1
|
Ongwe MEB, Mouwenda YD, Manurung MD, Heieis G, Azimi S, Adegnika AA, Kremsner PG, Kuijpers TW, Yazdanbakhsh M, Everts B. Potentiation of the axis involving pentose phosphate pathway/NADPH oxidase/reactive oxygen species drives higher IL-10 production in monocytes of Sub-Saharan Africans. Eur J Immunol 2024; 54:e2451029. [PMID: 38873882 DOI: 10.1002/eji.202451029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.
Collapse
Affiliation(s)
- Madeleine Eunice Betouke Ongwe
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut de Recherches en Écologie Tropicale, Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - Yoanne D Mouwenda
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Mikhael D Manurung
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Graham Heieis
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Shohreh Azimi
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ayola A Adegnika
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Emma Children's Hospital, Academic Medical Center, Dept of Paediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Povoleri GAM, Ridley ML, Marrow RJ, Lalnunhlimi S, Ryan SE, Kelly A, Lavender P, Taams LS. Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells. DISCOVERY IMMUNOLOGY 2024; 3:kyae013. [PMID: 39290825 PMCID: PMC11407445 DOI: 10.1093/discim/kyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
CD4+ T cells are key players in immune-mediated inflammatory diseases (IMIDs) through the production of inflammatory mediators including tumour necrosis factor (TNF). Anti-TNF therapy has revolutionized the treatment of several IMIDs and we previously demonstrated that in vitro treatment of human CD4+ T cells with anti-TNF promotes anti-inflammatory IL-10 expression in multiple subpopulations of CD4+ T cells. Here we investigated the transcriptional mechanisms underlying the IL-10 induction by TNF-blockade in CD4+ T cells, isolated from PBMCs of healthy volunteers, stimulated in vitro for 3 days with anti-CD3/CD28 mAb in the absence or presence of anti-TNF. After culture, CD45RA+ cells were depleted before performing gene expression profiling and chromatin accessibility analysis. Gene expression analysis of CD45RA-CD4+ T cells showed a distinct anti-TNF specific gene signature of 183 genes (q-value < 0.05). Pathway enrichment analysis of differentially expressed genes revealed multiple pathways related to cytokine signalling and regulation of cytokine production; in particular, IL10 was the most upregulated gene by anti-TNF, while the proinflammatory cytokines and chemokines IFNG, IL9, IL22, and CXCL10 were significantly downregulated (q-value < 0.05). Transcription factor motif analysis at the differentially open chromatin regions, after anti-TNF treatment, revealed 58 transcription factor motifs enriched at the IL10 locus. We identified seven transcription factor candidates for the anti-TNF mediated regulation of IL-10, which were either differentially expressed or whose locus was differentially accessible upon anti-TNF treatment. Correlation analysis between the expression of these transcription factors and IL10 suggests a role for MAF, PRDM1, and/or EOMES in regulating IL10 expression in CD4+ T cells upon anti-TNF treatment.
Collapse
Affiliation(s)
- Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael L Ridley
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rebecca J Marrow
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sarah E Ryan
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Audrey Kelly
- King's Centre for Lung Health, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Paul Lavender
- King's Centre for Lung Health, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
3
|
Balan I, Grusca A, O’Buckley TK, Morrow AL. Neurosteroid [3α,5α]-3-hydroxy-pregnan-20-one enhances IL-10 production via endosomal TRIF-dependent TLR4 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1299420. [PMID: 38179300 PMCID: PMC10765172 DOI: 10.3389/fendo.2023.1299420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Background Previous studies demonstrated the inhibitory effect of allopregnanolone (3α,5α-THP) on the activation of inflammatory toll-like receptor 4 (TLR4) signals in RAW264.7 macrophages and the brains of selectively bred alcohol-preferring (P) rats. In the current study, we investigated the impact of 3α,5α-THP on the levels of IL-10 and activation of the TRIF-dependent endosomal TLR4 pathway. Methods The amygdala and nucleus accumbens (NAc) of P rats, which exhibit innately activated TLR4 pathways as well as RAW264.7 cells, were used. Enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were used to ascertain the effects of 3α,5α-THP on the TRIF-dependent endosomal TLR4 pathway and endosomes were isolated to examine translocation of TLR4 and TRIF. Additionally, we investigated the effects of 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) on the levels of IL-10 in RAW264.7 macrophages. Finally, we examined whether inhibiting TRIF (using TRIF siRNA) in RAW264.7 cells altered the levels of IL-10. Results 3α,5α-THP administration facilitated activation of the endosomal TRIF-dependent TLR4 pathway in males, but not female P rats. 3α,5α-THP increased IL-10 levels (+13.2 ± 6.5%) and BDNF levels (+21.1 ± 11.5%) in the male amygdala. These effects were associated with increases in pTRAM (+86.4 ± 28.4%), SP1 (+122.2 ± 74.9%), and PI(3)K-p110δ (+61.6 ± 21.6%), and a reduction of TIRAP (-13.7 ± 6.0%), indicating the activation of the endosomal TRIF-dependent TLR4 signaling pathway. Comparable effects were observed in NAc of these animals. Furthermore, 3α,5α-THP enhanced the accumulation of TLR4 (+43.9 ± 11.3%) and TRIF (+64.8 ± 32.8%) in endosomes, with no significant effect on TLR3 accumulation. Additionally, 3α,5α-THP facilitated the transition from early endosomes to late endosomes (increasing Rab7 levels: +35.8 ± 18.4%). In RAW264.7 cells, imiquimod (30 µg/mL) reduced IL-10 while 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) restored IL-10 levels. To determine the role of the TRIF-dependent TLR4 signaling pathway in IL-10 production, the downregulation of TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%). TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%) and 3α,5α-THP (1.0 µM) no longer restored the reduced IL-10 levels. Conclusion The results demonstrate 3α,5α-THP enhancement of the endosomal TLR4-TRIF anti-inflammatory signals and elevations of IL-10 in male P rat brain that were not detected in female P rat brain. These effects hold significant implications for controlling inflammatory responses in both the brain and peripheral immune cells.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adelina Grusca
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Daamen AR, Alajoleen RM, Grammer AC, Luo XM, Lipsky PE. Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice. Front Immunol 2023; 14:1282770. [PMID: 38155972 PMCID: PMC10752970 DOI: 10.3389/fimmu.2023.1282770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.
Collapse
Affiliation(s)
- Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Razan M. Alajoleen
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| |
Collapse
|
5
|
Welfley H, Kylat R, Zaghloul N, Halonen M, Martinez FD, Ahmed M, Cusanovich DA. Single-Cell Profiling of Premature Neonate Airways Reveals a Continuum of Myeloid Differentiation. Am J Respir Cell Mol Biol 2023; 69:689-697. [PMID: 37643399 PMCID: PMC10704120 DOI: 10.1165/rcmb.2022-0293oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
Single-cell genomic technologies hold great potential to advance our understanding of lung development and disease. A major limitation lies in accessing intact cells from primary lung tissues for profiling human airway health. Sampling methods such as endotracheal aspiration that are compatible with clinical interventions could enable longitudinal studies, the enrollment of large cohorts, and the development of novel diagnostics. To explore single-cell RNA sequencing profiling of the cell types present at birth in the airway lumen of extremely premature neonates (<28 wk gestation), we isolated cells from endotracheal aspirates collected from intubated neonates within the first hour after birth. We generated data on 10 subjects, providing a rich view of airway luminal biology at a critical developmental period. Our results show that cells present in the airways of premature neonates primarily represent a continuum of myeloid differentiation, including fetal monocytes (25% of total), intermediate myeloid populations (48%), and macrophages (2.6%). Applying trajectory analysis to the myeloid populations, we identified two trajectories consistent with the developmental stages of interstitial and alveolar macrophages, as well as a third trajectory presenting an alternative pathway bridging the distinct macrophage precursors. The three trajectories share many dynamic genes (N = 5,451), but also have distinct transcriptional changes (259 alveolar-specific, 666 interstitial-specific, and 285 bridging-specific). Overall, our results define cells isolated within the so-called "golden hour of birth" in extremely premature neonate airways, representing complex lung biology, and can be used in studies of human development and disease.
Collapse
Affiliation(s)
| | - Ranjit Kylat
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Nahla Zaghloul
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | | | | | - Mohamed Ahmed
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Darren A. Cusanovich
- Asthma and Airway Disease Research Center and
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
6
|
Zouei N, Dalimi A, Pirestani M, Ghaffarifar F. Assessment of tissue levels of miR-146a and proinflammatory cytokines in experimental cerebral toxoplasmosis following atovaquone and clindamycin treatment: An in vivo study. Microb Pathog 2023; 184:106340. [PMID: 37683834 DOI: 10.1016/j.micpath.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Despite recent advances for treating cerebral toxoplasmosis (CT), monitoring the parasite burden and treatment response is still challenging. miRNAs are small non-coding RNAs with regulatory functions that can be used in diagnosis and treatment monitoring. We investigated the changes in miR-146a, BAG-1 gene, IL-6, and IL-10 tissue levels in the brain of BALB/c mice with chronic CT caused by the PRU strain of T. gondii following anti-parasitic and antibiotic treatment. METHOD Fifty-three 6-to 8-week-old BALB/c mice were infected using intraperitoneal inoculation of cerebral cysts of T. gondii PRU strain and then divided into five groups as follows: group 1 included mice treated with 100 mg/kg/d Atovaquone (AT), group 2 included mice treated with 400 mg/kg/d clindamycin (CL), group 3 included mice treated with combination therapy (AT + CL), group 4 included infected untreated mice as a positive control (PC), and; group 5 included uninfected untreated mice as negative control (NC). After the completion of the treatment course, tissue level of mir-146a, miR-155, BAG-1 gene, IL-6, and IL-10 was investigated with real-time polymerase chain reaction. The IL-6/IL-10 ratio was calculated as an indicator of immune response. Moreover, brain cyst numbers were counted on autopsy samples. RESULTS miR-146a, IL-6, IL-10, and BAG-1 genes were expressed in PC, but not in the NC group; miR-146a, IL-6, IL-10, and BAG-1 gene expression were significantly lower in AT, CL, and AT + CL compared with PC. MiR-146a and BAG-1 levels in AT and CL were not different statistically, however, they both had lower levels compared to AT + CL (P < 0.01). There was no difference in the expression of IL-6 and IL-10 between treatment groups. BAG-1 expression was significantly lower in AT, than in CL and AT + CL (P < 0.0089 and < 0.002, respectively). The PC group showed a higher ratio of IL-6/IL-10, although this increase was not statistically significant. It is noteworthy that the treatment with AT reduced this ratio; in the inter-group comparison, this ratio showed a decrease in the AT and AT + CL compared to the PC. The number of brain tissue cysts was significantly lower in AT, CL, and AT + CL, than in PC (p < 0.0001). AT had significantly lower brain cysts than CL and AT + CL (P < 0.0001). CONCLUSION It seems that the factors studied in the current research (microRNA and cytokines) are a suitable index for evaluating the response to antiparasitic and antibiotic treatment. However, more studies should be conducted in the future to confirm our findings.
Collapse
Affiliation(s)
- Nima Zouei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Fan YX, Chen LR, Gan RX, Yin SJ, Wang P, Meng R, Huang YH, Jiang FF, He GH. A meta-analysis of associations of IL-10 gene polymorphisms with acute leukemia susceptibility. Cytokine 2023; 170:156312. [PMID: 37542945 DOI: 10.1016/j.cyto.2023.156312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Recently, increasing evidence has demonstrated that IL-10 single nucleotide polymorphisms (SNPs) are associated with the risk of acute leukemia (AL), but the findings of different articles remain controversial. Thus, we performed a meta-analysis to further investigate the exact roles of IL-10 SNPs in AL susceptibility. METHODS Six common Chinese and English databases were utilized to retrieve eligible studies. The strength of the association was assessed by calculating odds ratios and 95 % confidence intervals. All analyses were carried out using Review Manager (version 5.3) and STATA (version 15.1). The registered number of this research is CRD42022373362. RESULTS A total of 6391 participants were enrolled in this research. The results showed that the AG genotype of rs1800896 increased AL risk in the heterozygous codominant model (AG vs. AA, OR = 1.41, 95 % CI = 1.04-1.92, P = 0.03) and overdominant model (AG vs. AA + GG, OR = 1.32, 95 % CI = 1.04-1.70, P = 0.03). In the subgroup analysis, associations between the G allele, GG genotype, AG genotype, AG + GG genotype of rs1800896 and increased AL risk were also observed in the mixed population based on allelic, homozygote codominant, heterozygous codominant, dominant, and overdominant models. Furthermore, an association between the AC genotype of rs1800872 and increased AL risk was observed in the Caucasian population in the overdominant model. However, the rs1800871, rs3024489 and rs3024493 polymorphisms did not affect AL risk. CONCLUSION IL-10 rs1800896 and rs1800872 affected the susceptibility of AL and therefore may be biomarkers for early screening and risk prediction of AL.
Collapse
Affiliation(s)
- Yu-Xin Fan
- Research Center of Clinical Pharmacology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Li-Rong Chen
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Run-Xin Gan
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sun-Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Rui Meng
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Yan-Hua Huang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Fang-Fang Jiang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China.
| |
Collapse
|
8
|
Cui K, Tang X, Hu A, Fan M, Wu P, Lu X, Lin J, Yang F, Zhao X, Huang J, Yu S, Xu Y, Liang X. Therapeutic Benefit of Melatonin in Choroidal Neovascularization During Aging Through the Regulation of Senescent Macrophage/Microglia Polarization. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37578424 PMCID: PMC10431207 DOI: 10.1167/iovs.64.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Deng Y, Shi S, Luo J, Zhang Y, Dong H, Wang X, Zhou J, Wei Z, Li J, Xu C, Xu S, Sun Y, Ni B, Wu Y, Yang D, Han C, Tian Y. Regulation of mRNA stability contributes to the function of innate lymphoid cells in various diseases. Front Immunol 2023; 14:1118483. [PMID: 36776864 PMCID: PMC9909350 DOI: 10.3389/fimmu.2023.1118483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are important subsets of innate immune cells that regulate mucosal immunity. ILCs include natural killer cells, innate lymphoid cells-1 (ILC1s), ILC2s, and ILC3s, which have extremely important roles in the immune system. In this review, we summarize the regulation of mRNA stability mediated through various factors in ILCs (e.g., cytokines, RNA-binding proteins, non-coding RNAs) and their roles in mediating functions in different ILC subsets. In addition, we discuss potential therapeutic targets for diseases such as chronic obstructive pulmonary disease, cancer, and pulmonary fibrosis by regulation of mRNA stability in ILCs, which may provide novel directions for future clinical research.
Collapse
Affiliation(s)
- Yuanyu Deng
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Saiyu Shi
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyuan Wei
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiahui Li
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Xu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuai Xu
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| |
Collapse
|
10
|
Cellular Sources and Neuroprotective Roles of Interleukin-10 in the Facial Motor Nucleus after Axotomy. Cells 2022; 11:cells11193167. [PMID: 36231129 PMCID: PMC9564302 DOI: 10.3390/cells11193167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022] Open
Abstract
Facial motoneuron (FMN) survival is mediated by CD4+ T cells in an interleukin-10 (IL-10)-dependent manner after facial nerve axotomy (FNA), but CD4+ T cells themselves are not the source of this neuroprotective IL-10. The aims of this study were to (1) identify the temporal and cell-specific induction of IL-10 expression in the facial motor nucleus and (2) elucidate the neuroprotective capacity of this expression after axotomy. Immunohistochemistry revealed that FMN constitutively produced IL-10, whereas astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 was critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 alone could provide neuroprotection after FNA. These findings suggest that coordinated neuronal and astrocytic IL-10 production is necessary for FMN survival and has roles in neuronal homeostasis, as well as neuroprotective trophism after axotomy.
Collapse
|
11
|
Fu Y, Ma G, Zhang Y, Wang W, Shi T, Zhu J, Zhang J, Huang Z, Chen J. HG-9-91-01 Attenuates Murine Experimental Colitis by Promoting Interleukin-10 Production in Colonic Macrophages Through the SIK/CRTC3 Pathway. Inflamm Bowel Dis 2021; 27:1821-1831. [PMID: 33988718 DOI: 10.1093/ibd/izab072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. METHODS The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium-induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. RESULTS Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01-treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. CONCLUSIONS We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gailing Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuqian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenli Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongguo Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Sarfaraz D, Karimian M, Farmohammadi A, Yaghini J. The -592C>A Variation of IL-10 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study and In-Silico Analysis. J Oral Biosci 2021; 63:378-387. [PMID: 34547455 DOI: 10.1016/j.job.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic periodontitis (CP) is a common inflammatory disorder with a considerable impact of genetic variations in the interleukin family on predisposition to this disease. This study aimed to investigate the association between the -592C>A polymorphism of the interleukin 10 (IL-10) gene with CP risk in an Iranian population. This experimental study was followed by a meta-analysis and in silico examination. METHODS In a case-control study, 270 subjects, including 135 patients with CP and 135 healthy controls, were enrolled. The -592C>A genotyping was performed using the PCR-RFLP method. In the meta-analysis, valid databases were systematically searched to identify relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed to examine the association between -592C>A and CP. In silico analysis was conducted using bioinformatics tools to evaluate the impact of the -592C>A polymorphism on IL-10 gene function. RESULTS Our case-control study revealed a significant association between polymorphism and CP risk. Overall, we found significant associations between -592C>A genetic variation and CP and stratified meta-analysis. In silico analysis revealed that this polymorphism could change the pattern of the transcription binding site upstream of the IL-10 gene. It may also alter the hsa-miR-101-3p miRNA-targeted sequence upstream of IL-10. CONCLUSIONS Based on our results, the -592C>A variation in IL-10 may be a genetic risk factor for susceptibility to chronic periodontitis. However, further studies in different ethnicities and results adjusted for clinical and demographic characteristics are needed to obtain more accurate deductions.
Collapse
Affiliation(s)
- Dorna Sarfaraz
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Amir Farmohammadi
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Brito A, Santos T, Herculano K, Miranda M, Sá AK, Carvalho JL, Albertini R, Castro-Faria-Neto H, Ligeiro-de-Oliveira AP, Aimbire F. The MAPKinase Signaling and the Stimulatory Protein-1 (Sp1) Transcription Factor Are Involved in the Phototherapy Effect on Cytokines Secretion from Human Bronchial Epithelial Cells Stimulated with Cigarette Smoke Extract. Inflammation 2021; 44:1643-1661. [PMID: 33730343 DOI: 10.1007/s10753-021-01448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2019] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The present study was aimed to investigate the phototherapy effect with low-level laser on human bronchial epithelial cells activated by cigarette smoke extract (CSE). Phototherapy has been reported to actuate positively for controlling the generation/release of anti-inflammatory and pro-inflammatory mediators from different cellular type activated by distinct stimuli. It is not known whether the IL-8 and IL-10 release from CSE-stimulated human bronchial epithelium (BEAS) cells can be influenced by phototherapy. Human bronchial epithelial cell (BEAS) line was cultured in a medium with CSE and irradiated (660 nm) at 9 J. Apoptosis index was standardized with Annexin V and the cellular viability was evaluated by MTT. IL-8, IL-10, cAMP, and NF-κB were measured by ELISA as well as the Sp1, JNK, ERK1/2, and p38MAPK. Phototherapy effect was studied in the presence of mithramycin or the inhibitors of JNK or ERK. The IL-8, cAMP, NF-κB, JNK, p38, and ERK1/2 were downregulated by phototherapy. Both the JNK and the ERK inhibitors potentiated the phototherapy effect on IL-8 as well as on cAMP secretion from BEAS. On the contrary, IL-10 and Sp1 were upregulated by phototherapy. The mithramycin blocked the phototherapy effect on IL-10. The results suggest that phototherapy has a dual effect on BEAS cells because it downregulates the IL-8 secretion by interfering with CSE-mediated signaling pathways, and oppositely upregulates the IL-10 secretion through of Sp1 transcription factor. The manuscript provides evidence that the phototherapy can interfere with MAPK signaling via cAMP in order to attenuate the IL-8 secretion from CSE-stimulated BEAS. In addition, the present study showed that phototherapy effect is driven to downregulation of the both the IL-8 and the ROS secretion and at the same time the upregulation of IL-10 secretion. Besides it, the increase of Sp-1 transcription factor was crucial for laser effect in upregulating the IL-10 secretion. The dexamethasone corticoid produces a significant inhibitory effect on IL-8 as well as ROS secretion, but on the other hand, the corticoid blocked the IL-10 secretion. Taking it into consideration, it is reasonable to suggest that the beneficial effect of laser therapy on lung diseases involves its action on unbalance between pro-inflammatory and anti-inflammatory mediators secreted by human bronchial epithelial cells through different signaling pathway.
Collapse
Affiliation(s)
- A Brito
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - T Santos
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - K Herculano
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - M Miranda
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - A K Sá
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - J L Carvalho
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - R Albertini
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - H Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation - FioCruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P Ligeiro-de-Oliveira
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
14
|
Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin Exp Allergy 2021; 51:1553-1565. [PMID: 33423318 DOI: 10.1111/cea.13825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin (IL)-10 is a key anti-inflammatory cytokine that may be reduced in asthma but is enhanced by corticosteroids, especially when combined with a statin, although the mechanisms of these effects are uncertain. OBJECTIVE To study the role of autophagy in macrophages in promoting inflammation in asthma through reducing IL-10 secretion and how corticosteroids and statins may reverse this process. METHODS We conducted a randomised double-blind placebo-controlled study in moderate to severe asthmatic patients (n = 44) to investigate the effect of an inhaled corticosteroid (budesonide 400 μg/day) and the combination of budesonide with an oral statin (simvastatin 10 mg/day) given for 8 weeks on autophagy protein expression in sputum cells by using immunocytochemistry and measurement of IL-10 release. In in vitro experiments, we studied cross-regulation between autophagy and IL-10 release by measuring the expression of autophagy proteins in M2-like macrophages and the effects of budesonide and simvastatin on these mechanisms. RESULTS In asthmatic patients, inhaled budesonide inhibited airway macrophage autophagy (beclin-1, LC3) as well as autophagic flux (p62), which was enhanced by simvastatin and was correlated with increased sputum IL-10 and reduced IL-4 concentrations. In macrophages in vitro, budesonide and simvastatin inhibited rapamycin-induced autophagy as well as autophagic flux, with reduced expression of beclin-1 and LC3, but enhanced the accumulation of p62 and increased expression of IL-10, which itself further inhibited autophagy in macrophages. With siRNA-mediated silencing, LC3-deficient macrophages also showed a maximal induction of IL-10 transcription. Neutralisation of IL-10 with recombinant specific blocking antibody and silencing IL-10 transcription reversed the inhibitory effects of budesonide and simvastatin on macrophage autophagy. CONCLUSION AND CLINICAL RELEVANCE Inhibition by corticosteroids and a statin of macrophage autophagy enhances IL-10 production, resulting in the control of asthmatic inflammation.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
15
|
Simion V, Zhou H, Pierce JB, Yang D, Haemmig S, Tesmenitsky Y, Sukhova G, Stone PH, Libby P, Feinberg MW. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight 2020; 5:140627. [PMID: 33021969 PMCID: PMC7710319 DOI: 10.1172/jci.insight.140627] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in regulating diverse cellular processes in the vessel wall, including atherosclerosis. RNA-Seq profiling of intimal lesions revealed a lncRNA, VINAS (Vascular INflammation and Atherosclerosis lncRNA Sequence), that is enriched in the aortic intima and regulates vascular inflammation. Aortic intimal expression of VINAS fell with atherosclerotic progression and rose with regression. VINAS knockdown reduced atherosclerotic lesion formation by 55% in LDL receptor-deficient (LDLR-/-) mice, independent of effects on circulating lipids, by decreasing inflammation in the vessel wall. Loss- and gain-of-function studies in vitro demonstrated that VINAS serves as a critical regulator of inflammation by modulating NF-κB and MAPK signaling pathways. VINAS knockdown decreased the expression of key inflammatory markers, such as MCP-1, TNF-α, IL-1β, and COX-2, in endothelial cells (ECs), vascular smooth muscle cells, and bone marrow-derived macrophages. Moreover, VINAS silencing decreased expression of leukocyte adhesion molecules VCAM-1, E-selectin, and ICAM-1 and reduced monocyte adhesion to ECs. DEP domain containing 4 (DEPDC4), an evolutionary conserved human ortholog of VINAS with approximately 74% homology, showed similar regulation in human and pig atherosclerotic specimens. DEPDC4 knockdown replicated antiinflammatory effects of VINAS in human ECs. These findings reveal a potentially novel lncRNA that regulates vascular inflammation, with broad implications for vascular diseases.
Collapse
Affiliation(s)
- Viorel Simion
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Haoyang Zhou
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jacob B. Pierce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dafeng Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yevgenia Tesmenitsky
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Sukhova
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter H. Stone
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Xiang X, Yuan D, Kong P, Chen T, Yao H, Lin S, Zhang X, Cao H. Deep vein thrombosis inhibitor may play a therapeutic role in post-stroke patients. BMC MEDICAL GENETICS 2020; 21:174. [PMID: 33092540 PMCID: PMC7579790 DOI: 10.1186/s12881-020-01108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is associated with stroke. Here, we hypothesize that genes associated with DVT may also play roles in the development of stroke. METHODS we firstly conducted large-scale literature based disease-gene relationship data analysis to explore the genes implicated with DVT and stroke. Further, a mega-analysis was conducted for each of these genes that were linked to DVT but not stroke, using 11 independent stroke RNA expression datasets (176 stroke cases and 102 healthy controls). Then, a multiple linear regression (MLR) model was employed to study possible influential factors on the gene expression levels in stroke. After that, a functional pathway analysis was performed to identify the potential biological linkage between stroke and the target genes suggested by mega-analysis. RESULTS Over 81.10% genes implicated with DVT also suggested an association with stroke. Among the 24 DVT-specific genes, one DVT-inhibiting gene, SP1, presented significantly increased expression in stroke (LFC = 1.34, p-value = 0.0045). Pathway analysis showed that SP1 may play a therapeutic role in post-stroke patients by promoting multiple of stroke-inhibitors. Moreover, geographical region was indicated as an influential factor on the expression levels of SP1 in stroke samples (p-value = 0.037). CONCLUSION Our results suggested that DVT inhibitor SP1 could be a novel therapeutic target gene for post-stroke treatment. Further study of the potential relations between SP1 and stroke was guaranteed.
Collapse
Affiliation(s)
- Xixi Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Di Yuan
- Department of Educational Technology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Peiyan Kong
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Ting Chen
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Han Yao
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Shijia Lin
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Xi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Key Subject of Chongqing, No. 83 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.
| | - Hongbao Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
- School of Systems Biology, George Mason University, Fairfax, Virginia, 22030, USA.
- Department of Genomics Research, RD Solutions, Elsevier Inc., Rockville, MD, 20852, USA.
| |
Collapse
|
17
|
Wang Y, Franks JM, Yang M, Toledo DM, Wood TA, Hinchcliff M, Whitfield ML. Regulator combinations identify systemic sclerosis patients with more severe disease. JCI Insight 2020; 5:137567. [PMID: 32721949 PMCID: PMC7526449 DOI: 10.1172/jci.insight.137567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous autoimmune disorder that results in skin fibrosis, autoantibody production, and internal organ dysfunction. We previously identified 4 “intrinsic” subsets of SSc based upon skin gene expression that are found across organ systems. Gene expression regulators that underlie the SSc-intrinsic subsets, or are associated with clinical covariates, have not been systematically characterized. Here, we present a computational framework to calculate the activity scores of gene expression regulators and identify their associations with SSc clinical outcomes. We found that regulator activity scores can reproduce the intrinsic molecular subsets, with distinct sets of regulators identified for inflammatory, fibroproliferative, limited, and normal-like samples. Regulators most highly correlated with modified Rodnan skin score (MRSS) also varied by intrinsic subset. We identified subgroups of patients with fibroproliferative and inflammatory SSc with more severe pathophenotypes, such as higher MRSS and increased likelihood of interstitial lung disease (ILD). Using an independent cohort, we show that the group with more severe ILD was more likely to show forced vital capacity decline over a period of 36–54 months. Our results demonstrate an association among the activation of regulators, gene expression subsets, and clinical variables that can identify patients with SSc with more severe disease. An association between the activation of regulators, gene expression subsets, and clinical variables identifies systemic sclerosis patients with more severe disease.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jennifer M Franks
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Monica Yang
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Diana M Toledo
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Tammara A Wood
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Yale School of Medicine, Section of Allergy, Rheumatology and Immunology, New Haven, Connecticut, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
18
|
Maiti S, Grivas G, Choi K, Dai W, Ding Y, Acosta DP, Hahn J, Jayaraman A. MODELING INTER-KINGDOM REGULATION OF INFLAMMATORY SIGNALING IN HUMAN INTESTINAL EPITHELIAL CELLS. Comput Chem Eng 2020; 140. [PMID: 32669746 DOI: 10.1016/j.compchemeng.2020.106954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human gastrointestinal (GI) tract is colonized by a highly diverse and complex microbial community (i.e., microbiota). The microbiota plays an important role in the development of the immune system, specifically mediating inflammatory responses, however the exact mechanisms are poorly understood. We have developed a mathematical model describing the effect of indole on host inflammatory signaling in HCT-8 human intestinal epithelial cells. In this model, indole modulates transcription factor nuclear factor κ B (NF-κB) and produces the chemokine interleukin-8 (IL-8) through the activation of the aryl hydrocarbon receptor (AhR). Phosphorylated NF-κB exhibits dose and time-dependent responses to indole concentrations and IL-8 production shows a significant down-regulation for 0.1 ng/mL TNF-α stimulation. The model shows agreeable simulation results with the experimental data for IL-8 secretion and normalized NF-κB values. Our results suggest that microbial metabolites such as indole can modulate inflammatory signaling in HTC-8 cells through receptor-mediated processes.
Collapse
Affiliation(s)
- Shreya Maiti
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - Genevieve Grivas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Kyungoh Choi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - Wei Dai
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Yufang Ding
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | | | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| |
Collapse
|
19
|
Cheng H, Wang L, Yang B, Li D, Wang X, Liu X, Tian N, Huang Q, Feng R, Wang Z, Liang R, Dai SM, Lv L, Wu J, Zang YS, Li B. Cutting Edge: Inhibition of Glycogen Synthase Kinase 3 Activity Induces the Generation and Enhanced Suppressive Function of Human IL-10 + FOXP3 +-Induced Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1497-1502. [PMID: 32817370 DOI: 10.4049/jimmunol.2000136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023]
Abstract
IL-10 is critical for Foxp3+ regulatory T cell (Tregs)-mediated immune suppression, but how to efficiently upregulate IL-10 production in Tregs remains unclear. In this article, we show that human IL-10+ FOXP3+-induced regulatory T cell (iTreg) generation can be dramatically promoted by inhibiting GSK3 activity. IL-10+ FOXP3+ iTregs induced by GSK3 inhibition exhibit classical features of immune-suppressive T cells. We further demonstrate that IL-10+ iTregs exhibit enhanced suppressive function in both IL-10-dependent and -independent manners. The enhanced suppressive function of IL-10+ Tregs is not due to a single factor such as IL-10, although IL-10 may mediate this enhanced suppressive function to some extent. Mechanistically, the increased transcriptional activity of IL-10 promoter and the enhanced expression of C-Maf and BLIMP1 coordinately facilitate IL-10 expression in human iTregs under GSK3 inhibition. Our study provides a new strategy to generate human immune-suppressive IL-10+ FOXP3+ Tregs for immunotherapies.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Biaolong Yang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinnan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; and
| | - Qianru Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ru Feng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; and
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China;
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
20
|
Zhong X, Chen Y, Yao C, Xu L, Peng Y, Yang Q, Zhao M, Guo X. MicroRNA-30b participates in the pathological process of hyperuricemia by regulating interleukin-6 receptor. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1162-1178. [PMID: 32643523 DOI: 10.1080/15257770.2020.1780439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study aimed to examine the expression of hyperuricemia (HUA)-related factors in the body fluids of HUA patients and in renal tissues and body fluids of HUA mice to elucidate the underlying mechanism of HUA and provide theoretical basis for the diagnosis, prevention and treatment of this disease. A total of 51 HUA patients (HUA group), and 36 healthy subjects (control group) were included in the present study. The peripheral blood and urine were collected from all patients and healthy subjects. A total of 20 male Kunming mice were used to construct HUA model, and another 20 mice were used as controls. The kidney tissues, peripheral blood and urine were collected from all mice. ELISA was performed to determine the levels of interleukin-6 receptor (IL-6R) proteins in the serum and urine of human or mice, while western blotting was employed to determine the protein expression in the kidney tissues of mice. Quantitative real-time polymerase chain reaction was used to measure the expression of mRNA and miR-30b in all sample types. Dual luciferase reporter assay was performed to identify the direct interaction between 3'-untranslated region of IL-6R mRNA and miR-30b. The expression of IL-6R mRNA and protein was increased in serum and urine of HUA patients, while the expression of miR-30b was reduced in HUA patients when compared with healthy subjects. The contents of uric acid, urea nitrogen and creatinine in the blood of HUA mice model were significantly elevated. Similarly, the expression of IL-6R mRNA and protein was increased in kidney, serum and urine of HUA mice model, while the expression of miR-30b was reduced in kidney tissues, serum and urine of HUA mice model. Dual luciferase reporter assay showed that miR-30b was able to bind with 3'-UTR seed region of IL-6R mRNA to regulate its expression. These findings demonstrated that the expression of IL-6R in patients and mouse with HUA is elevated, which is related with the down-regulation of miR-30b. Therefore, miR-30b might participate in the pathological process of HUA by regulating IL-6R.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, P.R. China
| | - Ying Chen
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Chengjiao Yao
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, P.R. China
| | - Yuanhong Peng
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Qibin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Mingcai Zhao
- Department of Clinical Laboratory, Central Hospital of Suining, Suining, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, P.R. China
| |
Collapse
|
21
|
Chaix R, Fagny M, Cosin-Tomás M, Alvarez-López M, Lemee L, Regnault B, Davidson RJ, Lutz A, Kaliman P. Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways. Brain Behav Immun 2020; 84:36-44. [PMID: 31733290 PMCID: PMC7010561 DOI: 10.1016/j.bbi.2019.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The human methylome is dynamically influenced by psychological stress. However, its responsiveness to stress management remains underexplored. Meditation practice has been shown to significantly reduce stress level, among other beneficial neurophysiological outcomes. Here, we evaluated the impact of a day of intensive meditation practice (t2-t1 = 8 h) on the methylome of peripheral blood mononuclear cells in experienced meditators (n = 17). In parallel, we assessed the influence of a day of leisure activities in the same environment on the methylome of matched control subjects with no meditation experience (n = 17). DNA methylation profiles were analyzed using the Illumina 450 K beadchip array. We fitted for each methylation site a linear model for multi-level experiments which adjusts the variation between t1 and t2 for baseline differences. No significant baseline differences in methylation profiles was detected between groups. In the meditation group, we identified 61 differentially methylated sites (DMS) after the intervention. These DMS were enriched in genes mostly associated with immune cell metabolism and ageing and in binding sites for several transcription factors involved in immune response and inflammation, among other functions. In the control group, no significant change in methylation level was observed after the day of leisure activities. These results suggest that a short meditation intervention in trained subjects may rapidly influence the epigenome at sites of potential relevance for immune function and provide a better understanding of the dynamics of the human methylome over short time windows.
Collapse
Affiliation(s)
- R Chaix
- Unité d'Eco-anthropologie (EA), Museum National d'Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France.
| | - M Fagny
- Génétique Quantitative et Évolution, Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - M Cosin-Tomás
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - M Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia, Institut de Biomedicina, Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes, Barcelone, Spain
| | - L Lemee
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Plateforme Biomics, Institut Pasteur, Paris, France
| | - B Regnault
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Biology of Infection Unit, Inserm U1117. Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - R J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - A Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - P Kaliman
- Center for Healthy Minds, University of Wisconsin-Madison, USA; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
22
|
Li F, Huang D, Nie S, Xie M. Polysaccharide from the Seeds of Plantago asiatica L. Protect Against Lipopolysaccharide-Induced Liver Injury. J Med Food 2019; 22:1058-1066. [DOI: 10.1089/jmf.2018.4394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Fenfen Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Ernst O, Glucksam-Galnoy Y, Bhatta B, Athamna M, Ben-Dror I, Glick Y, Gerber D, Zor T. Exclusive Temporal Stimulation of IL-10 Expression in LPS-Stimulated Mouse Macrophages by cAMP Inducers and Type I Interferons. Front Immunol 2019; 10:1788. [PMID: 31447835 PMCID: PMC6691811 DOI: 10.3389/fimmu.2019.01788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 01/02/2023] Open
Abstract
Expression of the key anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-stimulated macrophages is mediated by a delayed autocrine/paracrine loop of type I interferons (IFN) to ensure timely attenuation of inflammation. We have previously shown that cAMP synergizes with early IL-10 expression by LPS, but is unable to amplify the late type I IFN-dependent activity. We now examined the mechanism of this synergistic transcription in mouse macrophages at the promoter level, and explored the crosstalk between type I IFN signaling and cAMP, using the β-adrenergic receptor agonist, isoproterenol, as a cAMP inducer. We show that silencing of the type I IFN receptor enables isoproterenol to synergize with LPS also at the late phase, implying that autocrine type I IFN activity hinders synergistic augmentation of LPS-stimulated IL-10 expression by cAMP at the late phase. Furthermore, IL-10 expression in LPS-stimulated macrophages is exclusively stimulated by either IFNα or isoproterenol. We identified a set of two proximate and inter-dependent cAMP response element (CRE) sites that cooperatively regulate early IL-10 transcription in response to isoproterenol-stimulated CREB and that further synergize with a constitutive Sp1 site. At the late phase, up-regulation of Sp1 activity by LPS-stimulated type I IFN is correlated with loss of function of the CRE sites, suggesting a mechanism for the loss of synergism when LPS-stimulated macrophages switch to type I IFN-dependent IL-10 expression. This report delineates the molecular mechanism of cAMP-accelerated IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.
Collapse
Affiliation(s)
- Orna Ernst
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Glucksam-Galnoy
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Bibek Bhatta
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Athamna
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel.,Triangle Regional Research and Development Center, Kafr Qara, Israel
| | - Iris Ben-Dror
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yair Glick
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Doron Gerber
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Tsaffrir Zor
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Gao C, Li Y, Liu L. MicroRNA-497 regulates the proliferation of clear cell renal cell carcinoma via interleukin-6 receptor. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1640074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Caixia Gao
- Department of Nephrology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Yanxia Li
- Department of Nephrology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Lin Liu
- Department of Nephrology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
25
|
Yang Z, Peng Y, Yang S. MicroRNA-146a regulates the transformation from liver fibrosis to cirrhosis in patients with hepatitis B via interleukin-6. Exp Ther Med 2019; 17:4670-4676. [PMID: 31086599 DOI: 10.3892/etm.2019.7490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to measure the expression of microRNA (miR)-146a in liver tissues, peripheral blood mononuclear cells (PMBC) and serum from patients with Hepatitis B and either liver fibrosis or cirrhosis, as well as to determine the regulatory mechanism of miR-146a. A total of 36 patients with Hepatitis B and liver fibrosis and 25 patients with hepatitis B and liver cirrhosis admitted to Linyi People's Hospital (Shandong, China) between June 2012 and February 2016 were included in the present study. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-146a and interleukin (IL)-6 mRNA in the liver tissue, PBMCs and serum. Western blotting was used to assess the expression of IL-6 in liver tissues and PBMCs. An enzyme-linked immunosorbent assay was conducted to measure IL-6 levels in serum. To identify the direct interaction between IL-6 and miR-146a, a dual luciferase reporter assay was performed. IL-6 mRNA expression in liver tissues, PBMCs and serum from patients with liver cirrhosis was significantly higher than that from patients with liver fibrosis (P<0.05). Furthermore, IL-6 expression in liver tissues and PBMCs from patients with liver cirrhosis was enhanced and levels of IL-6 protein in the serum of patients with liver cirrhosis were significantly elevated compared with patients with liver fibrosis (P<0.05). By contrast, levels of miR-146a in liver tissues, PBMCs and serum from patients with liver cirrhosis were significantly downregulated (P<0.05) compared with patients with liver fibrosis. miR-146a regulated the expression of IL-6 by binding to its 3'-untranslated region. Thus, in the transformation from liver fibrosis to cirrhosis, the upregulation of IL-6 in liver tissues, PBMCs and serum may be associated with the downregulation of miR-146a. miR-146a directly targets IL-6, which may regulate the occurrence and immune responses of Hepatitis B.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yulong Peng
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Suxian Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
26
|
Zhang N, Zhang Q, Yang W, Miao L, Wang N, Wei S, Ge J, Li X, Wu J. Decreased expression of microRNA-30b promotes the development of pulpitis by upregulating the expression of interleukin-6 receptor. Exp Ther Med 2019; 17:3233-3238. [PMID: 30936998 DOI: 10.3892/etm.2019.7280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to examine the expression of interleukin-6 receptor (IL-6R) mRNA and protein in pulp tissues, blood and saliva from patients with pulpitis. It also investigated the association between IL-6R and microRNA (miR)-30b, as well as their effects on pulpitis. A total of 28 patients with pulpitis were recruited into the experimental group and 16 subjects with no pulpitis who also underwent tooth extraction were recruited into the control group. Pulp tissues, plasma and saliva were collected from all participants. Reverse transcription-quantitative polymerase chain reaction was used to determine the expression of IL-6R mRNA and miR-30b in all sample types. Western blot analysis was performed to examine the protein expression of IL-6R in pulp tissues, while ELISA was used to determine the contents of IL-6R protein in the plasma and saliva samples. A dual luciferase reporter assay was performed to verify the interactions between IL-6R and miR-30b. The expression of IL-6R mRNA in the pulp tissues, plasma and saliva was significantly increased in patients with pulpitis compared with the control group. Similarly, the IL-6R protein expression in the samples from patients with pulpitis were also significantly increased compared with the control group. Conversely, the expression of miR-30b was significantly reduced in the samples from patients with pulpitis compared with the control group. The dual luciferase reporter assay revealed that miR-30b may bind with the 3'-untranslated seed region of IL-6R mRNA to regulate its expression. The present study demonstrated that the upregulated expression of IL-6R in pulp tissues, plasma and saliva from patients with pulpitis was associated with the downregulation of miR-30b expression. In addition, miR-30b may affect the progression of pulpitis via IL-6R and may be a potential genetic marker for the diagnosis of pulpitis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Qingwei Zhang
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weidong Yang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Leiying Miao
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Nannan Wang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Shanjing Wei
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiuyu Ge
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Xin Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Juan Wu
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
27
|
Leisching G, Cole V, Ali AT, Baker B. OAS1, OAS2 and OAS3 restrict intracellular M. tb replication and enhance cytokine secretion. Int J Infect Dis 2019; 80S:S77-S84. [PMID: 30822544 DOI: 10.1016/j.ijid.2019.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022] Open
Abstract
The 2',5' (OASs) are known as mediators of the antiviral response system through activation of the RNA cleavage pathway. Interestingly, we observe OAS1, OAS2 and OAS3 upregulation in a number of gene expression signatures which discriminate active TB from latent TB infection, however their biological role during bacterial infection has not yet been elucidated. We observed that the expression of these genes was associated with pathogenicity and virulence of mycobacteria as infection with Mycobacterium bovis BCG failed to significantly induce OAS expression. Further, we observed that after silencing of these genes, M. tb CFU counts increased significantly 96h post-infection in comparison to the respective controls. Luminex revealed that OAS silencing significantly decreased IL-1β, TNF-α and MCP-1 and had no effect of IL-10 secretion. We show for the first time that OAS1, 2 and 3 restrict intracellular pathogenic mycobacterial replication and enhance pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Gina Leisching
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Victoria Cole
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Aus T Ali
- Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bienyameen Baker
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
28
|
McRae KM, Rowe SJ, Baird HJ, Bixley MJ, Clarke SM. Genome-wide association study of lung lesions and pleurisy in New Zealand lambs. J Anim Sci 2019; 96:4512-4520. [PMID: 30099550 PMCID: PMC6247835 DOI: 10.1093/jas/sky323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.
Collapse
|
29
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.
Collapse
|
30
|
Pan J, Ye Z, Zhang N, Lou T, Cao Z. MicroRNA-217 regulates interstitial pneumonia via IL-6. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1519379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jiongwei Pan
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaiting Ye
- Department of Radiology, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ning Zhang
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Tianzheng Lou
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Zhuo Cao
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Respiratory Medicine, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
31
|
Cheng Q, Tang L, Wang Y. Regulatory role of miRNA-26a in neonatal sepsis. Exp Ther Med 2018; 16:4836-4842. [PMID: 30542439 DOI: 10.3892/etm.2018.6779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the expression of microRNA (miRNA) 26a in blood mononuclear cells and serum in neonatal sepsis, as well as its role in the disease pathogenesis. In total 28 cases of neonatal sepsis were included in the study. The mRNA expression levels of miRNA-26a and interleukin (IL)-6 in the blood mononuclear cells and serum samples were detected by reverse transcription-quantitative polymerase chain reaction. The protein expression of IL-6 was detected by western blot analysis and ELISA. The in vitro septic environment was simulated by lipopolysaccharide (LPS) in THP-1 cells, and the expression of miRNA-26a and IL-6 were determined. Interaction between miRNA-26a and IL-6 was confirmed by a dual-luciferase reporter assay. Compared with the control group, the mRNA and protein expression levels of IL-6 in the blood mononuclear cells and serum samples from the neonates with sepsis were significantly elevated, while the expression of miRNA-26a was significantly decreased. In addition, similar results were observed in the LPS-induced septic models in THP-1 cells. Furthermore, the results of the dual-luciferase reporter assay demonstrated that IL-6 was the direct target of miRNA-26a. The expression of IL-6 was significantly upregulated in the blood mononuclear cells and serum in neonatal sepsis, which may be associated with the downregulation of miRNA-26a. miRNA-26a may regulate the disease pathogenesis and immune responses.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lili Tang
- Department of Pediatrics, Gaotang County People's Hospital, Liaocheng, Shandong 252800, P.R. China
| | - Yibiao Wang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
32
|
Gong H, Sheng X, Xue J, Zhu D. MicroRNA-365 regulates the occurrence and immune response of sepsis following multiple trauma via interleukin-6. Exp Ther Med 2018; 16:3745-3751. [PMID: 30233734 DOI: 10.3892/etm.2018.6647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
In the present study, the expression of microRNA (miR)-365 and interleukin (IL)-6 in peripheral blood mononuclear cells and serum from patients with sepsis following multiple trauma has been investigated. A total of 26 patients with sepsis following multiple trauma were included as the experimental group, whereas 21 contemporaneous patients without sepsis following multiple trauma were included as the negative control group. The expression of IL-6 mRNA and miR-365 was determined by reverse transcription-quantitative polymerase chain reaction, and western blot analysis was used to measure IL-6 protein expression. ELISA was performed to determine the secretion of IL-6 protein. Following stimulation with lipopolysaccharide (LPS) for 24 h, THP-1 cells were used to examine the expression of miR-365 and the levels of IL-6 protein and mRNA in cells simulating sepsis. A dual luciferase reporter assay revealed that IL-6 mRNA was a direct target of miR-365. Patients with sepsis following multiple trauma exhibited significantly higher IL-6 mRNA and protein levels than patients without sepsis (P<0.05). In addition, miR-365 expression in patients with sepsis following trauma was significantly lower than in patients without sepsis (P<0.05). Similar effects were observed in THP-1 cells treated with LPS. The present study demonstrated that increased expression of IL-6 in patients with sepsis following multiple trauma is associated with decreased expression of miR-365. miR-365 may regulate the occurrence and immune response of sepsis following multiple trauma via IL-6. These results may elucidate agents for clinical diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Hui Gong
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaomin Sheng
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Xue
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongbo Zhu
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
33
|
Zheng L, Feng L, Jiang WD, Wu P, Tang L, Kuang SY, Zeng YY, Zhou XQ, Liu Y. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 77:53-70. [PMID: 29559270 DOI: 10.1016/j.fsi.2018.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 05/12/2023]
Abstract
This study aimed to investigate the effects of dietary selenium on resistance to skin haemorrhages and lesions and on immune function as well as the underlying mechanisms of those effects in the head kidney, spleen and skin of young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp with initial body weight (226.48 ± 0.68 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of selenium (0.025, 0.216, 0.387, 0.579, 0.795 and 1.049 mg/kg diet) for 80 days. After the feeding period, an immunization trial was performed by infection with Aeromonas hydrophila for 14 days. The results showed that, compared with the optimal selenium level, (1) selenium deficiency impaired the production of antibacterial compounds and immunoglobulins and down-regulated the transcript abundances of antimicrobial peptides and selenoproteins; (2) selenium deficiency aggravated inflammatory responses in part by up-regulating pro-inflammatory cytokines and down-regulating anti-inflammatory cytokines mRNA levels, which were partially related to [IKKα, β, γ/IκBα/NF-κB] signalling and [TOR/(S6K1, 4E-BP1)] signalling, respectively. Interestingly, selenium deficiency had no effect on the expression of TGF-β2, IL-4/13B, IL-10, IL-12p35, IL-15 (skin only) or 4E-BP2 in the head kidney, spleen and skin of young grass carp. Finally, based on the percent weight gain (PWG), the morbidity of skin haemorrhages and lesions, the ACP activity in the head kidney and the lysozyme activity in spleen, the optimal dietary selenium requirements for young grass carp were estimated to be 0.546-0.604 mg/kg diet. In summary, selenium deficiency decreased the growth performance and impaired the immune function in the head kidney, spleen and skin of young grass carp.
Collapse
Affiliation(s)
- Lin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
34
|
Kudo E, Taura M, Suico MA, Goto H, Kai H, Okada S. Transcriptional regulation of HIV-1 host factor COMMD1 by the Sp family. Int J Mol Med 2018; 41:2366-2374. [PMID: 29336469 DOI: 10.3892/ijmm.2018.3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Copper metabolism Murr1 domain containing 1 (COMMD1) has multiple functions in the regulation of protein stability at the plasma membrane and in the cytoplasm. However, the regulation of COMMD1 transcriptional has remained to be elucidated. In the present study, the 5'‑flanking region (‑1,192/+83 bp) of the human COMMD1 gene was cloned. It was observed that the COMMD1 promoter region contains GC‑rich region that has 7 putative Sp1‑binding sites via in silico analysis. The proximal promoter region at ‑289/+83 bp was required for COMMD1 basal promoter activity by deletion constructs of COMMD1 promoter. Moreover, Sp1 inhibitor, mithramycin A, suppressed basal COMMD1 promoter activity. The Sp1‑binding site (‑11/‑1 bp) in the proximal promoter region was a critical site for COMMD1 gene regulation by Sp1 and Sp3. Sp1 upregulated COMMD1 promoter activity, whereas Sp3 suppressed it. Endogenous Sp1 and Sp3 bound to the proximal promoter region of COMMD1. Taken together, Sp1 constitutively regulates the basal expression of the COMMD1 gene in human epithelial cell lines.
Collapse
Affiliation(s)
- Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860‑0811, Japan
| | - Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860‑0811, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862‑0973, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860‑0811, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862‑0973, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860‑0811, Japan
| |
Collapse
|
35
|
Miyazawa M, Noguchi K, Kujirai M, Katayama K, Yamagoe S, Sugimoto Y. IL-10 promoter transactivation by the viral K-RTA protein involves the host-cell transcription factors, specificity proteins 1 and 3. J Biol Chem 2018; 293:662-676. [PMID: 29184003 PMCID: PMC5767870 DOI: 10.1074/jbc.m117.802900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/24/2017] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8) causes a persistent infection, presenting latent and lytic replication phases during its life cycle. KSHV-related diseases are associated with deregulated expression of inflammatory cytokines, including IL-6 and IL-10, but the mechanisms underlying this dysregulation are unclear. Herein, we report a molecular mechanism for KSHV-induced IL-10 gene expression. KSHV replication and transcription activator (K-RTA) is a molecular switch for the initiation of expression of viral lytic genes, and we describe, for the first time, that K-RTA significantly activates the promoter of the human IL-10 gene. Of note, mutations involving a basic region of K-RTA reduced the association of K-RTA with the IL-10 promoter. Moreover, the host-cell transcription factors, specificity proteins (SP) 1 and 3, play a pivotal cooperative role in K-RTA-mediated transactivation of the IL-10 promoter. K-RTA can interact with SP1 and SP3 directly in vitro, and electrophoresis mobility shift assays (EMSAs) revealed co-operative interaction involving K-RTA, SP1, and SP3 in binding to the IL-10 promoter. As DNase I footprinting assays indicated that K-RTA did not affect SP3 binding to the IL-10 promoter, SP3 can function to recruit K-RTA to the IL-10 promoter. These findings indicate that K-RTA can directly contribute to IL-10 up-regulation via a functional interplay with the cellular transcription factors SP1 and SP3.
Collapse
Affiliation(s)
- Masanori Miyazawa
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Kohji Noguchi
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Mana Kujirai
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Kazuhiro Katayama
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Satoshi Yamagoe
- the Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshikazu Sugimoto
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| |
Collapse
|
36
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
37
|
Chen Y, Yang S, Peng Y, Yang Z. The regulatory role of IL-6R in hepatitis B-associated fibrosis and cirrhosis. ACTA ACUST UNITED AC 2017; 50:e6246. [PMID: 28953986 PMCID: PMC5609599 DOI: 10.1590/1414-431x20176246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
This study investigated the expression and regulation of IL-6R in hepatitis B-associated moderate hepatic fibrosis and cirrhosis. Liver tissues, peripheral blood monocytes (PBMs) and serum were collected from 26 hepatitis B patients with liver fibrosis and 35 hepatitis B patients with liver cirrhosis. The levels of Il-6r mRNA expression in these samples were examined by quantitative real-time PCR and IL-6R protein levels were analyzed by western blot and ELISA. MiRNAs that regulate IL-6R expression were predicted by bioinformatics analysis, and validated by dual luciferase reporter assay. Compared with the hepatic fibrosis group, IL-6R was significantly upregulated at both mRNA and protein levels in liver tissues, PBMs and serum samples from the hepatic cirrhosis group (P<0.05). The 3'UTR of Il-6r mRNA was predicted to contain a miR-30b binding site and IL-6R was identified as a possible target of miR-30b. MiR-30b expression was significantly downregulated in samples from hepatic cirrhosis patients compared with hepatic fibrosis patients (P<0.05). In conclusion, IL-6R was upregulated while miR-30b was decreased in patients with liver cirrhosis. The miR-30 can directly regulate the expression of IL-6R.
Collapse
Affiliation(s)
- Y Chen
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - S Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - Y Peng
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - Z Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
38
|
Prossomariti A, Scaioli E, Piazzi G, Fazio C, Bellanova M, Biagi E, Candela M, Brigidi P, Consolandi C, Balbi T, Chieco P, Munarini A, Pariali M, Minguzzi M, Bazzoli F, Belluzzi A, Ricciardiello L. Short-term treatment with eicosapentaenoic acid improves inflammation and affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci Rep 2017; 7:7458. [PMID: 28785079 PMCID: PMC5547132 DOI: 10.1038/s41598-017-07992-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Patients with long-standing ulcerative colitis (UC) have an increased colorectal cancer (CRC) risk. In this pilot study we evaluated the effect of Eicosapentaenoic acid as free fatty acid (EPA-FFA) supplementation on mucosal disease activity, colonic differentiation markers and microbiota composition in UC patients. Twenty long-standing UC patients in stable clinical remission and with fecal calprotectin (FC) > 150 µg/g were enrolled (T0) and supplemented with EPA-FFA 2 g/daily for 90 days (T3). Endoscopic and histologic disease activities were measured by Mayo and Geboes scores, respectively. HES1, KLF4, STAT3, IL-10 and SOCS3 levels were determined using western blotting and qRT-PCR, while phospho-STAT3 levels were assessed by western blotting. Goblet cells were stained by Alcian blue. Microbiota analyses were performed on both fecal and colonic samples. Nineteen patients completed the study; seventeen (89.5%) were compliant. EPA-FFA treatment reduced FC levels at T3. Patients with FC > 150 µg/g at T3 (n = 2) were assumed as non-responders. EPA-FFA improved endoscopic and histological inflammation and induced IL-10, SOCS3, HES1 and KLF4 in compliant and responder patients. Importantly, long-term UC-driven microbiota composition was partially redressed by EPA-FFA. In conclusion, EPA-FFA supplementation reduced mucosal inflammation, promoted goblet cells differentiation and modulated intestinal microbiota composition in long-standing UC patients.
Collapse
Affiliation(s)
- Anna Prossomariti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Eleonora Scaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Piazzi
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Chiara Fazio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Matteo Bellanova
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Tiziana Balbi
- Pathology Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Pasquale Chieco
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alessandra Munarini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Milena Pariali
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Manuela Minguzzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Franco Bazzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Belluzzi
- Gastroenterology Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
39
|
Fu Y, Browne JA, Killick K, Mulcahy G. Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function. Front Immunol 2017; 8:485. [PMID: 28487699 PMCID: PMC5403899 DOI: 10.3389/fimmu.2017.00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG) from ovine peripheral blood mononuclear cells (PBMCs) at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first) were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only favors parasite survival into chronic infection but also impedes the host’s immune response to other pathogens, and render vaccination against fasciolosis a difficult challenge. The information provided will be useful in the design of specific vaccine protocols to overcome parasite-mediated immunoregulation and in furthering general understanding of the interplay between helminth infection and host immune systems.
Collapse
Affiliation(s)
- Yan Fu
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kate Killick
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther 2017; 10:1665-1671. [PMID: 28360527 PMCID: PMC5364014 DOI: 10.2147/ott.s129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fengyun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haifeng Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
41
|
Ahluwalia PK, Pandey RK, Sehajpal PK, Prajapati VK. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell. Front Immunol 2017; 8:107. [PMID: 28228760 PMCID: PMC5296369 DOI: 10.3389/fimmu.2017.00107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host’s immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz. DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3′-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3′-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also to promote its survival.
Collapse
Affiliation(s)
- Pankaj Kumar Ahluwalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University , Amritsar, Punjab , India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, Rajasthan , India
| | - Prabodh Kumar Sehajpal
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University , Amritsar, Punjab , India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, Rajasthan , India
| |
Collapse
|
42
|
Araki T, Liu NA, Tone Y, Cuevas-Ramos D, Heltsley R, Tone M, Melmed S. E2F1-mediated human POMC expression in ectopic Cushing's syndrome. Endocr Relat Cancer 2016; 23:857-870. [PMID: 27935805 PMCID: PMC5152695 DOI: 10.1530/erc-16-0206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome.
Collapse
Affiliation(s)
| | | | - Yukiko Tone
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Roy Heltsley
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masahide Tone
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shlomo Melmed
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
43
|
PAFR activation of NF-κB p65 or p105 precursor dictates pro- and anti-inflammatory responses during TLR activation in murine macrophages. Sci Rep 2016; 6:32092. [PMID: 27554194 PMCID: PMC4995467 DOI: 10.1038/srep32092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Platelet-activating factor receptor (PAFR) is a G protein-coupled receptor (GPCR) implicated in many diseases. Toll-like receptors (TLRs) play a critical role in shaping innate and adaptive immune responses. In this study, we investigated whether PAFR signaling changes the macrophages responsiveness to agonists of TLR2 (Pam3Cys), TLR4 (LPS), and TLR3 agonist Poly(I:C). Exogenous PAF inhibited the production of pro-inflammatory cytokines (IL-12p40, IL-6, and TNF-α) and increased anti-inflammatory IL-10 in macrophages challenged with Pam3Cys and LPS, but not with Poly (I:C). PAF did not affect mRNA expression of MyD88, suggesting that PAF acts downstream the adaptor. PAF inhibited LPS-induced phosphorylation of NF-κB p65 and increased NF-κB p105 phosphorylation, which is processed in the proteasome to generate p50 subunit. The PAF potentiation of IL-10 production was dependent on proteasome processing but independent of NF-κB transactivation domain. Inhibition of p50 abolished the PAF-induced IL-10 production. These findings indicate that the impaired transcriptional activity of the p65 subunit and the enhanced p105 phosphorylation induced by PAF are responsible for down regulation of pro-inflammatory cytokines and up regulation of IL-10, respectively, in LPS-challenged macrophages. Together, our data unveil a heretofore unrecognized role for PAFR in modulating activation of NF-κB in macrophages.
Collapse
|
44
|
Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H, Desai M, Lin Y, Dai HJ, Qureshi AA, Li WQ, Kraft P, Hinds DA, Tang JY, Han J, Sarin KY. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat Commun 2016; 7:12510. [PMID: 27539887 PMCID: PMC4992160 DOI: 10.1038/ncomms12510] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10(-8), logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC.
Collapse
Affiliation(s)
- Harvind S. Chahal
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenting Wu
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Katherine J. Ransohoff
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lingyao Yang
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Haley Hedlin
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manisha Desai
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Hong-Ji Dai
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | | - Jean Y. Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Kavita Y. Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
45
|
Bendamustine increases interleukin-10 secretion from B cells via p38 MAP kinase activation. Int Immunopharmacol 2016; 39:273-279. [PMID: 27500457 DOI: 10.1016/j.intimp.2016.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
We investigated the effects of bendamustine on B cell functions and explored potential clinical applications of the drugs to autoimmune diseases. Proliferation of Ramos cells, a human B cell line, was significantly inhibited by 25-100μM of bendamustine in a dose-dependent manner. Concordantly, IgM secretion from Ramos cells was significantly inhibited at these concentrations by up to 70%. Interestingly, however, the production and secretion of interleukin-10 (IL-10) were dramatically (at least >10-fold) increased by bendamustine at growth inhibitory concentrations. Exploration of the molecular mechanism of IL-10 production revealed that bendamustine enhanced the phosphorylation of p38 MAP kinase. Further, Sp1 was identified as a downstream transcription factor, and the inhibition of p38 MAP kinase and Sp1 with their inhibitors led to the abrogation of bendamustine-induced IL-10 production and the DNA binding of Sp1. Importantly, when PBMC from healthy donors were cultured with bendamustine at the concentration of 30μM, under the stimulation with an anti-IgM antibody, an anti-CD40 antibody, recombinant human IL-21 (rhIL-21) and recombinant human soluble BAFF (rhsBAFF), IL-10 production by B cells (CD20+CD4-CD8-CD14-) among peripheral blood mononuclear cell (PBMC) was significantly enhanced by adding bendamustine. These results collectively suggest that the p38 MAP kinase-Sp1 pathway plays a crucial role in bendamustine-induced IL-10 production by B cells. Our findings suggest a novel therapeutic possibility for autoimmune diseases through the upregulation of IL-10 which has an anti-inflammatory effects.
Collapse
|
46
|
Readhead B, Haure-Mirande JV, Zhang B, Haroutunian V, Gandy S, Schadt EE, Dudley JT, Ehrlich ME. Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology. Mol Psychiatry 2016; 21:1099-111. [PMID: 26552589 PMCID: PMC4862938 DOI: 10.1038/mp.2015.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer's disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue-derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APP(E693Q) inside neurons, leading to the accumulation of amyloid beta (Aβ) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APP(KM670/671NL)/PSEN1(Δexon9) in neurons and accumulates fibrillar Aβ amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA sequencing analyses of the dentate gyrus and entorhinal cortex from each line and from wild-type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild-type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization and extracellular matrix (ECM) regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation 1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including ECM regulation and neurogenesis, as well as strong overlap with AD-associated co-expression network structures. The strong overlap in molecular systems features supports the relevance of these findings from the AD mouse models to human AD.
Collapse
Affiliation(s)
- B Readhead
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J-V Haure-Mirande
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V Haroutunian
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| | - S Gandy
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
- Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, USA
| | - E E Schadt
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J T Dudley
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M E Ehrlich
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
48
|
Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription. Genes Immun 2016; 17:313-20. [PMID: 27278128 PMCID: PMC4972999 DOI: 10.1038/gene.2016.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/05/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position −14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT.
Collapse
|
49
|
Hörber S, Hildebrand DG, Lieb WS, Lorscheid S, Hailfinger S, Schulze-Osthoff K, Essmann F. The Atypical Inhibitor of NF-κB, IκBζ, Controls Macrophage Interleukin-10 Expression. J Biol Chem 2016; 291:12851-12861. [PMID: 27129283 DOI: 10.1074/jbc.m116.718825] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/31/2022] Open
Abstract
Macrophages constitute a first line of pathogen defense by triggering a number of inflammatory responses and the secretion of various pro-inflammatory cytokines. Recently, we and others found that IκBζ, an atypical IκB family member and transcriptional coactivator of selected NF-κB target genes, is essential for macrophage expression of a subset of pro-inflammatory cytokines, such as IL-6, IL-12, and CCL2. Despite defective pro-inflammatory cytokine expression, however, IκBζ-deficient mice develop symptoms of chronic inflammation. To elucidate this discrepancy, we analyzed a regulatory role of IκBζ for the expression of anti-inflammatory cytokines and identified IκBζ as an essential activator of IL-10 expression. LPS-challenged peritoneal and bone marrow-derived macrophages from IκBζ-deficient mice revealed strongly decreased transcription and secretion of IL-10 compared with wild-type mice. Moreover, ectopic expression of IκBζ was sufficient to stimulate Il10 transcription. On the molecular level, IκBζ directly activated the Il10 promoter at a proximal κB site and was required for the transcription-enhancing trimethylation of histone 3 at lysine 4. Together, our findings show for the first time the IκBζ-dependent expression of an anti-inflammatory cytokine that is crucial in controlling immune responses.
Collapse
Affiliation(s)
- Sebastian Hörber
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and
| | - Dominic G Hildebrand
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and
| | - Wolfgang S Lieb
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and
| | - Sebastian Lorscheid
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and
| | - Stephan Hailfinger
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and
| | - Klaus Schulze-Osthoff
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and; the German Cancer Consortium (DKTK) and German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Frank Essmann
- From the Interfaculty Institute of Biochemistry, Department of Molecular Medicine, University of Tübingen, 72076 Tübingen, Germany and.
| |
Collapse
|
50
|
Immunomodulation and Disease Tolerance to Staphylococcus aureus. Pathogens 2015; 4:793-815. [PMID: 26580658 PMCID: PMC4693165 DOI: 10.3390/pathogens4040793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The Gram-positive bacterium Staphylococcus aureus is one of the most frequent pathogens that causes severe morbidity and mortality throughout the world. S. aureus can infect skin and soft tissues or become invasive leading to diseases such as pneumonia, endocarditis, sepsis or toxic shock syndrome. In contrast, S. aureus is also a common commensal microbe and is often part of the human nasal microbiome without causing any apparent disease. In this review, we explore the immunomodulation and disease tolerance mechanisms that promote commensalism to S. aureus.
Collapse
|