMC10365946 DOI: 10.1182/bloodadvances.2022007715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022] Open
Abstract
The National Institutes of Health Consensus criteria for chronic graft-versus-host disease (cGVHD) diagnosis can be challenging to apply in children, making pediatric cGVHD diagnosis difficult. We aimed to identify diagnostic pediatric cGVHD biomarkers that would complement the current clinical criteria and help differentiate cGVHD from non-cGVHD. The Applied Biomarkers of Late Effects of Childhood Cancer (ABLE) study, open at 27 transplant centers, prospectively evaluated 302 pediatric patients after hematopoietic cell transplant (234 evaluable). Forty-four patients developed cGVHD. Mixed and fixed effect regression analyses were performed on diagnostic cGVHD onset blood samples for cellular and plasma biomarkers, with individual markers declared relevant if they met 3 criteria: an effect ratio ≥1.3 or ≤0.75; an area under the curve (AUC) of ≥0.60; and a P value <5.814 × 10-4 (Bonferroni correction) (mixed effect) or <.05 (fixed effect). To address the complexity of cGVHD diagnosis in children, we built a machine learning-based classifier that combined multiple cellular and plasma biomarkers with clinical factors. Decreases in regulatory natural killer cells, naïve CD4 T helper cells, and naïve regulatory T cells, and elevated levels of CXCL9, CXCL10, CXCL11, ST2, ICAM-1, and soluble CD13 (sCD13) characterize the onset of cGVHD. Evaluation of the time dependence revealed that sCD13, ST2, and ICAM-1 levels varied with the timing of cGVHD onset. The cGVHD diagnostic classifier achieved an AUC of 0.89, with a positive predictive value of 82% and a negative predictive value of 80% for diagnosing cGVHD. Our polyomic approach to building a diagnostic classifier could help improve the diagnosis of cGVHD in children but requires validation in future prospective studies. This trial was registered at www.clinicaltrials.gov as #NCT02067832.
Collapse
Affiliation(s)
- Geoffrey D. E. Cuvelier
- Pediatric Blood and Marrow Transplantation, Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Bernard Ng
- Department of Statistics, Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Sayeh Abdossamadi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Eneida R. Nemecek
- Pediatric Blood and Marrow Transplantation, Doernbechter Children’s Hospital, Oregon Health and Sciences University, Portland, OR
| | - Alexis Melton
- Pediatric Blood and Marrow Transplant Program, Benioff Children’s Hospital, UC San Francisco, San Francisco, CA
| | - Carrie L. Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, TN
| | - Victor A. Lewis
- Pediatric Oncology, Alberta Children’s Hospital, University of Calgary, Calgary, AB, Canada
| | - Tal Schechter
- Pediatric Hematology-Oncology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David A. Jacobsohn
- Division of Blood and Marrow Transplantation, Children’s National Hospital, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Andrew C. Harris
- MSK Kids Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael A. Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology, Saint-Justine University Hospital Centre, Montreal, QC, Canada
| | - Sung Won Choi
- Blood and Marrow Transplant Program, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Emi H. Caywood
- Nemours Children’s Health, Thomas Jefferson University, Wilmington, DE
| | - Kimberly A. Kasow
- Pediatric Bone Marrow Transplant, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Monica Bhatia
- Pediatric Stem Cell Transplant Program, Morgan Stanley Children’s Hospital, Columbia University, New York, NY
| | - Benjamin R. Oshrine
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Sonali Chaudhury
- Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL
| | - Donald Coulter
- Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Joseph H. Chewning
- Division of Pediatric Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Michael Joyce
- Division of Pediatric Hematology-Oncology, Nemours Children’s Specialty Care, Jacksonville, FL
| | - Süreyya Savaşan
- Pediatric Hematology & Oncology, Children’s Hospital of Michigan, Detroit, MI
| | - Anna B. Pawlowska
- Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplant, City of Hope, Duarte, CA
| | - Gail C. Megason
- Children’s Hematology-Oncology, University of Mississippi Medical Center, Jackson, MS
| | - David Mitchell
- Division of Pediatric Hematology-Oncology, Montreal Children’s Hospital, McGill University, Montreal, QC, Canada
| | - Alexandra C. Cheerva
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Norton Children’s Hospital, University of Louisville, Louisville, KY
| | - Anita Lawitschka
- Stem Cell Transplant Unit, St. Anna Children’s Hospital, Medical University, Vienna, Austria
| | - Elena Ostroumov
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Tollemar V, Garming Legert K, Sugars RV. Perspectives on oral chronic graft-versus-host disease from immunobiology to morbid diagnoses. Front Immunol 2023; 14:1151493. [PMID: 37449200 PMCID: PMC10338056 DOI: 10.3389/fimmu.2023.1151493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic Graft-versus-Host Disease (cGVHD) is a major long-term complication, associated with morbidity and mortality in patients following allogenic hematopoietic cell transplantation (HCT) for immune hematopoietic disorders. The mouth is one of the most frequently affected organs after HCT (45-83%) and oral cGVHD, which may appear as the first visible sign. Manifestations present with mucosal lichenoid lesions, salivary gland dysfunction and limited oral aperture. Diagnosis of oral cGVHD severity is based on mucosal lesions with symptoms of sensitivity and pain and reduced oral intake. However, diagnostic difficulties arise due to subjective definitions and low specificity to cover the spectrum of oral cGVHD. In recent years there have been significant improvements in our understanding of the underlying oral cGVHD disease mechanisms. Drawing upon the current knowledge on the pathophysiology and biological phases of oral cGVHD, we address oral mucosa lichenoid and Sjogren's Syndrome-like sicca syndromes. We consider the response of alloreactive T-cells and macrophages to recipient tissues to drive the pathophysiological reactions and biological phases of acute inflammation (phase 1), chronic inflammation and dysregulated immunity (phase 2), and subsequent aberrant fibrotic healing (phase 3), which in time may be associated with an increased malignant transformation rate. When formulating treatment strategies, the pathophysiological spectrum of cGVHD is patient dependent and not every patient may progress chronologically through the biological stages. As such there remains a need to address and clarify personalized diagnostics and management to improve treatment descriptions. Within this review, we highlight the current state of the art knowledge on oral cGVHD pathophysiology and biological phases. We address knowledge gaps of oral cGVHD, with a view to facilitate clinical management and improve research quality on lichenoid biology and morbid forms of oral cGVHD.
Collapse
Affiliation(s)
| | | | - Rachael V. Sugars
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Bowers SM, Ng B, Abdossamadi S, Kariminia A, Cabral DA, Cuvelier GDE, Schultz KR, Brown KL. Elevated ADA2 Enzyme Activity at the Onset of Chronic Graft-versus-Host Disease in Children. Transplant Cell Ther 2023; 29:303.e1-303.e9. [PMID: 36804932 DOI: 10.1016/j.jtct.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Adenosinergic signaling has potent, context-specific effects on immune cells, particularly on the dysregulation of lymphocytes. This in turn may have a role in immune activation and loss of tolerance in such diseases as chronic graft-versus-host disease (chronic GVHD). We assessed whether changes in the enzymatic activity of adenosine deaminase 2 (ADA2), an enzyme that depletes adenosine in the extracellular space via conversion to inosine, may be associated with the onset of chronic GVHD. ADA2-specific enzyme activity was measured in plasma samples from 230 pediatric hematopoietic stem cell transplantation (HSCT) recipients enrolled on the Applied Biomarkers of Late Effects of Childhood Cancer (ABLE)/Pediatric Blood and Marrow Transplant Consortium (PBMTC) 1202 study and compared between patients developing chronic GVHD and those not developing chronic GVHD within 12 months of transplantation. ADA2 and its relationships with 219 previously measured plasma-soluble proteins, metabolites, and immune cell populations were evaluated as well. Plasma ADA2 enzyme activity was significantly elevated in pediatric HSCT recipients at the onset of chronic GVHD compared to patients without chronic GVHD and was not associated with prior history of acute GVHD or generalized inflammation as measured by C-reactive protein concentration. ADA2-specific enzyme activity met our criteria as a potential diagnostic biomarker of chronic GVHD (effect ratio ≥1.30 or ≤.75; area under the receiver operating characteristic curve ≥.60; P < .05) and was positively associated with markers of immune activation previously identified in pediatric chronic GVHD patients. These results support the potential of ADA2 enzyme activity, in combination with other biomarkers and subject to future validation, to aid the diagnosis of chronic GVHD in children post-HSCT.
Collapse
Affiliation(s)
- Sarah M Bowers
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Bernard Ng
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sayeh Abdossamadi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David A Cabral
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant, Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly L Brown
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
A Multiparameter Prognostic Risk Score of Chronic Graft-versus-Host Disease Based on CXCL10 and Plasmacytoid Dendritic Cell Levels in the Peripheral Blood at 3 Months after Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:302.e1-302.e8. [PMID: 36796518 DOI: 10.1016/j.jtct.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Chronic GVHD (cGVHD) is the major cause of long-term morbidity after allogeneic hematopoietic stem cell transplantation (HSCT). There are no biomarkers that can consistently predict its occurrence. We aimed to evaluate whether numbers of antigen-presenting cell subsets in peripheral blood (PB) or serum chemokine concentrations are biomarkers of cGVHD occurrence. The study cohort comprised 101 consecutive patients undergoing allogeneic HSCT between January 2007 and 2011. cGVHD was diagnosed by both modified Seattle criteria and National Institutes of Health (NIH) criteria. Multicolor flow cytometry was used to determine the number of PB myeloid dendritic cells (DCs), plasmacytoid DCs, CD16+ DCs, and CD16+ and CD16- monocytes, as well as CD4+ and CD8+ T cells, CD56+ natural killer cells, and CD19+ B cells. Serum concentrations of CXCL8, CXCL10, CCL2, CCL3, CCL4, and CCL5 were measured by a cytometry bead array assay. At a median of 60 days after enrollment, 37 patients had developed cGVHD. Patients with cGVHD and those without cGVHD had comparable clinical characteristics. However, previous acute GVHD (aGVHD) was strongly correlated with later cGVHD (57% versus 24%, respectively; P = .0024). Each potential biomarker was screened for its association with cGVHD using the Mann-Whitney U test. Biomarkers that differed significantly (P < .05) between patients with cGVHD and those without cGVHD were analyzed by receiver operating characteristic (ROC) curve analysis to select the variables predicting cGVHD with an area under the ROC curve (AUC) >.5 and a P value <.05. A multivariate Fine-Gray model identified the following variables as independently associated with the risk of cGVHD: CXCL10 ≥592.650 pg/mL (hazard ratio [HR], 2.655; 95% confidence interval [CI], 1.298 to 5.433; P = .008), pDC ≥2.448/μL (HR, .286; 95% CI, .142 to .577; P < .001) and previous aGVHD (HR, 2.635; 95% CI, 1.298 to 5.347; P = .007). A risk score was derived based on the weighted coefficients of each variable (2 points each), resulting in the identification of 4 cohorts of patients (scores of 0, 2, 4, and 6). In a competing risk analysis to stratify patients at differing risk levels of cGVHD, the cumulative incidence of cGVHD was 9.7%, 34.3%, 57.7%, and 100% in patients with scores of 0, 2, 4, and 6, respectively (P < .0001). The score could nicely stratify the patients based on the risk of extensive cGVHD as well as NIH-based global and moderate to severe cGVHD. Based on ROC analysis, the score could predict the occurrence of cGVHD with an AUC of .791 (95% CI, .703 to .880; P < .001). Finally, a cutoff score ≥4 was identified as the optimal cutoff by Youden J index with a sensitivity of 57.1% and a specificity of 85.0%. A multiparameter score including a history of previous aGVHD, serum CXCL10 concentration, and number of pDCs in the PB at 3 months post-HSCT stratify patients at varying risk levels of cGVHD. However, the score needs to be validated in a much larger independent and possibly multicenter cohort of patients undergoing transplantation from different donor types and with distinct GVHD prophylaxis regimens.
Collapse
|
11
|
Mina A, Curtis L, West K, Yau YY, Cowen EW, Hakim F, Pavletic SZ. Collection of peripheral blood mononucleated cells for chronic graft-versus-host disease immunology research: safety and effectiveness of leukapheresis in 132 patients. J Transl Med 2022; 20:519. [DOI: 10.1186/s12967-022-03708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Chronic graft-versus-host disease (GVHD) is a major cause of late morbidity and non-relapse mortality in recipients of allogeneic hematopoietic cell transplantation (HCT). Its biology, however, remains poorly understood, making the studies of its biology and immunomodulatory therapies a difficult task. Such research is often hampered by lymphopenia which is common in these patients and precludes studies of critical cellular subsets across the spectrum of severity of disease. This study explores the potential of leukapheresis to safely acquire and efficiently store immune cells for immunology research in chronic GVHD.
Methods
This is a cross-sectional study in which 132 consecutively accrued patients undergo optional research leukapheresis and a one-week comprehensive outpatient evaluation. Baseline clinical and laboratory data and efficiency of the procedure were reported.
Results
Ninety-four of 132 patients (71%) achieved the goal collection of 2 × 10^9 PBMNCs with a mean volume processed of 4.6 L. Only mild decreases in hemoglobin, platelet, lymphocyte and monocytes were observed. All adverse events were mild (grade 1) and had resolved by the time of discharge from the apheresis unit.
Conclusion
This study demonstrates feasibility, safety, and efficiency of research leukapheresis in a frail patient population. Results presented promote leukapheresis as a standard research practice option in studies of chronic GVHD in humans which may expedite advances in our understanding of this complex multisystem disease.
Collapse
|
12
|
Milosevic E, Babic A, Iovino L, Markovic M, Grce M, Greinix H. Use of the NIH consensus criteria in cellular and soluble biomarker research in chronic graft-versus-host disease: A systematic review. Front Immunol 2022; 13:1033263. [DOI: 10.3389/fimmu.2022.1033263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesChronic graft-versus-host disease (cGvHD) is the most frequent cause of late non-relapse mortality after allogeneic haematopoietic stem cell transplantation (alloHCT). Nevertheless, established biomarkers of cGvHD are still missing. The National Institutes of Health (NIH) Consensus Development Project on Criteria for Clinical Trials in cGvHD provided recommendations for biomarker research. We evaluated to which extent studies on cellular and soluble biomarkers in cGvHD published in the last 10 years complied with these recommendations. Also, we highlight the most promising biomarker candidates, verified in independent cohorts and/or repeatedly identified by separate studies.MethodsWe searched Medline and EMBASE for “cGvHD”, “biomarkers”, “soluble” and “cells” as MeSH terms or emtree subject headings, and their variations on July 28th, 2021, limited to human subjects, English language and last ten years. Reviews, case reports, conference abstracts and single nucleotide polymorphism studies were excluded. Criteria based on the set of recommendations from the NIH group for biomarker research in cGvHD were used for scoring and ranking the references.ResultsA total of 91 references encompassing 15,089 participants were included, 54 prospective, 17 retrospective, 18 cross-sectional, and 2 studies included both prospective and retrospective cohorts. Thirty-five papers included time-matched controls without cGvHD and 20 studies did not have any control subjects. Only 9 studies were randomized, and 8 were multicentric. Test and verification cohorts were included in 11 studies. Predominantly, diagnostic biomarkers were explored (n=54). Assigned scores ranged from 5-34. None of the studies fulfilled all 24 criteria (48 points). Nevertheless, the scores improved during the last years. Three cell subsets (CXCR3+CD56bright NK cells, CD19+CD21low and BAFF/CD19+ B cells) and several soluble factors (BAFF, IL-15, CD163, DKK3, CXCL10 and the panel of ST2, CXCL9, MMP3 and OPN) had the highest potential as diagnostic and/or prognostic biomarkers in cGvHD.ConclusionDespite several limitations of this review (limited applicability for paediatric population, definition of verification, missing data on comorbidities), we identified promising candidate biomarkers for further evaluation in multicentre collaborative studies. This review confirms the importance of the NIH consensus group criteria for improving the quality and reproducibility of cGvHD biomarker research.
Collapse
|
13
|
Bidgoli A, DePriest BP, Saatloo MV, Jiang H, Fu D, Paczesny S. Current Definitions and Clinical Implications of Biomarkers in Graft-versus-Host Disease. Transplant Cell Ther 2022; 28:657-666. [PMID: 35830932 PMCID: PMC9547856 DOI: 10.1016/j.jtct.2022.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Hematopoietic cell transplantation (HCT) is a potentially curative treatment for many hematologic and nonhematologic disorders. Graft-versus-host-disease (GVHD) in its acute or chronic form remains the most important nonrelapse post-HCT complication. Biomarkers offer objective, unbiased information on systemic disorders, and significant attention has focused on identifying biomarkers for GVHD. Ideally, a GVHD biomarker is actionable, with the results of biomarker testing used to guide clinical management of disease and clinical trial design. Although many GVHD biomarkers have been identified, none have been properly qualified for clinical use. The National Institutes of Health (NIH) and Food and Drug Administration (FDA) have provided biomarker subtype definitions; however, confusion remains about the proper definition and application of these subtypes in the HCT field. The 2014 NIH consensus development project provided a framework for the development of biomarkers for clinical practice. This review aims to clarify the biomarker subtype definitions and reemphasize the developmental framework. Armed with this knowledge, clinicians can properly translate GVHD biomarkers for clinical use.
Collapse
Affiliation(s)
- Alan Bidgoli
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Brittany Paige DePriest
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Maedeh Vakili Saatloo
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hua Jiang
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Denggang Fu
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Sophie Paczesny
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
14
|
Jian Q, Ma Y. Pattern recognition receptor AIM2: Activation, regulation and the role in transplant immunology. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Saliba RM, Srour SA, Greenbaum U, Ma Q, Carmazzi Y, Moller M, Wood J, Ciurea SO, Kongtim P, Rondon G, Li D, Saengboon S, Alousi AM, Rezvani K, Shpall EJ, Cao K, Champlin RE, Zou J. SIRPα Mismatch Is Associated With Relapse Protection and Chronic Graft-Versus-Host Disease After Related Hematopoietic Stem Cell Transplantation for Lymphoid Malignancies. Front Immunol 2022; 13:904718. [PMID: 35874659 PMCID: PMC9301275 DOI: 10.3389/fimmu.2022.904718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematologic malignancies. Alloreactivity after HSCT is known to be mediated by adaptive immune cells expressing rearranging receptors. Recent studies demonstrated that the innate immune system could likewise sense the non-self signals and subsequently enhance the alloimmune response. We recently demonstrated that the donor/recipient mismatch of signal regulatory protein α (SIRPα), an immunoglobulin receptor exclusively expressed on innate cells, is associated with a higher risk of cGVHD and relapse protection in a cohort of acute myeloid leukemia patients who underwent allo-HSCT. Whether these effects also occur in other hematologic malignancies remains unclear. In the present study, we compared outcomes by SIRPα match status in a cohort of 310 patients who received allo-HSCT from an HLA matched-related donor for the treatment of lymphoid malignancies. Multivariable analysis showed that SIRPα mismatch was associated with a significantly higher rate of cGVHD (hazard ratio [HR] 1.8, P= .002), cGVHD requiring systemic immunosuppressive therapy (HR 1.9, P= .005), a lower rate of disease progression (HR 0.5, P= .003) and improved progression-free survival (HR 0.5, P= .001). Notably, the effects of SIRPα mismatch were observed only in the patients who achieved >95% of donor T-cell chimerism. The mismatch in SIRPα is associated with favorable relapse protection and concurrently increased risk of cGVHD in patients who undergo allo-HSCT for lymphoid malignancies, and the optimal donor could be selected based on the finding of the study to mitigate the risk of GVHD and relapse.
Collapse
Affiliation(s)
- Rima M. Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uri Greenbaum
- Department of Hematology, Soroka University Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yudith Carmazzi
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Moller
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Janet Wood
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefan O. Ciurea
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dan Li
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Supawee Saengboon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kai Cao
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Richard E. Champlin,
| | - Jun Zou
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Richard E. Champlin,
| |
Collapse
|
16
|
Shiota T, Eura N, Hasegawa A, Kiriyama T, Sugie K. Pathological features of inflammatory myopathy as a manifestation of chronic graft-versus-host disease after allogeneic bone marrow transplantation. Neuropathology 2022; 42:309-314. [PMID: 35508303 DOI: 10.1111/neup.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is the most important complication resulting in the death of bone marrow transplantation (BMT) survivors. It is also a relatively rare cause of inflammatory myopathy (IM). We report the case of a 46-year-old woman who developed severe cGVHD-related IM after BMT for myelodysplastic syndrome. She presented with severe muscle pain and weakness with cGVHD-related symptoms in other organs. Myopathological analysis showed moderate cell infiltration with remarkable necrotic and regenerative fibers. Sarcoplasm and capillaries expressed C5b9 and myxovirus resistance protein 1. Non-necrotic fibers in perifascicular regions expressed MHC-II. Steroid therapy did not sufficiently control cGVHD-related IM, and the patient was concurrently treated with an immunosuppressant. Our findings show that IM is a key manifestation of cGVHD and that the expression of interferon-inducible proteins in muscle pathology is useful for identifying cGVHD-related IM.
Collapse
Affiliation(s)
- Tomo Shiota
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Atsushi Hasegawa
- Department of Hematology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
17
|
RNA sequencing of chronic GVHD skin lesions defines shared and unique inflammatory pathways characterizing lichen planus and morphea. Blood Adv 2022; 6:2805-2811. [PMID: 35008096 PMCID: PMC9092416 DOI: 10.1182/bloodadvances.2021004707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
Cutaneous involvement of chronic graft-versus-host disease (cGVHD) has a wide range of manifestations including a lichenoid form with a currently assumed mixed Th1/Th17 signature and a sclerotic form with Th1 signature. Despite substantial heterogeneity of innate and adaptive immune cells recruited to the skin and of the different clinical manifestations, treatment depends mainly on the severity of the skin involvement, and relies on systemic, high-dose glucocorticoids alone or in combination with a calcineurin inhibitor. We performed the first study using RNAseq to profile and compare the transcriptome of lichen planus cGVHD (n=8), morphea cGVHD (n=5), and healthy controls (n=6). Our findings revealed shared and unique inflammatory pathways to each cGVHD subtype that are both pathogenic and targetable. In particular, the deregulation of IFN signaling pathway was strongly associated with cutaneous cGVHD, whereas the triggering receptor expressed on myeloid cells-1 (TREM-1) pathway was found to be specific of lichen planus and likely contributes to its pathogenesis. The results were confirmed at a protein level by performing immunohistochemistry staining and at a transcriptomic level using Real-Time quantitative PCR.
Collapse
|
18
|
Sobkowiak-Sobierajska A, Lindemans C, Sykora T, Wachowiak J, Dalle JH, Bonig H, Gennery A, Lawitschka A. Management of Chronic Graft-vs.-Host Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Front Pediatr 2022; 10:808103. [PMID: 35252060 PMCID: PMC8894895 DOI: 10.3389/fped.2022.808103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Herein we review current practice regarding the management of chronic graft-vs.-host disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include: (i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase inhibitors, emphasising the use of immunomodulatory approaches in the context of the delicate counterbalance between immunosuppression and immune reconstitution as well as risks of relapse and infectious complications. We examine real-world approaches of response assessment and tapering schedules of treatment. Furthermore, we report on the optimal timepoints for therapeutic interventions and changes in relation to immune reconstitution and risk of relapse/infection. Additionally, we review the different options for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric cGvHD and its associated manifestations and propose a checklist for individualised risk evaluation with aggregated considerations including site-specific cGvHD evaluation with attention to each individual's GvHD history, previous medical history, comorbidities, and personal tolerance and psychosocial circumstances. To complement this checklist, we present a treatment algorithm using representative patients to inform the personalised management plans for patients with cGvHD after HSCT for ALL who are at high risk of relapse.
Collapse
Affiliation(s)
| | - Caroline Lindemans
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center, Utrecht, Netherlands
| | - Tomas Sykora
- Department of Pediatric Hematology and Oncology - Haematopoietic Stem Cell Transplantation Unit, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debré Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Halvard Bonig
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - Andrew Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
19
|
Goklemez S, Hasni S, Hakim FT, Muraro PA, Pirsl F, Rose J, Memon S, Fowler DF, Steinberg SM, Baker EH, Panch SR, Gress R, Illei GG, Lipsky PE, Pavletic SZ. Long-term follow-up after lymphodepleting autologous hematopoietic cell transplantation for treatment-resistant systemic lupus erythematosus. Rheumatology (Oxford) 2021; 61:3317-3328. [PMID: 34875023 DOI: 10.1093/rheumatology/keab877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Autologous hematopoietic cell transplantation (AHSCT) improves immunologic dysfunction in patients with Systemic Lupus Erythematosus (SLE). However, the curative potential of this therapy remains uncertain. This study reports outcomes in SLE patients receiving a lymphodepleting reduced intensity regimen for AHSCT in SLE. METHODS Eight patients with SLE refractory to treatment, including intravenous cyclophosphamide, were enrolled. Five had lupus nephritis and three central nervous system involvement as primary indications for transplant. Hematopoietic cell mobilization with cyclophosphamide, G-CSF and rituximab was followed by collection of CD34+ positively selected cells. The conditioning regimen consisted of concurrent administration of cyclophosphamide, fludarabine, and rituximab. All immunosuppressive medications were discontinued at the start of mobilization and corticosteroids were rapidly tapered after the transplant. RESULTS Five of eight patients achieved a complete response, including a decline in the SLEDAI to zero, which was sustained in four patients for a median of 165 months (range 138-191). One patient achieved a partial response, which was followed by relapse at month 18. Two patients with nephritis and most underlying organ comorbidities had early deaths from infection and multiorgan failure. AHSCT resulted in profound lymphodepletion, followed by expansion of Treg cells and repopulation of naive T and B cells. Patients with CR showed a sustained suppression of the SLE-associated interferon-induced gene signature, marked depletion of memory and plasmablast B cells, and resultant sustained elimination of anti-dsDNA antibody. CONCLUSION Durable clinical and serologic remissions with suppression in the interferon gene signature can be achieved in refractory SLE following lymphodepleting AHSCT. TRIAL REGISTRATION ClinicalTrials.gov, https://clinicaltrials.gov, NCT00076752.
Collapse
Affiliation(s)
- Sencer Goklemez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frances T Hakim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom
| | - Filip Pirsl
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy Rose
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfraz Memon
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eva H Baker
- Department of Radiology and Imaging Services; Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandya R Panch
- Center for Cellular Engineering, National Institutes of Health, USA
| | - Ronald Gress
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter E Lipsky
- AMPEL Bio Solutions and the RILITE Research Institute, Charlottesville, Virginia, USA
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Goklemez S, Saligan LN, Pirsl F, Holtzman NG, Ostojic A, Steinberg SM, Hakim FT, Rose JJ, Kang Z, Yu Y, Cao L, Mitchell SA, Im A, Pavletic SZ. Clinical characterization and cytokine profile of fatigue in hematologic malignancy patients with chronic graft-versus-host disease. Bone Marrow Transplant 2021; 56:2934-2939. [PMID: 34433916 PMCID: PMC8639672 DOI: 10.1038/s41409-021-01419-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Limited information is available regarding clinical and biological properties of fatigue in patients with chronic graft-versus-host disease (cGvHD). Patients with moderate-to-severe cGvHD per NIH criteria were enrolled on a cross-sectional study and categorized as "fatigued" if SF-36 vitality score was <40. Clinical and laboratory parameters of fatigued (n = 109) and nonfatigued patients (n = 72) were compared. In univariate analysis, walk velocity, NIH joint-fascia score, human activity profile, and SF-36 physical and mental health self-report scales were correlates of fatigue. No cGvHD biomarkers were associated with fatigue. NIH joint score, Lee sleep and depression questions, and PG-SGA activities and function score jointly predicted fatigue. Though higher rates of depression and insomnia were reported in the fatigued group, antidepressant or sleep aid use did not differ between groups. Survival ratio was not significantly different by fatigue status. Pathophysiology of fatigue in patients with cGvHD is complex and may involve mechanisms unrelated to disease activity. Patients with cGvHD experiencing fatigue had higher rates of untreated depression and insomnia, highlighting the need to focus clinical management of these conditions to improve health-related quality of life.
Collapse
Affiliation(s)
- Sencer Goklemez
- Immune Deficiency and Cellular Therapy Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | | | - Filip Pirsl
- Immune Deficiency and Cellular Therapy Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Noa G. Holtzman
- Immune Deficiency and Cellular Therapy Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Alen Ostojic
- Immune Deficiency and Cellular Therapy Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD,Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Frances T. Hakim
- Experimental Transplantation and Immunotherapy Branch, NCI, NIH, Bethesda, MD
| | - Jeremy J. Rose
- Experimental Transplantation and Immunotherapy Branch, NCI, NIH, Bethesda, MD
| | - Zhigang Kang
- Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Yunkai Yu
- Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Liang Cao
- Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Sandra A. Mitchell
- Division of Cancer Control and Population Sciences, NCI, NIH, Bethesda, MD
| | - Annie Im
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA
| | - Steven Z. Pavletic
- Immune Deficiency and Cellular Therapy Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
21
|
Wolff D, Radojcic V, Lafyatis R, Cinar R, Rosenstein RK, Cowen EW, Cheng GS, Sheshadri A, Bergeron A, Williams KM, Todd JL, Teshima T, Cuvelier GDE, Holler E, McCurdy SR, Jenq RR, Hanash AM, Jacobsohn D, Santomasso BD, Jain S, Ogawa Y, Steven P, Luo ZK, Dietrich-Ntoukas T, Saban D, Bilic E, Penack O, Griffith LM, Cowden M, Martin PJ, Greinix HT, Sarantopoulos S, Socie G, Blazar BR, Pidala J, Kitko CL, Couriel DR, Cutler C, Schultz KR, Pavletic SZ, Lee SJ, Paczesny S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 PMCID: PMC8478861 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
Affiliation(s)
- Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Rachel K Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Bergeron
- Department of Pulmonary Medicine, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Shannon R McCurdy
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alan M Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - David Jacobsohn
- Children's National Hospital, George Washington University, Washington, District of Columbia
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York New York
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois Eye & Ear Infirmary, Chicago, Illinois
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Philipp Steven
- Division for Dry-Eye and ocular GvHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui Katie Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Tina Dietrich-Ntoukas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität Berlin, Department of Ophthalmology, Berlin, Germany
| | - Daniel Saban
- Department of Ophthalmology and Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Ervina Bilic
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olaf Penack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy. H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carrie L Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel R Couriel
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
22
|
Mismatch in SIRPα, a regulatory protein in innate immunity, is associated with chronic GVHD in hematopoietic stem cell transplantation. Blood Adv 2021; 5:3407-3417. [PMID: 34495313 DOI: 10.1182/bloodadvances.2021004307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Recent compelling evidence showed that innate immune effector cells could recognize allogeneic grafts and prime an adaptive immune response. Signal regulatory protein α (SIRPα) is an immunoglobulin superfamily receptor that is expressed on myeloid cells; the interaction between SIRPα and its ubiquitously expressed ligand CD47 elicits an inhibitory signal that suppresses macrophage phagocytic function. Additional studies showed that donor-recipient mismatch in SIRPα variants might activate monocytic allorecognition, possibly as the result of non-self SIRPα-CD47 interaction. However, the frequency of SIRPα variation and its role in hematopoietic stem cell transplantation (HSCT) remains unexplored. We studied 350 patients with acute myeloid leukemia/myelodysplastic syndrome who underwent HLA-matched related HSCT and found that SIRPα allelic mismatches were present in 39% of transplantation pairs. SIRPα variant mismatch was associated with a significantly higher rate of chronic graft-versus-host disease (GVHD; hazard ratio [HR], 1.5; P = .03), especially de novo chronic GVHD (HR, 2.0; P = .01), after adjusting for other predictors. Those with mismatched SIRPα had a lower relapse rate (HR, 0.6; P = .05) and significantly longer relapse-free survival (RFS; HR, 0.6; P = .04). Notably, the effect of SIRPα variant mismatch on relapse protection was most pronounced early after HSCT and in patients who were not in remission at HSCT (cumulative incidence, 73% vs 54%; HR, 0.5; P = .01). These findings show that SIRPα variant mismatch is associated with HSCT outcomes, possibly owing to innate allorecognition. SIRPα variant matching could provide valuable information for donor selection and risk stratification in HSCT.
Collapse
|
23
|
Possible roads to improve hemophagocytic lymphohistiocytosis outcome. Blood Adv 2021; 4:6127-6129. [PMID: 33351106 DOI: 10.1182/bloodadvances.2020003263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
|
24
|
Paczesny S. Post-haematopoietic cell transplantation outcomes: why ST2 became a 'golden nugget' biomarker. Br J Haematol 2021; 192:951-967. [PMID: 32039480 PMCID: PMC7415515 DOI: 10.1111/bjh.16497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies have emerged as highly promising approaches to treat cancer patients. Allogeneic haematopoietic cell transplantation (HCT) is the most validated tumour immunotherapy available to date but its clinical efficacy is limited by toxicities, such as graft-versus-host disease (GVHD) and treatment resistance leading to relapse. The problems with new cellular therapies and checkpoint inhibitors are similar. However, development of biomarkers post-HCT, particularly for toxicities, has taken off in the last decade and has expanded greatly. Thanks to the advances in genomics, transcriptomics, proteomics and cytomics technologies, blood biomarkers have been identified and validated in promising diagnostic tests, prognostic tests stratifying for future occurrence of GVHD, and predictive tests for responsiveness to GVHD therapy and non-relapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. This review outlines a path from biomarker discovery to first clinical correlation, focusing on soluble STimulation-2 (sST2) - the interleukin (IL)-33-decoy receptor - which is the most validated biomarker.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Adom D, Rowan C, Adeniyan T, Yang J, Paczesny S. Biomarkers for Allogeneic HCT Outcomes. Front Immunol 2020; 11:673. [PMID: 32373125 PMCID: PMC7186420 DOI: 10.3389/fimmu.2020.00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains the only curative therapy for many hematological malignant and non-malignant disorders. However, key obstacles to the success of HCT include graft-versus-host disease (GVHD) and disease relapse due to absence of graft-versus-tumor (GVT) effect. Over the last decade, advances in "omics" technologies and systems biology analysis, have allowed for the discovery and validation of blood biomarkers that can be used as diagnostic test and prognostic test (that risk-stratify patients before disease occurrence) for acute and chronic GVHD and recently GVT. There are also predictive biomarkers that categorize patients based on their likely to respond to therapy. Newer mathematical analysis such as machine learning is able to identify different predictors of GVHD using clinical characteristics pre-transplant and possibly in the future combined with other biomarkers. Biomarkers are not only useful to identify patients with higher risk of disease progression, but also help guide treatment decisions and/or provide a basis for specific therapeutic interventions. This review summarizes biomarkers definition, omics technologies, acute, chronic GVHD and GVT biomarkers currently used in clinic or with potential as targets for existing or new drugs focusing on novel published work.
Collapse
Affiliation(s)
- Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Courtney Rowan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Titilayo Adeniyan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jinfeng Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
26
|
Goklemez S, Im AP, Cao L, Pirsl F, Steinberg SM, Curtis LM, Mitchell SA, Cowen EW, Baruffaldi J, Rose J, Mays J, Ostojic A, Holtzman NG, Hakim FT, Pavletic SZ. Clinical characteristics and cytokine biomarkers in patients with chronic graft-vs-host disease persisting seven or more years after diagnosis. Am J Hematol 2020; 95:387-394. [PMID: 31903638 DOI: 10.1002/ajh.25717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is the leading late complication after allogeneic hematopoietic stem cell transplantation (HSCT). Many patients receive multiple lines of systemic therapy until cGVHD resolves, but about 15% remain on systemic treatment for more than 7 years after cGVHD diagnosis. This study describes the clinical and biological factors of patients who present with cGVHD persisting for ≥7 years (persistent cGVHD). Patients with persistent cGVHD (n = 38) and those with cGVHD for <1 year (early cGVHD) (n = 83) were enrolled in a prospective cross-sectional natural history study. Patients in the persistent cGVHD group were a median of 10.2 years from cGVHD diagnosis (range 7-27 years). Fifty-eight percent of persistent cGVHD patients (22/38) were receiving systemic immunosuppression, compared to 88% (73/83) in the early cGVHD group. In multivariable analysis, bone marrow (BM) stem cell source, presence of ENA autoantibodies, higher NIH lung score, higher platelet counts, and higher IgA levels were significantly associated with persistent cGVHD. A high sensitivity panel of serum biomarkers including seven cytokines diagnostic for cGVHD was analyzed and showed significantly lower levels of BAFF and CXCL10 in patients with persistent cGVHD. In conclusion, standardly accepted clinical measures of disease severity may not accurately reflect disease activity in patients with persistent cGVHD. However, many patients with persistent cGVHD are still receiving systemic immunosuppression despite lacking evidence of disease activity. Development of reliable clinical biomarkers of cGVHD activity may help guide future systemic treatments.
Collapse
Affiliation(s)
- Sencer Goklemez
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Annie P. Im
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center Pittsburgh Pennsylvania
| | - Liang Cao
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Filip Pirsl
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Seth M. Steinberg
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | | - Sandra A. Mitchell
- Division of Cancer Control and Population Sciences National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Edward W. Cowen
- Dermatology Branch National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda Maryland
| | - Judy Baruffaldi
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Jeremy Rose
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Jacqueline Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda Maryland
| | - Alen Ostojic
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Noa G. Holtzman
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Frances T. Hakim
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Steven Z. Pavletic
- Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| |
Collapse
|
27
|
Hyvärinen K, Koskela S, Niittyvuopio R, Nihtinen A, Volin L, Salmenniemi U, Putkonen M, Buño I, Gallardo D, Itälä-Remes M, Partanen J, Ritari J. Meta-Analysis of Genome-Wide Association and Gene Expression Studies Implicates Donor T Cell Function and Cytokine Pathways in Acute GvHD. Front Immunol 2020; 11:19. [PMID: 32117222 PMCID: PMC7008714 DOI: 10.3389/fimmu.2020.00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Graft-vs.-host disease (GvHD) is a major complication after allogeneic hematopoietic stem cell transplantation that causes mortality and severe morbidity. Genetic disparities in human leukocyte antigens between the recipient and donor are known contributors to the risk of the disease. However, the overall impact of genetic component is complex, and consistent findings across different populations and studies remain sparse. To gain a comprehensive understanding of the genes responsible for GvHD, we combined genome-wide association studies (GWAS) from two distinct populations with previously published gene expression studies on GvHD in a single gene-level meta-analysis. We hypothesized that genes driving GvHD should be associated in both data modalities and therefore could be detected more readily through their combined effects in the integrated analysis rather than in separate analyses. The meta-analysis yielded a total of 51 acute GvHD-associated genes (false detection rate [FDR] <0.1). In support of our hypothesis, this number was significantly higher than that in a permutation meta-analysis involving the whole data set, as well as in separate meta-analyses on the GWAS and gene expression data sets. The genes indicated by the meta-analysis were significantly enriched in 277 Gene Ontology terms (FDR < 0.05), such as T cell function and cytokine-mediated signaling pathways, and the results highlighted several established immune mediators, such as interleukins and JAK-STAT signaling, and presented TRAF6 and TERT as potential effector candidates. Altogether, the results support the chosen methodological approach, implicate a role of gene-level variation in donors' key immunological regulators predisposing patients to acute GVHD, and present potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Riitta Niittyvuopio
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Nihtinen
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Volin
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Ismael Buño
- Department of Hematology, Genomics Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - David Gallardo
- Department of Hematology, Institut Català d'Oncologia, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | | | | | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
28
|
Mankarious M, Matthews NC, Snowden JA, Alfred A. Extracorporeal Photopheresis (ECP) and the Potential of Novel Biomarkers in Optimizing Management of Acute and Chronic Graft vs. Host Disease (GvHD). Front Immunol 2020; 11:81. [PMID: 32082329 PMCID: PMC7005102 DOI: 10.3389/fimmu.2020.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the use of hematopoietic stem cell transplantation (HSCT) has become a more widespread and effective treatment for hematological malignant and non-malignant conditions, the need to minimize the harmful effects of graft- vs.-host disease (GvHD) has become more important in achieving good outcomes. With diagnosis of GvHD reliant on its clinical manifestations, research into biomarkers for the diagnosis, progression, and even for the prediction of disease, is imperative to combating the high levels of morbidity and mortality post-HSCT. Despite the development of novel treatment approaches to GvHD, corticosteroids remain the standard first-line treatment, with immunosuppressant therapies as second-line options. These strategies however have significant limitations and associated complications. Extracorporeal Photopheresis (ECP) has shown to be effective and safe in treating patients with symptomatic GvHD. ECP has been shown to have varied effects on multiple parts of the immune system and does not appear to increase the risk of relapse or infection in the post HSCT setting. Even so, ECP can be logistically more complex to organize and requires patients to be sufficiently stable. This review aims to summarize the potential role of biomarkers to help guide individualized treatment decisions in patients with acute and chronic GvHD. In relation to ECP, robust biomarkers of GvHD will be highly useful in informing patient selection, intensity and duration of the ECP schedule, monitoring of response and other treatment decisions alongside the concurrent administration of other GvHD therapies. Further research is warranted to establish how GvHD biomarkers are best incorporated into ECP treatment pathways with the goal of tailoring ECP to the needs of individual patients and maximizing benefit.
Collapse
Affiliation(s)
- Matthew Mankarious
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Nick C Matthews
- Department of Photopheresis, The Rotherham NHS Foundation Trust, Rotherham, United Kingdom
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Arun Alfred
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom.,Department of Photopheresis, The Rotherham NHS Foundation Trust, Rotherham, United Kingdom
| |
Collapse
|
29
|
How ibrutinib, a B-cell malignancy drug, became an FDA-approved second-line therapy for steroid-resistant chronic GVHD. Blood Adv 2019; 2:2012-2019. [PMID: 30108109 DOI: 10.1182/bloodadvances.2018013060] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is potentially curative for a number of hematologic conditions, both malignant and nonmalignant. However, its success can be limited by the development of acute and chronic graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) is the most common long-term complication following allo-SCT, and patients who develop this condition have significantly higher morbidity and mortality and significantly lower quality of life than patients who do not. Until recently, there were no US Food and Drug Administration (FDA)-approved therapies for cGVHD treatment. In this review article, we describe how ibrutinib was identified as potential cGVHD therapy based on preclinical cGVHD models and clinical studies in B-cell malignancies and elucidation of its mechanisms of action in cGVHD. Results from a phase 2 clinical trial that was designed based on National Institutes of Health Criteria for the grading and staging of cGVHD culminated in the FDA-approval of ibrutinib as second line therapy of steroid-refractory or steroid-resistant cGVHD. Results of ibrutinib studies in phase 3 randomized studies, for cGVHD prophylaxis and as first -line testing along with steroids will be especially important in selecting the preferred indications for ibrutinib in patients at risk for or who have developed cGVHD.
Collapse
|
30
|
Byrne M, Savani B, Savona MR. Leveraging JAK-STAT regulation in myelofibrosis to improve outcomes with allogeneic hematopoietic stem-cell transplant. Ther Adv Hematol 2018; 9:251-259. [PMID: 30210754 DOI: 10.1177/2040620718786437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
Primary myelofibrosis (PMF) is a disease characterized by bone marrow fibrosis, extramedullary hematopoiesis, risk of transformation to acute myeloid leukemia, and a substantial symptom burden with diminished quality of life. Allogeneic hematopoietic cell transplantation (HCT) is the only curative option; however, disease relapse and graft versus host disease (GVHD) are significant barriers to long-term survival. The discovery of the JAK2 V617F mutation, and subsequent development of JAK inhibitors, resulted in improved survival and significant improvements in spleen volumes and symptom scores. Though the effect of JAK inhibition on transplant outcome is poorly understood, using JAK inhibition to achieve maximal response prior to HCT is standard practice at major centers. After allogeneic HCT, a significant proportion of patients with steroid-refractory GVHD have clinical responses to JAK inhibition. Targeting this pathway is a key component in the management of patients with PMF before and after allogeneic HCT.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 777 Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA
| | - Bipin Savani
- Vanderbilt-Ingram Cancer, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
31
|
Wolff D, Greinix H, Lee SJ, Gooley T, Paczesny S, Pavletic S, Hakim F, Malard F, Jagasia M, Lawitschka A, Hansen JA, Pulanic D, Holler E, Dickinson A, Weissinger E, Edinger M, Sarantopoulos S, Schultz KR. Biomarkers in chronic graft-versus-host disease: quo vadis? Bone Marrow Transplant 2018; 53:832-837. [PMID: 29367715 PMCID: PMC6041126 DOI: 10.1038/s41409-018-0092-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Biomarkers are increasingly used for diagnosis and treatment of transplant-related complications including the first biomarker-driven interventional trials of acute graft-versus-host disease (GvHD). In contrast, the development of biomarkers of chronic GvHD (cGvHD) has lagged behind due to a broader variety of manifestations, overlap with acute GvHD, a greater variation in time to onset and maximum severity, and lack of sufficient patient numbers within prospective trials. An international workshop organized by a North-American and European consortium was held in Marseille in March 2017 with the goal to discuss strategies for future biomarker development to guide cGvHD therapy. As a result of this meeting, two areas were prioritized: the development of prognostic biomarkers for subsequent onset of moderate/severe cGvHD, and in parallel, the development of qualified clinical-grade assays for biomarker quantification. The most promising prognostic serum biomarkers are CXCL9, ST2, matrix metalloproteinase-3, osteopontin, CXCL10, CXCL11, and CD163. Urine-proteomics and cellular subsets (CD4+ T-cell subsets, NK cell subsets, and CD19+CD21low B cells) represent additional potential prognostic biomarkers of cGvHD. A joint effort is required to verify the results of numerous exploratory trials before any of the potential candidates is ready for validation and subsequent clinical application.
Collapse
Affiliation(s)
- D Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany.
| | - H Greinix
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - S J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - S Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Pavletic
- Experimental Transplantation and Immunology Branch, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - F Hakim
- Experimental Transplantation and Immunology Branch, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - F Malard
- Hematology Department, Hôpital Saint-Antoine; Université Pierre & Marie Curie; and INSERM, Centre de Recherche Saint-Antoine, UMRS U938, Paris, France
| | - M Jagasia
- Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Lawitschka
- St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
| | - J A Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, and Medical School University of Zagreb, Zagreb, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - E Holler
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - A Dickinson
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - E Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Edinger
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - S Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - K R Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital/University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Konuma T, Kohara C, Watanabe E, Mizukami M, Nagai E, Oiwa-Monna M, Tanoue S, Isobe M, Jimbo K, Kato S, Takahashi S, Tojo A. Circulating monocyte subsets in human chronic graft-versus-host disease. Bone Marrow Transplant 2018; 53:1532-1540. [DOI: 10.1038/s41409-018-0187-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
|
33
|
Ren HG, Adom D, Paczesny S. The search for drug-targetable diagnostic, prognostic and predictive biomarkers in chronic graft-versus-host disease. Expert Rev Clin Immunol 2018; 14:389-404. [PMID: 29629613 DOI: 10.1080/1744666x.2018.1463159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) continues to be the leading cause of late morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is an increasingly applied curative method for both benign and malignant hematologic disorders. Biomarker identification is crucial for the development of noninvasive and cost-effective cGVHD diagnostic, prognostic, and predictive test for use in clinic. Furthermore, biomarkers may help to gain a better insight on ongoing pathophysiological processes. The recent widespread application of omics technologies including genomics, transcriptomics, proteomics and cytomics provided opportunities to discover novel biomarkers. Areas covered: This review focuses on biomarkers identified through omics that play a critical role in target identification for drug development, and that were verified in at least two independent cohorts. It also summarizes the current status on omics tools used to identify these useful cGVHD targets. We briefly list the biomarkers identified and verified so far. We further address challenges associated to their exploitation and application in the management of cGVHD patients. Finally, insights on biomarkers that are drug targetable and represent potential therapeutic targets are discussed. Expert commentary: We focus on biomarkers that play an essential role in target identification.
Collapse
Affiliation(s)
- Hong-Gang Ren
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Djamilatou Adom
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Sophie Paczesny
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| |
Collapse
|
34
|
Du J, Flynn R, Paz K, Ren HG, Ogata Y, Zhang Q, Gafken PR, Storer BE, Roy NH, Burkhardt JK, Mathews W, Tolar J, Lee SJ, Blazar BR, Paczesny S. Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 2018; 131:1743-1754. [PMID: 29348127 PMCID: PMC5897867 DOI: 10.1182/blood-2017-08-800623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Improved diagnostic and treatment methods are needed for chronic graft-versus-host disease (cGVHD), the leading cause of late nonrelapse mortality (NRM) in long-term survivors of allogenic hematopoietic cell transplantation. Validated biomarkers that facilitate disease diagnosis and classification generally are lacking in cGVHD. Here, we conducted whole serum proteomics analysis of a well-established murine multiorgan system cGVHD model. We discovered 4 upregulated proteins during cGVHD that are targetable by genetic ablation or blocking antibodies, including the RAS and JUN kinase activator, CRKL, and CXCL7, CCL8, and CCL9 chemokines. Donor T cells lacking CRK/CRKL prevented the generation of cGVHD, germinal center reactions, and macrophage infiltration seen with wild-type T cells. Whereas antibody blockade of CCL8 or CXCL7 was ineffective in treating cGVHD, CCL9 blockade reversed cGVHD clinical manifestations, histopathological changes, and immunopathological hallmarks. Mechanistically, elevated CCL9 expression was present predominantly in vascular smooth muscle cells and uniquely seen in cGVHD mice. Plasma concentrations of CCL15, the human homolog of mouse CCL9, were elevated in a previously published cohort of 211 cGVHD patients compared with controls and associated with NRM. In a cohort of 792 patients, CCL15 measured at day +100 could not predict cGVHD occurring within the next 3 months with clinically relevant sensitivity/specificity. Our findings demonstrate for the first time the utility of preclinical proteomics screening to identify potential new targets for cGVHD and specifically CCL15 as a diagnosis marker for cGVHD. These data warrant prospective biomarker validation studies.
Collapse
Affiliation(s)
- Jing Du
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Hong-Gang Ren
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Barry E Storer
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wendy Mathews
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Stephanie J Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
35
|
Biomarkers for posttransplantation outcomes. Blood 2018; 131:2193-2204. [PMID: 29622549 DOI: 10.1182/blood-2018-02-791509] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
During the last decade, the development of biomarkers for the complications seen after allogeneic hematopoietic stem cell transplantation has expanded tremendously, with the most progress having been made for acute graft-versus-host disease (aGVHD), a common and often fatal complication. Although many factors are known to determine transplant outcome (including the age of the recipient, comorbidity, conditioning intensity, donor source, donor-recipient HLA compatibility, conditioning regimen, posttransplant GVHD prophylaxis), they are incomplete guides for predicting outcomes. Thanks to the advances in genomics, transcriptomics, proteomics, and cytomics technologies, blood biomarkers have been identified and validated for us in promising diagnostic tests, prognostic tests stratifying for future occurrence of aGVHD, and predictive tests for responsiveness to GVHD therapy and nonrelapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. However, such blood tests are not yet available for routine clinical care. This article provides an overview of the candidate biomarkers for clinical evaluation and outlines a path from biomarker discovery to first clinical correlation, to validation in independent cohorts, to a biomarker-based clinical trial, and finally to general clinical application. This article focuses on biomarkers discovered with a large-scale proteomics platform and validated with the same reproducible assay in at least 2 independent cohorts with sufficient sample size according to the 2014 National Institutes of Health consensus on biomarker criteria, as well as on biomarkers as tests for risk stratification of outcomes, but not on their pathophysiologic contributions, which have been reviewed recently.
Collapse
|
36
|
Kuba A, Raida L. Graft versus Host Disease: From Basic Pathogenic Principles to DNA Damage Response and Cellular Senescence. Mediators Inflamm 2018; 2018:9451950. [PMID: 29785172 PMCID: PMC5896258 DOI: 10.1155/2018/9451950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD), a severe immunogenic complication of allogeneic hematopoietic stem cell transplantation (HSCT), represents the most frequent cause of transplant-related mortality (TRM). Despite a huge progress in HSCT techniques and posttransplant care, GVHD remains a significant obstacle in successful HSCT outcome. This review presents a complex summary of GVHD pathogenesis with focus on references considering basic biological processes such as DNA damage response and cellular senescence.
Collapse
Affiliation(s)
- Adam Kuba
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ludek Raida
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
37
|
Hill L, Alousi A, Kebriaei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. Ther Adv Hematol 2018; 9:21-46. [PMID: 29317998 PMCID: PMC5753923 DOI: 10.1177/2040620717741860] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD) remains a major cause of morbidity and mortality following allogeneic hematopoietic stem-cell transplantation (HSCT). Despite the use of prophylactic GVHD regimens, a significant proportion of transplant recipients will develop acute or chronic GVHD following HSCT. Corticosteroids are standard first-line therapy, but are only effective in roughly half of all cases with ~50% of patients going on to develop steroid-refractory disease, which increases the risk of nonrelapse mortality. While progress has been made with improvements in survival outcomes over time, corticosteroids are associated with significant toxicities, and many currently available salvage therapies are associated with increased immunosuppression, infectious complications, and potential loss of the graft versus leukemia (GVL) effect. Thus, there is an unmet need for development of newer treatment strategies for both acute and chronic GVHD to improve long-term post-transplant outcomes and quality of life for HSCT recipients. Here, we provide a concise review of major emerging therapies currently being studied in the treatment of acute and chronic GVHD.
Collapse
Affiliation(s)
- LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0423, Houston, TX 77030-4000, USA
| |
Collapse
|
38
|
Goklemez S, Pirsl F, Curtis LM, Steinberg SM, Cowen EW, Mays JW, Kenyon M, Baruffaldi J, Hakim FT, Pavletic SZ. Clinical significance of IgE in a large cohort of patients with moderate or severe chronic graft-versus-host disease. Am J Hematol 2017; 92:E162-E164. [PMID: 28437849 DOI: 10.1002/ajh.24768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Sencer Goklemez
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
- Koç University School of Medicine; Istanbul Turkey
| | - Filip Pirsl
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| | - Lauren M. Curtis
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management Section; NCI, NIH; Bethesda Maryland
| | | | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research, NIH; Bethesda Maryland
| | - Meg Kenyon
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| | - Judy Baruffaldi
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| | - Fran T. Hakim
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda Maryland
| |
Collapse
|
39
|
Suthers AN, Sarantopoulos S. TLR7/TLR9- and B Cell Receptor-Signaling Crosstalk: Promotion of Potentially Dangerous B Cells. Front Immunol 2017; 8:775. [PMID: 28751890 PMCID: PMC5507964 DOI: 10.3389/fimmu.2017.00775] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
B cells are capable of receptor-mediated responses to foreign antigens. Recognition of microbial-derived nucleic acid (NA) by toll-like receptors (TLRs) 7 and 9 in B cells has been substantiated. Endogenous NA released from damaged or dying cells can also be immunogenic in certain contexts and can incite aberrant activation of B cells. When TLR-driven B cell receptor (BCR)-activated B cells are not properly constrained, pathologic autoantibodies are produced. It is also clear that endosomal TLR7/TLR9 can operate in conjunction with BCR. In addition to BCR signaling, a balance between TLR7 and TLR9 is pivotal in the development of B cell autoreactivity. While TLR9 is important in normal memory B cell responses through BCR, TLR9 activation has been implicated in autoantibody production. Paradoxically, TLR9 also plays known protective roles against autoimmunity by directly and indirectly inhibiting TLR7-mediated autoantibody production. Herein, we summarize literature supporting mechanisms underpinning the promotion of pathological BCR-activated B cells by TLR7 and TLR9. We focus on the literature regarding known points of TLR7/TLR9 and BCR crosstalk. Data also suggest that the degree of TLR responsiveness relies on alterations of certain intrinsic B-cell signaling molecules and is also context specific. Because allogeneic hematopoietic stem cell transplantation is a high NA and B cell-activating factor environment, we conclude that B cell studies of synergistic TLR-BCR signaling in human diseases like chronic graft-versus-host disease are warranted. Further understanding of the distinct molecular pathways mediating TLR-BCR synergy will lead to the development of therapeutic strategies in autoimmune disease states.
Collapse
Affiliation(s)
- Amy N Suthers
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
40
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
41
|
Matte-Martone C, Liu J, Zhou M, Chikina M, Green DR, Harty JT, Shlomchik WD. Differential requirements for myeloid leukemia IFN-γ conditioning determine graft-versus-leukemia resistance and sensitivity. J Clin Invest 2017; 127:2765-2776. [PMID: 28604385 DOI: 10.1172/jci85736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/20/2017] [Indexed: 12/25/2022] Open
Abstract
The graft-versus-leukemia (GVL) effect in allogeneic hematopoietic stem cell transplantation (alloSCT) is potent against chronic phase chronic myelogenous leukemia (CP-CML), but blast crisis CML (BC-CML) and acute myeloid leukemias (AML) are GVL resistant. To understand GVL resistance, we studied GVL against mouse models of CP-CML, BC-CML, and AML generated by the transduction of mouse BM with fusion cDNAs derived from human leukemias. Prior work has shown that CD4+ T cell-mediated GVL against CP-CML and BC-CML required intact leukemia MHCII; however, stem cells from both leukemias were MHCII negative. Here, we show that CP-CML, BC-CML, and AML stem cells upregulate MHCII in alloSCT recipients. Using gene-deficient leukemias, we determined that BC-CML and AML MHC upregulation required IFN-γ stimulation, whereas CP-CML MHC upregulation was independent of both the IFN-γ receptor (IFN-γR) and the IFN-α/β receptor IFNAR1. Importantly, IFN-γR-deficient BC-CML and AML were completely resistant to CD4- and CD8-mediated GVL, whereas IFN-γR/IFNAR1 double-deficient CP-CML was fully GVL sensitive. Mouse AML and BC-CML stem cells were MHCI+ without IFN-γ stimulation, suggesting that IFN-γ sensitizes these leukemias to T cell killing by mechanisms other than MHC upregulation. Our studies identify the requirement of IFN-γ stimulation as a mechanism for BC-CML and AML GVL resistance, whereas independence from IFN-γ renders CP-CML more GVL sensitive, even with a lower-level alloimmune response.
Collapse
Affiliation(s)
| | - Jinling Liu
- Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Meng Zhou
- Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Maria Chikina
- Department of Computational Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis Tennessee, USA
| | - John T Harty
- Department of Microbiology and Pathology, University of Iowa, Iowa City, Iowa, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Warren D Shlomchik
- Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Pathology, University of Iowa, Iowa City, Iowa, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, van den Brink MRM, Hansen JA, Parkman R, Miklos DB, Martin PJ, Paczesny S, Vogelsang G, Pavletic S, Ritz J, Schultz KR, Blazar BR. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:211-234. [PMID: 27713092 PMCID: PMC6020045 DOI: 10.1016/j.bbmt.2016.09.023] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.
Collapse
Affiliation(s)
- Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland.
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Immunology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Madan Jagasia
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marcel R M van den Brink
- Departments of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Robertson Parkman
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, California
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Departments of Pediatrics and Immunology, Wells Center for Pediatric Research, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
43
|
Im A, Hakim FT, Pavletic SZ. Novel targets in the treatment of chronic graft-versus-host disease. Leukemia 2016; 31:543-554. [PMID: 27899803 DOI: 10.1038/leu.2016.367] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
Despite advances that have improved survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GVHD) remains a leading cause of late morbidity and mortality after transplant. Current treatment options show limited efficacy in steroid-refractory disease, and there exists a paucity of robust data to guide management decisions. Lack of United States Food and Drug Administration (FDA)- or European Medicines Agency (EMA)-approved agents in GVHD underscore the importance of developing novel therapies. Better understanding of the biology of chronic GVHD has provided novel targets for treatment, and structured guidelines in diagnosis and in clinical trial design have provided a common language and pathways for research in this area. These, combined with the surge of drug development in Oncology and Immunology, are factors that have contributed to the accelerating field of drug development and clinical research in chronic GVHD. In these exciting times, it is possible to foresee long awaited advances in the treatment of this devastating complication of HCT. This review will summarize the ongoing clinical development for novel therapies in chronic GVHD.
Collapse
Affiliation(s)
- A Im
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute and UPMC Cancer Centers, Pittsburgh, PA, USA.,Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - F T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - S Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|