1
|
Li B, Cui L, Kong K, Pang Y, Chen Y, Zhang S, Wang F, Zhou T, Hua Y, Cao M, Xu H, Qin A, Ma P, Zhao J. LNP-mRNA delivers TNF-α antibody to deep cartilage and protects against osteoarthritis. CHEMICAL ENGINEERING JOURNAL 2024; 500:156723. [DOI: 10.1016/j.cej.2024.156723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, Gao M, Wang X, Wang H, Zhang X, Wang Y, Zhang M, Wang P, Feng Y, Liu Z, Cao X, Huang H. Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities. Clin Transl Med 2024; 14:e1636. [PMID: 38533646 PMCID: PMC10966562 DOI: 10.1002/ctm2.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc. Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.
Collapse
Affiliation(s)
- Jiewen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Ario de Marco
- Laboratory for Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
| | - Haibin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Xiaolan Zhang
- Department of GastroenterologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuli Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research InstituteTianjin Key Laboratory of Quality Control in Chinese MedicineTianjinChina
- State Key Laboratory of Drug Delivery Technology and PharmacokineticsTianjin Institute of Pharmaceutical ResearchTianjinChina
| | - Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- China Resources Biopharmaceutical Company LimitedBeijingChina
| | - Ping Wang
- New Technology R&D DepartmentTianjin Modern Innovative TCM Technology Company LimitedTianjinChina
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| |
Collapse
|
3
|
Chan SH, Kuo WH, Wang LH. SCEL regulates switches between pro-survival and apoptosis of the TNF-α/TNFR1/NF-κB/c-FLIP axis to control lung colonization of triple negative breast cancer. J Biomed Sci 2023; 30:93. [PMID: 38037106 PMCID: PMC10688137 DOI: 10.1186/s12929-023-00986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Patients with metastatic triple-negative breast cancer (mTNBC) have a higher probability of developing visceral metastasis within 5 years after the initial diagnosis. Therefore, a deeper understanding of the progression and spread of mTNBC is urgently needed. METHODS The isobaric tag for relative and absolute quantitation (iTRAQ)-based LC-MS/MS proteomic approach was applied to identify novel membrane-associated proteins in the lung-tropic metastatic cells. Public domain datasets were used to assess the clinical relevance of the candidate proteins. Cell-based and mouse models were used for biochemical and functional characterization of the protein molecule Sciellin (SCEL) identified by iTRAQ to elucidate its role and underlying mechanism in promoting lung colonization of TNBC cells. RESULTS The iTRAQ-based LC-MS/MS proteomic approach identified a membrane-associated protein SCEL that was overexpressed in the lung-tropic metastatic cells, and its high expression was significantly correlated with the late-stage TNBC and the shorter survival of the patients. Downregulation of SCEL expression significantly impaired the 3D colony-forming ability but not the migration and invasion ability of the lung colonization (LC) cells. Knockdown of SCEL reduced TNF-α-induced activation of the NF-κB/c-FLIP pro-survival and Akt/Erk1/2 growth signaling pathways in the LC cells. Specifically, knockdown of SCEL expression switched TNF-α-mediated cell survival to the caspase 3-dependent apoptosis. Conversely, ectopic expression of SCEL promoted TNF-α-induced activation of NF-κB/c-FLIP pro-survival and Akt/Erk1/2 pro-growth signaling pathway. The result of co-immunoprecipitation (Co-IP) and GST pull-down assay showed that SCEL could interact with TNFR1 to promote its protein stability. The xenograft mouse model experiments revealed that knockdown of SCEL resulted in increase of caspase-3 activity, and decrease of ki67 and TNFR1 expression as well as increase of tumor-associated macrophages in the metastatic lung lesions. Clinically, SCEL expression was found to be positively correlated with TNFR1 in TNBC tissues. Lastly, we showed that blocking TNF-α-mediated cell survival signaling by adalimumab effectively suppressed the lung colonization of the SCEL-positive, but not the SCEL-downregulated LC cells in the tail-vein injection model. CONCLUSIONS Our findings indicate that SCEL plays an essential role in the metastatic lung colonization of TNBC by promoting the TNF-α/TNFR1/NF-κB/c-FLIP survival and Akt/Erk1/2 proliferation signaling. Thus, SCEL may serve as a biomarker for adalimumab treatment of TNBC patients.
Collapse
Affiliation(s)
- Shih-Hsuan Chan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Watkins JM, Watkins JD. An Engineered Monovalent Anti-TNF-α Antibody with pH-Sensitive Binding Abrogates Immunogenicity in Mice following a Single Intravenous Dose. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:829-839. [PMID: 35896334 PMCID: PMC10580234 DOI: 10.4049/jimmunol.2101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/07/2022] [Indexed: 10/19/2023]
Abstract
Therapeutic Abs directed toward TNF-α display significant immunogenicity in humans, frequently leading to lower serum concentrations of the Ab that are associated with lower treatment efficacy. The enhanced incidence of immunogenicity observed with this class of therapeutics may be mediated by the expression of TNF-α as a homotrimer, both as a soluble serum protein and as a membrane-associated protein (mTNF-α) on the surface of dendritic cells. The TNF-α homotrimer enables the formation of polyvalent Ab-TNF-α immune complexes (ICs) that enhance binding to FcR and neonatal FcR. Polyvalent ICs and Ab bound to mTNF-α on the surface of dendritic cells can internalize, traffic to the lysosomes, and be processed for presentation by MHC molecules. To diminish immunogenicity caused by trafficking of ICs and mTNF-α to the lysosomes, we engineered a monovalent format of adalimumab with pH-sensitive binding to TNF-α. The engineered variant, termed AF-M2637, did not cross-link TNF-α trimers and consequently formed small, nonprecipitating ICs only. AF-M2637 bound TNF-α with high affinity at pH 7.4 (EC50 = 1.1 nM) and displayed a significantly faster dissociation rate than adalimumab at pH 6.0. No immune response to AF-M2637 was detected in mice following a single i.v. dose. In contrast, rapid immunization was detected following the injection of a single i.v. dose of adalimumab, monovalent adalimumab, or the bivalent form of the pH-sensitive variant. These data suggest that ICs and mTNF-α both contribute to the immunogenicity of adalimumab in mice and provide a general strategy for engineering less immunogenic therapeutic TNF-α Abs.
Collapse
|
5
|
Ishiwatari-Ogata C, Kyuuma M, Ogata H, Yamakawa M, Iwata K, Ochi M, Hori M, Miyata N, Fujii Y. Ozoralizumab, a Humanized Anti-TNFα NANOBODY ® Compound, Exhibits Efficacy Not Only at the Onset of Arthritis in a Human TNF Transgenic Mouse but Also During Secondary Failure of Administration of an Anti-TNFα IgG. Front Immunol 2022; 13:853008. [PMID: 35273620 PMCID: PMC8902368 DOI: 10.3389/fimmu.2022.853008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
Although the introduction of tumor necrosis factor (TNF) inhibitors represented a significant advance in the treatment of rheumatoid arthritis (RA), traditional anti-TNFα antibodies are somewhat immunogenic, and their use results in the formation of anti-drug antibodies (ADAs) and loss of efficacy (secondary failure). Ozoralizumab is a trivalent, bispecific NANOBODY® compound that differs structurally from IgGs. In this study we investigated the suppressant effect of ozoralizumab and adalimumab, an anti-TNFα IgG, on arthritis and induction of ADAs in human TNF transgenic mice. Ozoralizumab markedly suppressed arthritis progression and did not induce ADAs during long-term administration. We also developed an animal model of secondary failure by repeatedly administering adalimumab and found that switching from adalimumab to ozoralizumab was followed by superior anti-arthritis efficacy in the secondary-failure animal model. Moreover, ozoralizumab did not form large immune complexes that might lead to ADA formation. The results of our studies suggest that ozoralizumab, which exhibited low immunogenicity in the animal model used and has a different antibody structure from that of IgGs, is a promising candidate for the treatment of RA patients not only at the onset of RA but also during secondary failure of anti-TNFα treatment.
Collapse
Affiliation(s)
| | - Masanao Kyuuma
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hitoshi Ogata
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Machi Yamakawa
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Katsuya Iwata
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Motoki Ochi
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Miyuki Hori
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Noriyuki Miyata
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yasuyuki Fujii
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
6
|
Egli J, Heiler S, Weber F, Steiner G, Schwandt T, Bray-French K, Klein C, Fenn S, Lotz GP, Opolka-Hoffmann E, Kraft TE, Petersen L, Moser R, DeGeer J, Siegel M, Finke D, Bessa J, Iglesias A. Enhanced immunogenic potential of cancer immunotherapy antibodies in human IgG1 transgenic mice. MAbs 2022; 14:2143009. [PMID: 36394299 PMCID: PMC9673943 DOI: 10.1080/19420862.2022.2143009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ABBREVIATIONS ADA Anti-Drug Antibodies; BCR B Cell Receptor; BId Idiotype-specific B Cell; BiTE Bispecific T cell Engager; BMC Bone Marrow Chimeric Mice; BSA Bovine Serum Albumin; CDR Complementary Determining Region; CEA Carcinoembryonic Antigen; CIT Cancer Immunotherapy; CitAbs Cancer Immunotherapy Antibodies; DC Dendritic Cell; ELISA Enzyme-Linked Immunosorbent Assay; FcRn Neonatal Fc Receptor; FcyR Fc gamma Receptor; GM-CSF Granulocyte-Macrophage Colony Stimulating Factor; gMFI Geometric Mean Fluorescence Intensity; H Heavy Chain; IC Immune Complex; Id Idiotype; IgA Immunoglobulin alpha; IgG1 Immunoglobulin gamma 1; IL-2 Interleukin 2; IL-2R Interleukin 2 Receptor; IL2v Interleukin 2 Variant; IVIG1 Intravenous Immunoglobulin 1; KLH Keyhole Limpet Hemocyanin; L Light Chain; MAPPs MHC-associated Peptide Proteomics; MHC Major Histocompatibility Complex; PBMC Peripheral Blood Mononuclear Cells; PBS Phosphate Buffered Saline; SHM Somatic Hypermutation; scFv Single-chain Variable Fragment; TCR T cell Receptor; TFc Fc-specific T cell; TId Id-specific T cell; UV Ultraviolet; V Variable.
Collapse
Affiliation(s)
- Jerome Egli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Stefan Heiler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Felix Weber
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Guido Steiner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Timo Schwandt
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Katharine Bray-French
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Roche Glycart AG, Schlieren, Switzerland
| | - Sebastian Fenn
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Gregor P. Lotz
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Eugenia Opolka-Hoffmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Thomas E. Kraft
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Laetitia Petersen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rebecca Moser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jonathan DeGeer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michel Siegel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine and University Children’s Hospital of Basel, University of Basel, Basel, Switzerland
| | - Juliana Bessa
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland,CONTACT Juliana Bessa Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
7
|
Cervantes-Durán C, Avalos-Viveros M, Torner L, Sánchez-Ceja SG, Rodríguez-Orozco AR, Martínez-Flores HE, García-Pérez ME. The 5-HT 1A receptor agonist, 8-OH-DPAT, attenuates long-lasting pain in imiquimod-induced psoriasis in mice. Exp Dermatol 2021; 31:600-607. [PMID: 34726306 DOI: 10.1111/exd.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Psoriasis pain is a common symptom underestimated and rarely evaluated in psoriasis clinical trials. This work aimed to investigate whether the development of secondary chronic allodynia and hyperalgesia in the imiquimod (IMQ)-induced psoriasis mice model could be modulated by anti-inflammatory agents and compound 48/80 (C48/80) and to determine whether the activation of 5-HT1A receptor modulates these nociceptive behaviours. C57BL/6 male mice were treated with 5% IMQ for 7 days. The paw withdrawal responses to von Frey filaments (10 and 250 mN) were used to assess the allodynia and hyperalgesia. Nociceptive behaviours were also evaluated using ketorolac 15 mg/kg s.c., adalimumab 10 mg/kg s.c. and C48/80 10 mg/kg i.p. Then, the serum serotonin and the impact of 8-OH-DPAT (1 mg/kg s.c), a 5-HT1A receptor agonist, on long-lasting pain were examined. Mice receiving IMQ showed enhanced nociception, which decreased with all tested compounds. The serum serotonin in the IMQ group showed a significant decrease (947.042 ng/ml) regarding the control group (1143.68 ng/ml). The pretreatment with 8-OH-DPAT alleviated pain-related behaviours. These results suggest that the long-lasting pain resulting from psoriasis inflammation is also associated with the serotonergic system. The 5-HT1A receptor should be further explored as a potential therapeutic target for psoriasis pain modulation.
Collapse
Affiliation(s)
- Claudia Cervantes-Durán
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Miguel Avalos-Viveros
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | | | - Alain-Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | | | - Martha-Estrella García-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
8
|
Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol 2020; 11:1951. [PMID: 33013848 PMCID: PMC7461797 DOI: 10.3389/fimmu.2020.01951] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (mAbs) are a crucial asset for human health and modern medicine, however, the repeated administration of mAbs can be highly immunogenic. Drug immunogenicity manifests in the generation of anti-drug antibodies (ADAs), and some mAbs show immunogenicity in up to 70% of patients. ADAs can alter a drug's pharmacokinetic and pharmacodynamic properties, reducing drug efficacy. In more severe cases, ADAs can neutralize the drug's therapeutic effects or cause severe adverse events to the patient. While some contributing factors to ADA formation are known, the molecular mechanisms of how therapeutic mAbs elicit ADAs are not completely clear. Accurate ADA detection is necessary to provide clinicians with sufficient information for patient monitoring and clinical intervention. However, ADA assays present unique challenges because both the analyte and antigen are antibodies, so most assays are cumbersome, costly, time consuming, and lack standardization. This review will discuss aspects related to ADA formation following mAb drug administration. First, we will provide an overview of the prevalence of ADA formation and the available diagnostic tools for their detection. Next, we will review studies that support possible molecular mechanisms causing the formation of ADA. Finally, we will summarize recent approaches used to decrease the propensity of mAbs to induce ADAs.
Collapse
Affiliation(s)
- Anna Vaisman-Mentesh
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, KS, United States
| | - Yariv Wine
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Meunier S, de Bourayne M, Hamze M, Azam A, Correia E, Menier C, Maillère B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol 2020; 11:1550. [PMID: 32793213 PMCID: PMC7387651 DOI: 10.3389/fimmu.2020.01550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The anti-drug antibody (ADA) response is an undesired humoral response raised against protein biopharmaceuticals (BPs) which can dramatically disturb their therapeutic properties. One particularity of the ADA response resides in the nature of the immunogens, which are usually human(ized) proteins and are therefore expected to be tolerated. CD4 T cells initiate, maintain and regulate the ADA response and are therefore key players of this immune response. Over the last decade, advances have been made in characterizing the T cell responses developed by patients treated with BPs. Epitope specificity and phenotypes of BP-specific T cells have been reported and highlight the effector and regulatory roles of T cells in the ADA response. BP-specific T cell responses are assessed in healthy subjects to anticipate the immunogenicity of BP prior to their testing in clinical trials. Immunogenicity prediction, also called preclinical immunogenicity assessment, aims at identifying immunogenic BPs and immunogenic BP sequences before any BP injection in humans. All of the approaches that have been developed to date rely on the detection of BP-specific T cells in donors who have never been exposed to BPs. The number of BP-specific T cells circulating in the blood of these donors is therefore limited. T cell assays using cells collected from healthy donors might reveal the weak tolerance induced by BPs, whose endogenous form is expressed at a low level. These BPs have a complete human sequence, but the level of their endogenous form appears insufficient to promote the negative selection of autoreactive T cell clones. Multiple T cell epitopes have also been identified in therapeutic antibodies and some other BPs. The pattern of identified T cell epitopes differs across the antibodies, notwithstanding their humanized, human or chimeric nature. However, in all antibodies, the non-germline amino acid sequences mainly found in the CDRs appear to be the main driver of immunogenicity, provided they can be presented by HLA class II molecules. Considering the fact that the BP field is expanding to include new formats and gene and cell therapies, we face new challenges in understanding and mastering the immunogenicity of new biological products.
Collapse
Affiliation(s)
- Sylvain Meunier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Marie de Bourayne
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Moustafa Hamze
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Aurélien Azam
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Catherine Menier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Junker F, Gordon J, Qureshi O. Fc Gamma Receptors and Their Role in Antigen Uptake, Presentation, and T Cell Activation. Front Immunol 2020; 11:1393. [PMID: 32719679 PMCID: PMC7350606 DOI: 10.3389/fimmu.2020.01393] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The cellular uptake, intracellular processing, and presentation of foreign antigen are crucial processes for eliciting an effective adaptive host response to the majority of pathogens. The effective recognition of antigen by T cells requires that it is first processed and then presented on MHC molecules that are expressed on other cells. A critical step leading to the presentation of antigen is delivering the foreign cargo to an intracellular compartment where the antigen can be processed and loaded onto MHC molecules. Fc-gamma receptors (FcγRs) recognize IgG-coated targets, such as opsonized pathogens or immune complexes (ICs). Cross-linking leads to internalization of the cargo with associated activation of down-stream signaling cascades. FcγRs vary in their affinity for IgG and intracellular trafficking, and therefore have an opportunity to regulate antigen presentation by controlling the shuttling and processing of their cargos. In this way, they critically influence physiological and pathophysiological adaptive immune cell functions. In this review, we will cover the contribution of FcγRs to antigen-presentation with a focus on the intracellular trafficking of IgG-ICs and the pathways that support this function. We will also discuss genetic evidence linking FcγR biology to immune cell activation and autoimmune processes as exemplified by systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Fabian Junker
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - John Gordon
- Celentyx Ltd, Birmingham Research Park, Birmingham, United Kingdom
| | - Omar Qureshi
- Celentyx Ltd, Birmingham Research Park, Birmingham, United Kingdom
| |
Collapse
|
11
|
Cadena Castaneda D, Brachet G, Goupille C, Ouldamer L, Gouilleux-Gruart V. The neonatal Fc receptor in cancer FcRn in cancer. Cancer Med 2020; 9:4736-4742. [PMID: 32368865 PMCID: PMC7333860 DOI: 10.1002/cam4.3067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, it was found to be involved in immunoglobulin recycling and biodistribution, immune complexes routing, antigen presentation, humoral immune response, and cancer immunosurveillance. The latest data show that FcRn plays a part in cancer pathophysiology. In various types of cancers, such as lung and colorectal cancer, FcRn has been described as an early marker for prognosis. Dysregulation of FcRn expression by cancer cells allows them to increase their metabolism, and this process could be exploited for passive targeting of cytotoxic drugs. However, the roles of this receptor depend on whether the studied cell population is the tumor tissue or the infiltrating cells, bringing forward the need for further studies.
Collapse
Affiliation(s)
| | | | - Caroline Goupille
- CHRU de Tours, Tours, France.,Université de Tours, INSERM, Tours, France
| | - Lobna Ouldamer
- CHRU de Tours, Tours, France.,Université de Tours, INSERM, Tours, France
| | | |
Collapse
|
12
|
Boysen L, Viuff BM, Landsy LH, Lykkesfeldt J, Raymond JT, Price SA, Pelzer H, Lauritzen B. Formation and Glomerular Deposition of Immune Complexes in Mice Administered Human Antibodies: Evaluation of Dose, Frequency, and Biomarkers. Toxicol Pathol 2020; 48:570-585. [PMID: 32319353 DOI: 10.1177/0192623320919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Administration of human protein-based drugs to animals often leads to formation of antidrug antibodies (ADAs) that may form circulating immune complexes (CICs) with the dosed protein. Circulating immune complexes can activate and bind complement (cCICs), and if large amount of CICs or cCICs is formed, the clearance mechanism potentially becomes saturated, which can lead to immune complex (IC) deposition and inflammation. To obtain a better understanding of the underlying factors, including the relationship between different dose regimes on IC formation and deposition and identification of possible biomarkers of IC deposition and IC-related pathological changes in kidneys, BALB/c and C57BL/6J mice were administered with human anti-tumor necrosis factor α (aTNFα, adalimumab) or a humanized anti-TNP (aTNP) antibody for 13 weeks. Particularly, ADA, CIC, cCIC formation, IC deposition, and glomerulonephritis were observed in C57BL/6J administered with aTNFα, whereas the immunologic response was minor in BALB/c mice administered with aTNFα and in BALB/c and C57BL/6J mice administered aTNP. Changing dose levels or increasing dosing frequency of aTNFα on top of an already-established CIC and cCIC response did not lead to substantial changes in CIC, cCIC formation, or IC deposition. Finally, no association between the presence of CICs or cCIC in plasma and glomerular IC deposition and/or glomerulonephritis was observed.
Collapse
Affiliation(s)
- Lykke Boysen
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark.,Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Birgitte M Viuff
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Lone H Landsy
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - James T Raymond
- Pathology Associates, Charles River Laboratories Inc, Frederick, Maryland, USA
| | - Shari A Price
- Pathology Associates, Charles River Laboratories Inc, Frederick, Maryland, USA
| | - Hermann Pelzer
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Brian Lauritzen
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
13
|
Concomitant Treatment with Etanercept and Tacrolimus Synergistically Attenuates Arthritis Progression via Inhibition of Matrix Metalloproteinase-3 Production and Osteoclastogenesis in Human TNF- α Transgenic Mice. Mediators Inflamm 2020; 2019:4176974. [PMID: 31949424 PMCID: PMC6942915 DOI: 10.1155/2019/4176974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022] Open
Abstract
In the present study, we investigated the effects and mechanisms of action of a combined treatment with etanercept, a soluble tumor necrosis factor receptor (p75) Fc fusion protein, and tacrolimus, a calcineurin inhibitor on the progression of arthritis in human tumor necrosis factor-α (TNF-α) transgenic (hTNF-Tg) mice. Single-drug treatments with etanercept and tacrolimus attenuated the clinical signs but not the radiographic changes associated with the development of arthritis in mice. On the contrary, combined treatment significantly suppressed the radiographic progression and also improved the clinical signs. The combined treatment exhibited synergistic effects of the two drugs in reducing the serum matrix metalloproteinase-3 level and the number of peripheral CD11bhigh osteoclast precursor cells. Moreover, tacrolimus inhibited the cytokine-induced osteoclast differentiation in synergy with etanercept in an in vitro assay. Interestingly, tacrolimus did not inhibit the production of antidrug antibodies (ADAs) against etanercept in the hTNF-Tg mice. This result implies that the synergistic effects of etanercept and tacrolimus are not due to secondary effects derived from the suppression of ADA production by tacrolimus but are due to their primary effects. These findings suggest that concomitant treatment with etanercept and tacrolimus may be one of preferable treatment options to control disease activities for patients with rheumatoid arthritis, especially for those with bone resorption.
Collapse
|
14
|
Bar-Yoseph H, Pressman S, Blatt A, Gerassy Vainberg S, Maimon N, Starosvetsky E, Ungar B, Ben-Horin S, Shen-Orr SS, Chowers Y. Infliximab-Tumor Necrosis Factor Complexes Elicit Formation of Anti-Drug Antibodies. Gastroenterology 2019; 157:1338-1351.e8. [PMID: 31401142 DOI: 10.1053/j.gastro.2019.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Some patients develop anti-drug antibodies (ADAs), which reduce the efficacy of infliximab, a monoclonal antibody against tumor necrosis factor (TNF), in the treatment of immune-mediated diseases, including inflammatory bowel diseases. ADAs arise inconsistently, and it is not clear what factors determine their formation. We investigated features of the immune system, the infliximab antibody, and its complex with TNF that might contribute to ADA generation. METHODS C57BL/6 mice were given injections of infliximab and recombinant human TNF or infliximab F(ab')2 fragments. Blood samples were collected every 2-3 days for 2 weeks and weekly thereafter for up to 6 weeks; infliximab-TNF complexes and ADAs were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal biopsy and blood samples were obtained from patients having endoscopy who had received infliximab therapy for inflammatory bowel diseases; infliximab-TNF complexes were measured with ELISA. Infliximab-specific plasma cells were detected in patient tissue samples by using mass cytometry. We studied activation of innate immune cells in peripheral blood mononuclear cells (PBMCs) from healthy donors incubated with infliximab or infliximab-TNF complexes; toll-like receptors (TLRs) were blocked with antibodies, endocytosis was blocked with the inhibitor PitStop2, and cytokine expression was measured by real-time polymerase chain reaction and ELISAs. Uptake of infliximab and infliximab-TNF complexes by THP-1 cells was measured with confocal microscopy. RESULTS Mice given increasing doses of infliximab produced increasing levels of ADAs. Blood samples from mice given injections of human TNF and infliximab contained infliximab-TNF complexes; complex formation was associated with ADA formation with an area under the curve of 0.944 (95% confidence interval, 0.851-1.000; P = .003). Intestinal tissues from patients, but not blood samples, contained infliximab-TNF complexes and infliximab-specific plasma cells. Incubation of PBMCs with infliximab-TNF complexes resulted in a 4.74-fold increase in level of interleukin (IL) 1β (IL1B) messenger RNA (P for comparison = .005), increased IL1B protein secretion, and a 2.69-fold increase in the expression of TNF messenger RNA (P for comparison = 0.013) compared with control PBMCs. Infliximab reduced only IL1B and TNF expression. Antibodies against TLR2 or TLR4 did not block the increases in IL1B or TNF expression, but endocytosis was required. THP-1 cells endocytosed higher levels of infliximab-TNF complexes than infliximab alone. CONCLUSIONS In mice, we found ADA formation to increase with dose of infliximab given and concentration of infliximab-TNF complexes detected in blood. Based on studies of human intestinal tissues and blood samples, we propose that infliximab-TNF complexes formed in the intestine are endocytosed by and activate innate immune cells, which increase expression of IL1B and TNF and production of antibodies against the drug complex. It is therefore important to optimize the infliximab dose to a level that is effective but does not activate an innate immune response against the drug-TNF complex.
Collapse
Affiliation(s)
- Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Sigal Pressman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Alexandra Blatt
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | | | - Naama Maimon
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Elina Starosvetsky
- Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Bella Ungar
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai S Shen-Orr
- Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel.
| | | |
Collapse
|
15
|
Neiveyans M, Melhem R, Arnoult C, Bourquard T, Jarlier M, Busson M, Laroche A, Cerutti M, Pugnière M, Ternant D, Gaborit N, Chardès T, Poupon A, Gouilleux-Gruart V, Pèlegrin A, Poul MA. A recycling anti-transferrin receptor-1 monoclonal antibody as an efficient therapy for erythroleukemia through target up-regulation and antibody-dependent cytotoxic effector functions. MAbs 2019; 11:593-605. [PMID: 30604643 PMCID: PMC6512944 DOI: 10.1080/19420862.2018.1564510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.
Collapse
Affiliation(s)
- Madeline Neiveyans
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Rana Melhem
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Christophe Arnoult
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Thomas Bourquard
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Marta Jarlier
- b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Muriel Busson
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Adrien Laroche
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | | | - Martine Pugnière
- g PP2I, Plateforme Protéomique et Interactions Moléculaires , IRCM
| | - David Ternant
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France.,h CHRU de Tours, Department of medical pharmacology , Tours , France
| | - Nadège Gaborit
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Thierry Chardès
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Anne Poupon
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Valérie Gouilleux-Gruart
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Andre Pèlegrin
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Marie-Alix Poul
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| |
Collapse
|
16
|
Castaneda DC, Dhommée C, Baranek T, Dalloneau E, Lajoie L, Valayer A, Arnoult C, Demattéi MV, Fouquenet D, Parent C, Heuzé-Vourc'h N, Gouilleux-Gruart V. Lack of FcRn Impairs Natural Killer Cell Development and Functions in the Tumor Microenvironment. Front Immunol 2018; 9:2259. [PMID: 30323819 PMCID: PMC6172308 DOI: 10.3389/fimmu.2018.02259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
The neonatal Fc receptor (FcRn) is responsible for the recycling and transcytosis of IgG and albumin. FcRn level was found altered in cancer tissues and implicated in tumor immunosurveillance and neoplastic cell growth. However, the consequences of FcRn down-regulation in the anti-tumor immune response are not fully elucidated. By using the B16F10 experimental lung metastasis model in an FcRn-deficient microenvironment (FcRn-/- mice), we found lung metastasis associated with an abnormal natural killer (NK) cell phenotype. In FcRn-/- mice, NK cells were immature, as shown by their surface marker profile and their decreased ability to degranulate and synthesize interferon γ after chemical and IL-2 or IL-12, IL-15 and IL-18 activation. These new findings support the critical role of FcRn downregulation in the tumor microenvironment in anti-tumor immunity, via NK cell maturation and activation.
Collapse
Affiliation(s)
| | - Christine Dhommée
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | - Thomas Baranek
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Laurie Lajoie
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | - Alexandre Valayer
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Christophe Arnoult
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | | | - Delphine Fouquenet
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Christelle Parent
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | | |
Collapse
|