1
|
Rai P, Mehrotra S, Prajapati VK. Exploring immunotherapy to control human infectious diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:389-429. [PMID: 39978973 DOI: 10.1016/bs.apcsb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Infectious diseases continue to pose significant challenges to global health, especially with the rise of antibiotic resistance and emerging pathogens. Traditional treatments, while effective, are often limited in the face of rapidly evolving pathogens. Immunotherapy, which harnesses and enhances the body's immune response, offers a promising alternative to conventional approaches for the treatment of infectious diseases. By employing use of monoclonal antibodies, vaccines, cytokine therapies, and immune checkpoint inhibitors, immunotherapy has demonstrated considerable potential in overcoming treatment resistance and improving patient outcomes. Key innovations, including the development of mRNA vaccines, use of immune modulators, adoptive cell transfer, and chimeric antigen receptor (CAR)-T cell therapy are paving the way for more targeted pathogen clearance. Further, combining immunotherapy with conventional antibiotic treatment has demonstrated effectiveness against drug-resistant strains, but this chapter explores the evolving field of immunotherapy for the treatment of bacterial, viral, fungal, and parasitic infections. The chapter also explores the recent breakthroughs and ongoing clinical trials in infectious disease immunotherapy.
Collapse
Affiliation(s)
- Praveen Rai
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
2
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Boyer J, Feys S, Zsifkovits I, Hoenigl M, Egger M. Treatment of Invasive Aspergillosis: How It's Going, Where It's Heading. Mycopathologia 2023; 188:667-681. [PMID: 37100963 PMCID: PMC10132806 DOI: 10.1007/s11046-023-00727-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Despite improvements in treatment and diagnostics over the last two decades, invasive aspergillosis (IA) remains a devastating fungal disease. The number of immunocompromised patients and hence vulnerable hosts increases, which is paralleled by the emergence of a rise in IA cases. Increased frequencies of azole-resistant strains are reported from six continents, presenting a new challenge for the therapeutic management. Treatment options for IA currently consist of three classes of antifungals (azoles, polyenes, echinocandins) with distinctive advantages and shortcomings. Especially in settings of difficult to treat IA, comprising drug tolerance/resistance, limiting drug-drug interactions, and/or severe underlying organ dysfunction, novel approaches are urgently needed. Promising new drugs for the treatment of IA are in late-stage clinical development, including olorofim (a dihydroorotate dehydrogenase inhibitor), fosmanogepix (a Gwt1 enzyme inhibitor), ibrexafungerp (a triterpenoid), opelconazole (an azole optimized for inhalation) and rezafungin (an echinocandin with long half-life time). Further, new insights in the pathophysiology of IA yielding immunotherapy as a potential add-on therapy. Current investigations show encouraging results, so far mostly in preclinical settings. In this review we discuss current treatment strategies, give an outlook on possible new pharmaceutical therapeutic options, and, lastly, provide an overview of the ongoing research in immunotherapy for IA.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
| | - Isabella Zsifkovits
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
7
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
8
|
Inácio MM, Moreira ALE, Cruz-Leite VRM, Mattos K, Silva LOS, Venturini J, Ruiz OH, Ribeiro-Dias F, Weber SS, Soares CMDA, Borges CL. Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics. J Fungi (Basel) 2023; 9:633. [PMID: 37367569 PMCID: PMC10301004 DOI: 10.3390/jof9060633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Fungal infections represent a serious global health problem, causing damage to health and the economy on the scale of millions. Although vaccines are the most effective therapeutic approach used to combat infectious agents, at the moment, no fungal vaccine has been approved for use in humans. However, the scientific community has been working hard to overcome this challenge. In this sense, we aim to describe here an update on the development of fungal vaccines and the progress of methodological and experimental immunotherapies against fungal infections. In addition, advances in immunoinformatic tools are described as an important aid by which to overcome the difficulty of achieving success in fungal vaccine development. In silico approaches are great options for the most important and difficult questions regarding the attainment of an efficient fungal vaccine. Here, we suggest how bioinformatic tools could contribute, considering the main challenges, to an effective fungal vaccine.
Collapse
Affiliation(s)
- Moisés Morais Inácio
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
- Estácio de Goiás University Center, Goiânia 74063-010, Brazil
| | - André Luís Elias Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | | | - Karine Mattos
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | - James Venturini
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Federal University of Goiás, Goiânia 74001-970, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| |
Collapse
|
9
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Velasco-de Andrés M, Muñoz-Sánchez G, Carrillo-Serradell L, Gutiérrez-Hernández MDM, Català C, Isamat M, Lozano F. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol 2023; 53:e2250184. [PMID: 36649259 DOI: 10.1002/eji.202250184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach. However, the potential of CAR technology is such that other immune-mediated disorders are beginning to profit from it. This review will focus on CAR-based ACT therapeutic areas other than oncology such as infection, allergy, autoimmunity, transplantation, and fibrotic repair. Herein, we discuss the results and limitations of preclinical and clinical studies in that regard.
Collapse
Affiliation(s)
| | - Guillermo Muñoz-Sánchez
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., L'Hospitalet de Llobregat, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Chechi JL, da Costa FAC, Figueiredo JM, de Souza CM, Valdez AF, Zamith-Miranda D, Camara AC, Taborda CP, Nosanchuk JD. Vaccine development for pathogenic fungi: current status and future directions. Expert Rev Vaccines 2023; 22:1136-1153. [PMID: 37936254 PMCID: PMC11500455 DOI: 10.1080/14760584.2023.2279570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.
Collapse
Affiliation(s)
- Jéssica L. Chechi
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Felipe A. C. da Costa
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Julia M. Figueiredo
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cássia M. de Souza
- Laboratório de Fisiologia e Biologia Molecular de Fungos, Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Brasil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brasil
| | - Alessandro F. Valdez
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Aline C. Camara
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos P. Taborda
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
12
|
A Fungal Sterylglucosidase at the Intersection of Virulence, Host Immunity, and Therapeutic Development. mBio 2022; 13:e0242522. [PMID: 36255237 PMCID: PMC9765442 DOI: 10.1128/mbio.02425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human fungal infections (mycoses) cause significant morbidity and mortality in high-risk populations. Contemporary antifungal therapies rely heavily on three classes of antifungal drugs, and to date, no fungal vaccine is in clinical use for invasive mycosis. A major gap in knowledge related to fungal vaccine development is identifying lasting mechanisms of protective immunity in immunocompromised individuals. Recent studies in Cryptococcus neoformans and now Aspergillus fumigatus have identified a fungal sterylglucosidase essential for pathogenesis and virulence in murine models of mycoses. Fungal strains deficient in this sterylglucosidase can surprisingly also induce substantial immune-mediated protection against subsequent challenge with wild-type strains in multiple immunocompromised murine models of mycoses. Here, I discuss the implications and future directions of these exciting and impactful results.
Collapse
|
13
|
Vaccination with Live or Heat-Killed Aspergillus fumigatus Δ sglA Conidia Fully Protects Immunocompromised Mice from Invasive Aspergillosis. mBio 2022; 13:e0232822. [PMID: 36066100 PMCID: PMC9600187 DOI: 10.1128/mbio.02328-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus causes invasive aspergillosis (IA) in immunocompromised patients, resulting in high mortality rates. Currently, no vaccine formulations to promote immune protection in at-risk individuals have been developed. In this work, we deleted the sterylglucosidase-encoding gene, sglA, in Aspergillus fumigatus and investigated its role in fungal virulence and host vaccine protection. The ΔsglA mutant accumulated sterylglucosides (SGs), newly studied immunomodulatory glycolipids, and exhibited reduced hyphal growth and altered compositions of cell wall polysaccharides. Interestingly, the ΔsglA mutant was avirulent in two murine models of IA and was fully eliminated from the lungs. Both corticosteroid-induced immunosuppressed and cyclophosphamide-induced leukopenic mice vaccinated with live or heat-killed ΔsglA conidia were fully protected against a lethal wild-type A. fumigatus challenge. These results highlight the potential of SG-accumulating strains as safe and promising vaccine formulations against invasive fungal infections. IMPORTANCE Infections by Aspergillus fumigatus occur by the inhalation of environmental fungal spores called conidia. We found that live mutant conidia accumulating glycolipids named sterylglucosides are not able to cause disease when injected into the lung. Interestingly, these animals are now protected against a secondary challenge with live wild-type conidia. Remarkably, protection against a secondary challenge persists even with vaccination with heat-killed mutant conidia. These results will significantly advance the field of the research and development of a safe fungal vaccine for protection against the environmental fungus A. fumigatus.
Collapse
|
14
|
Seif M, Kakoschke TK, Ebel F, Bellet MM, Trinks N, Renga G, Pariano M, Romani L, Tappe B, Espie D, Donnadieu E, Hünniger K, Häder A, Sauer M, Damotte D, Alifano M, White PL, Backx M, Nerreter T, Machwirth M, Kurzai O, Prommersberger S, Einsele H, Hudecek M, Löffler J. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med 2022; 14:eabh1209. [PMID: 36170447 DOI: 10.1126/scitranslmed.abh1209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aspergillus fumigatus is a ubiquitous mold that can cause severe infections in immunocompromised patients, typically manifesting as invasive pulmonary aspergillosis (IPA). Adaptive and innate immune cells that respond to A. fumigatus are present in the endogenous repertoire of patients with IPA but are infrequent and cannot be consistently isolated and expanded for adoptive immunotherapy. Therefore, we gene-engineered A. fumigatus-specific chimeric antigen receptor (Af-CAR) T cells and demonstrate their ability to confer antifungal reactivity in preclinical models in vitro and in vivo. We generated a CAR targeting domain AB90-E8 that recognizes a conserved protein antigen in the cell wall of A. fumigatus hyphae. T cells expressing the Af-CAR recognized A. fumigatus strains and clinical isolates and exerted a direct antifungal effect against A. fumigatus hyphae. In particular, CD8+ Af-CAR T cells released perforin and granzyme B and damaged A. fumigatus hyphae. CD8+ and CD4+ Af-CAR T cells produced cytokines that activated macrophages to potentiate the antifungal effect. In an in vivo model of IPA in immunodeficient mice, CD8+ Af-CAR T cells localized to the site of infection, engaged innate immune cells, and reduced fungal burden in the lung. Adoptive transfer of CD8+ Af-CAR T cells conferred greater antifungal efficacy compared to CD4+ Af-CAR T cells and an improvement in overall survival. Together, our study illustrates the potential of gene-engineered T cells to treat aggressive infectious diseases that are difficult to control with conventional antimicrobial therapy and support the clinical development of Af-CAR T cell therapy to treat IPA.
Collapse
Affiliation(s)
- Michelle Seif
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamara Katharina Kakoschke
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Klinikum der Universität München, LMU, 80337 München, Germany.,Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539 München, Germany
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539 München, Germany
| | - Marina Maria Bellet
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Nora Trinks
- Lehrstuhl für Biotechnologie und Biophysik, Biozentrum und RVZ - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Giorgia Renga
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Beeke Tappe
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France.,CAR-T Cells Department, Invectys, 75013 Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France.,Equipe labellisée Ligue Contre le Cancer, 75014 Paris, France
| | - Kerstin Hünniger
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.,Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Antje Häder
- Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Markus Sauer
- Lehrstuhl für Biotechnologie und Biophysik, Biozentrum und RVZ - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Diane Damotte
- Department of Pathology, Paris Centre University Hospitals, AP-HP, 75014 Paris, France.,INSERM U1138, Cordeliers Research Center, Team Cancer, Immune Control and Escape, Paris, France; University Pierre and Marie Curie, 75006 Paris, France
| | - Marco Alifano
- Department of Thoracic Surgery, Paris Centre University Hospitals, AP-HP, Paris, France; University Paris Descartes, 75014 Paris, France
| | - P Lewis White
- Public Health Wales, Microbiology Cardiff, UHW, CF14 4XW Cardiff, UK
| | - Matthijs Backx
- Public Health Wales, Microbiology Cardiff, UHW, CF14 4XW Cardiff, UK
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Markus Machwirth
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Oliver Kurzai
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.,Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Sabrina Prommersberger
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Jürgen Löffler
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
15
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Abstract
Invasive fungal infections are emerging diseases that kill over 1.5 million people per year worldwide. With the increase of immunocompromised populations, the incidence of invasive fungal infections is expected to continue to rise. Vaccines for viral and bacterial infectious diseases have had a transformative impact on human health worldwide. However, no fungal vaccines are currently in clinical use. Recently, interest in fungal vaccines has grown significantly. One Candida vaccine has completed phase 2 clinical trials, and research on vaccines against coccidioidomycosis continues to advance. Additionally, multiple groups have discovered various Cryptococcus mutant strains that promote protective responses to subsequent challenge in mouse models. There has also been progress in antibody-mediated fungal vaccines. In this review, we highlight recent fungal vaccine research progress, outline the wealth of data generated, and summarize current research for both fungal biology and immunology studies relevant to fungal vaccine development. We also review technological advancements in vaccine development and highlight the future prospects of a human vaccine against invasive fungal infections.
Collapse
Affiliation(s)
- Amariliz Rivera
- Department of Pediatrics and Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| | - Jennifer Lodge
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Current affiliation: Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| |
Collapse
|
17
|
Zhang Q, Liu F, Zeng M, Zhang J, Liu Y, Xin C, Mao Y, Song Z. Antifungal Activity of Sodium New Houttuyfonate Against Aspergillus fumigatus in vitro and in vivo. Front Microbiol 2022; 13:856272. [PMID: 35558127 PMCID: PMC9087332 DOI: 10.3389/fmicb.2022.856272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is an important pathogen causing invasive aspergillosis, which is associated with high morbidity and mortality in immunocompromised people. However, the treatment of A. fumigatus infection is a growing challenge, owing to the limited availability antifungal agents and the continual emergence of drug-resistant strains. Drug repurposing is a potential strategy to solve this current problem. Sodium new houttuyfonate (SNH), derived from houttuynin, extracted from Houttuynia cordata, has anti-bacterial and anti-Candida albicans effects. However, whether it has anti-A. fumigatus activity had not been reported. In this study, the antifungal properties of SNH against A. fumigatus, including the standard strain AF293, itraconazole resistant clinical strains, and voriconazole resistant clinical strains, were evaluated in vitro and in vivo. Moreover, the potential mechanism of SNH was characterized. SNH exhibited significant fungicidal activity toward various A. fumigatus strains. SNH also inhibited fungal growth, sporulation, conidial germination and pigment formation, and biofilm formation. Further investigations revealed that SNH interfered with the A. fumigatus cell steroid synthesis pathway, as indicated by transcriptomic and quantitative real-time polymerase chain reaction analyses, and inhibited ergosterol synthesis, as indicated by cell membrane stress assays and ergosterol quantification. Moreover, daily gastric gavage of SNH significantly decreased the fungal burden in mice with disseminated infection (kidney, liver, and lung) and local tissue damage. In addition, the application of SNH downregulated the production of IL-6 and IL-17A. Together, these findings provided the first confirmation that SNH may be a promising antifungal agent for the treatment of A. fumigatus infection.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fangyan Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Meng Zeng
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingyu Mao
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Dos Santos AR, Fraga-Silva TF, de Fátima Almeida-Donanzam D, Dos Santos RF, Finato AC, Soares CT, Lara VS, Almeida NLM, Andrade MI, de Arruda OS, de Arruda MSP, Venturini J. IFN-γ Mediated Signaling Improves Fungal Clearance in Experimental Pulmonary Mucormycosis. Mycopathologia 2021; 187:15-30. [PMID: 34716549 PMCID: PMC8555725 DOI: 10.1007/s11046-021-00598-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
We established three immunocompetent murine models of pulmonary mucormycosis to determine the involvement of the adaptive immune response in host resistance in pulmonary mucormycosis, a rapidly fatal disease caused mainly by Rhizopus spp. Immunocompetent inbred (C57BL/6, BALB/c) and outbred (Swiss) strains of mice were inoculated with R. oryzae via the intratracheal route. The inoculation resulted in a disseminated infection that spread to the brain, spleen, kidney, and liver. After 7 and 30 days of R. oryzae infection, BALB/c mice showed the lowest fungal load and highest production of IFN-γ and IL-2 by splenocytes. Swiss mice showed a higher fungal load 30 days p.i. and was associated with a weak development of the Th-1 profile. To confirm our findings, R. oryzae-infected IFN-γ−/− mice were evaluated after 60 days, where the mice still showed viable fungi in the lungs. This study showed, for the first time, that pulmonary mucormycosis in three widely used mouse strains resulted in an acute fungal dissemination without immunosuppression whose outcome varies according to the genetic background of the mice. We also identified the partial role of IFN-γ in the efficient elimination of R. oryzae during pulmonary infection.
Collapse
Affiliation(s)
- Amanda Ribeiro Dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | - Thais Fernanda Fraga-Silva
- Departamento de Bioquimica e Imunologia, Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, São Paulo, SP, 14049-900, Brazil
| | - Débora de Fátima Almeida-Donanzam
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | | | - Angela Carolina Finato
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil
| | | | - Vanessa Soares Lara
- Faculdade de Odontologia de Bauru (FOB), Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil
| | | | | | | | | | - James Venturini
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil. .,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
19
|
Zhou X, Moore BB. Experimental Models of Infectious Pulmonary Complications Following Hematopoietic Cell Transplantation. Front Immunol 2021; 12:718603. [PMID: 34484223 PMCID: PMC8415416 DOI: 10.3389/fimmu.2021.718603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell transplantation (HCT) recipients. The prevalence and type of infection changes over time and is influenced by the course of immune reconstitution post-transplant. The interaction between pathogens and host immune responses is complex in HCT settings, since the conditioning regimens create periods of neutropenia and immunosuppressive drugs are often needed to prevent graft rejection and limit graft-versus-host disease (GVHD). Experimental murine models of transplantation are valuable tools for dissecting the procedure-related alterations to innate and adaptive immunity. Here we review mouse models of post-HCT infectious pulmonary complications, primarily focused on three groups of pathogens that frequently infect HCT recipients: bacteria (often P. aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily herpesviruses). These mouse models have advanced our knowledge regarding how the conditioning and HCT process negatively impacts innate immunity and have provided new potential strategies of managing the infections. Studies using mouse models have also validated clinical observations suggesting that prior or occult infections are a potential etiology of noninfectious pulmonary complications post-HCT as well.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Karavalakis G, Yannaki E, Papadopoulou A. Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art. J Fungi (Basel) 2021; 7:jof7060451. [PMID: 34204025 PMCID: PMC8228486 DOI: 10.3390/jof7060451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.
Collapse
Affiliation(s)
- Georgios Karavalakis
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Correspondence: ; Tel.: +30-2313-307-693; Fax: +30-2313-307-521
| |
Collapse
|
21
|
Abstract
Invasive fungal disease continues to be a cause of significant life-threatening morbidity and mortality in humans, particularly in those with a diminished immune system, such as with haematological malignancies. The mainstay of treating such life-threatening fungal infection has been antifungal drugs, including azoles, echinocandins and macrocyclic polyenes. However, like antibiotic resistance, antifungal resistance is beginning to emerge, potentially jeopardizing the effectiveness of these molecules in the treatment of fungal disease. One strategy to avoid this is the development of fungal vaccines. However, the inability to provoke a sufficient immune response in the most vulnerable immunocompromised groups has hindered translation from bench to bedside. This review will assess the latest available data and will investigate potential Aspergillus antigens and feasible vaccine techniques, particularly for vaccination of high-risk groups, including immunocompromised and immunosuppressed populations.
Collapse
Affiliation(s)
- H T Pattison
- School of Medicine, Dentistry and Biomedical Sciences, the Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - B C Millar
- School of Medicine, Dentistry and Biomedical Sciences, the Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK.,Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK
| | - J E Moore
- School of Medicine, Dentistry and Biomedical Sciences, the Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK.,Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK
| |
Collapse
|
22
|
Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clin Immunol 2021; 227:108734. [PMID: 33895356 DOI: 10.1016/j.clim.2021.108734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Life-threatening invasive fungal diseases (IFD) are increasing in incidence, especially in immunocompromised patients and successful resolution of IFD requires a variety of different immune cells. With the limited repertoire of available antifungal drugs there is a need for more effective therapeutic strategies. This review interrogates the evidence on the human immune response to the main pathogens driving IFD, with a focus on the role of unconventional lymphocytes e.g. natural killer (NK) cells, gamma/delta (γδ) T cells, mucosal associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILC). Recent discoveries and new insights into the roles of these novel lymphocyte groups in antifungal immunity will be discussed, and we will explore how an improved understanding of antifungal action by lymphocytes can inform efforts to improve antifungal treatment options.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Johannes Wagener
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
23
|
Zelante T, Choera T, Beauvais A, Fallarino F, Paolicelli G, Pieraccini G, Pieroni M, Galosi C, Beato C, De Luca A, Boscaro F, Romoli R, Liu X, Warris A, Verweij PE, Ballard E, Borghi M, Pariano M, Costantino G, Calvitti M, Vacca C, Oikonomou V, Gargaro M, Wong AYW, Boon L, den Hartog M, Spáčil Z, Puccetti P, Latgè JP, Keller NP, Romani L. Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Rep 2021; 34:108673. [PMID: 33503414 PMCID: PMC7844877 DOI: 10.1016/j.celrep.2020.108673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling. Whether fungal Idos have pleiotropic functions that impact on host-fungal physiology is unclear. Here, we show that Aspergillus fumigatus possesses three ido genes that are expressed under conditions of hypoxia or tryptophan abundance. Loss of these genes results in increased fungal pathogenicity and inflammation in a mouse model of aspergillosis, driven by an alternative tryptophan degradation pathway to indole derivatives and the host aryl hydrocarbon receptor. Fungal tryptophan metabolic pathways thus cooperate with the host xenobiotic response to shape host-microbe interactions in local tissue microenvironments.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Anne Beauvais
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Marco Pieroni
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Claudia Galosi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Claudia Beato
- Interdepartmental Centre for Measures (CIM) "G. Casnati," University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Xin Liu
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paul E Verweij
- Department of Medical Microbiology, Centre of Expertise in Mycology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eloise Ballard
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Costantino
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Alicia Yoke Wei Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | | | - Zdeněk Spáčil
- Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jean-Paul Latgè
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
24
|
Biswas PS. Vaccine-Induced Immunological Memory in Invasive Fungal Infections - A Dream so Close yet so Far. Front Immunol 2021; 12:671068. [PMID: 33968079 PMCID: PMC8096976 DOI: 10.3389/fimmu.2021.671068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
The invasive fungal infections (IFIs) are a major cause of mortality due to infectious disease worldwide. Majority of the IFIs are caused by opportunistic fungi including Candida, Aspergillus and Cryptococcus species. Lack of approved antifungal vaccines and the emergence of antifungal drug-resistant strains pose major constraints in controlling IFIs. A comprehensive understanding of the host immune response is required to develop novel fungal vaccines to prevent death from IFIs. In this review, we have discussed the challenges associated with the development of antifungal vaccines. We mentioned how host-pathogen interactions shape immunological memory and development of long-term protective immunity to IFIs. Furthermore, we underscored the contribution of long-lived innate and adaptive memory cells in protection against IFIs and summarized the current vaccine strategies.
Collapse
|
25
|
From bench to bedside - translational approaches in anti-fungal immunology. Curr Opin Microbiol 2020; 58:153-159. [PMID: 33190074 DOI: 10.1016/j.mib.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.
Collapse
|
26
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
27
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
28
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
29
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
30
|
Papadopoulou A, Alvanou M, Koukoulias K, Athanasiou E, Lazaridou A, Savvopoulos N, Kaloyannidis P, Markantonatou AM, Vyzantiadis TA, Yiangou M, Anagnostopoulos A, Yannaki E. Clinical-scale production of Aspergillus-specific T cells for the treatment of invasive aspergillosis in the immunocompromised host. Bone Marrow Transplant 2019; 54:1963-1972. [DOI: 10.1038/s41409-019-0501-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
|
31
|
Malacco NLSDO, Rachid MA, Gurgel ILDS, Moura TR, Sucupira PHF, de Sousa LP, de Souza DDG, Russo RDC, Teixeira MM, Soriani FM. Eosinophil-Associated Innate IL-17 Response Promotes Aspergillus fumigatus Lung Pathology. Front Cell Infect Microbiol 2019; 8:453. [PMID: 30687649 PMCID: PMC6336733 DOI: 10.3389/fcimb.2018.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is a common widespread microorganism with environmental, biological and clinical relevance. After inhalation, swollen conidia can germinate, colonize and invade pulmonary tissues. Eosinophils have been described as key cells in A. fumigatus lung infection. However, their specific role in protecting or damaging lung tissue as well as their relatioship among different A. fumigatus strains is poorly understood. Previously, it has been reported that eosinophils are able to produce IL-17 and mediate an innate response that protected mice from infection using Af293 and CEA10 strains. Here, we have developed a set of new experiments with the CEA17-derived A1163 strain of A. fumigatus. Using ΔdblGATA1 mice, we demonstrate that eosinophils produce IL-17 and are involved in control of neutrophil, macrophage and lymphocyte recruitment. We found that eosinophils also induce high levels of cytokines and chemokines, generating an intense inflammatory process. Eosinophils are responsible for increased pulmonary dysfunction and elevated lethality rates in mice. Curiously, fungal burden was not affected. To address the role of IL-17 signaling, pharmacological inhibition of this mediator in the airways with anti-IL-17 antibody was able to reduce inflammation in the airways and protect infected mice. In conclusion, our results demonstrate that eosinophils control IL-17-mediated response and contribute to lung pathology after A. fumigatus infection. Therefore, eosinophils may represent a potential target for controlling exacerbated inflammation and prevent tissue damage during this fungal infection.
Collapse
Affiliation(s)
- Nathália Luísa Sousa de Oliveira Malacco
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratório de Patologia Celular e Molecular, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luisa da Silva Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tauany Rodrigues Moura
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Ferreira Sucupira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires de Sousa
- Laboratório de Sinalização da Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele da Glória de Souza
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Marianetti Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Jaiswal K, Singh AK, Mishra S. Mycotic Infections in Bovines: Recent Trends and Insights on Pathogenicity After Post-Industrial Temperature Rise. Fungal Biol 2019. [DOI: 10.1007/978-3-030-18586-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Lauruschkat CD, Einsele H, Loeffler J. Immunomodulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. J Fungi (Basel) 2018; 4:jof4040137. [PMID: 30558125 PMCID: PMC6308942 DOI: 10.3390/jof4040137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Invasive aspergillosis (IA) is the most serious life-threatening infectious complication of intensive remission induction chemotherapy and allogeneic stem cell transplantation in patients with a variety of hematological malignancies. Aspergillus fumigatus is the most commonly isolated species from cases of IA. Despite the various improvements that have been made with preventative strategies and the development of antifungal drugs, there is an urgent need for new therapeutic approaches that focus on strategies to boost the host’s immune response, since immunological recovery is recognized as being the major determinant of the outcome of IA. Here, we aim to summarize current knowledge about a broad variety of immunotherapeutic approaches against IA, including therapies based on the transfer of distinct immune cell populations, and the administration of cytokines and antibodies.
Collapse
Affiliation(s)
- Chris D Lauruschkat
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| |
Collapse
|
34
|
Arias M, Santiago L, Vidal-García M, Redrado S, Lanuza P, Comas L, Domingo MP, Rezusta A, Gálvez EM. Preparations for Invasion: Modulation of Host Lung Immunity During Pulmonary Aspergillosis by Gliotoxin and Other Fungal Secondary Metabolites. Front Immunol 2018; 9:2549. [PMID: 30459771 PMCID: PMC6232612 DOI: 10.3389/fimmu.2018.02549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary aspergillosis is a severe infectious disease caused by some members of the Aspergillus genus, that affects immunocompetent as well as immunocompromised patients. Among the different disease forms, Invasive Aspergillosis is the one causing the highest mortality, mainly, although not exclusively, affecting neutropenic patients. This genus is very well known by humans, since different sectors like pharmaceutical or food industry have taken advantage of the biological activity of some molecules synthetized by the fungus, known as secondary metabolites, including statins, antibiotics, fermentative compounds or colorants among others. However, during infection, in response to a hostile host environment, the fungal secondary metabolism is activated, producing different virulence factors to increase its survival chances. Some of these factors also contribute to fungal dissemination and invasion of adjacent and distant organs. Among the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the best known and better characterized virulence factor. It is able to generate reactive oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly give an overview of the lung immune response against Aspergillus as a preface to analyse the effect of different secondary metabolites on the host immune response, with a special attention to GT. We will discuss the results reported in the literature on the context of the animal models employed to analyse the role of GT as virulence factor, which is expected to greatly depend on the immune status of the host: why should you hide when nobody is seeking for you? Finally, GT immunosuppressive activity will be related with different human diseases predisposing to invasive aspergillosis in order to have a global view on the potential of GT to be used as a target to treat IA.
Collapse
Affiliation(s)
- Maykel Arias
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Llipsy Santiago
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Matxalen Vidal-García
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Pilar Lanuza
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Rezusta
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
35
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
García-Carnero LC, Pérez-García LA, Martínez-Álvarez JA, Reyes-Martínez JE, Mora-Montes HM. Current trends to control fungal pathogens: exploiting our knowledge in the host-pathogen interaction. Infect Drug Resist 2018; 11:903-913. [PMID: 30013373 PMCID: PMC6037146 DOI: 10.2147/idr.s170337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human fungal infections remain a major challenge in medicine. Only a limited number of antifungal drugs are available, which are often related to severe adverse effects. In addition, there is an increased emergence related to resistant strains, which makes imperative to understand the host-pathogen interactions as well as to develop alternative treatments. Host innate and adaptive immunity play a crucial role controlling fungal infections; therefore, vaccines are a viable tool to prevent and treat fungal pathogens. Innate immunity is triggered by the interaction between the cell surface pattern recognition receptors (PRRs) and the pathogen-associated molecular patterns (PAMPs). Such an initial immunological response is yet little understood in fungal infections, in part due to the complexity and plasticity of the fungal cell walls. Described host cell-fungus interactions and antigenic molecules are addressed in this paper. Furthermore, antigens found in the cell wall and capsule, including peptides, glycoproteins, glycolipids, and glycans, have been used to trigger specific immune responses, and an increased production of antibodies has been observed when attached to immunogenic molecules. The recent biotechnological advances have allowed the development of vaccines against viral and bacterial pathogens with positive results; therefore, this technology has been applied to develop anti-fungal vaccines. Passive immunization has also emerged as an appealing alternative to treat disseminated mycosis, especially in immunocompromised patients. Those approaches have a long way to be seen in clinical cases. However, all studies discussed here open the possibility to have access to new therapies to be applied alone or in combination with current antifungal drugs. Herein, the state of the art of fungal vaccine developments is discussed in this review, highlighting new advances against Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Paracoccidioides brasiliensis, and Sporothrix spp.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Luis A Pérez-García
- Multidisciplinay Academic Unit, Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, México
| | - José A Martínez-Álvarez
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Juana E Reyes-Martínez
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Héctor M Mora-Montes
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| |
Collapse
|
37
|
Banfalvi G. Improved and adopted murine models to combat pulmonary aspergillosis. Appl Microbiol Biotechnol 2018; 102:6865-6875. [DOI: 10.1007/s00253-018-9161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
|
38
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Invasive fungal disease (IFD) is a cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. As more potent broad-spectrum antifungal agents are used in prophylaxis, drug resistance and less common fungal species have increased in frequency. Here we review current treatments available for IFD and examine the potential for adoptive T-cell treatment to enhance current therapeutic choices in IFD. RECENT FINDINGS There is growing evidence supporting the role of T cells as well as phagocytes in antifungal immunity. T cells recognizing specific antigens expressed on fungal morphotypes have been identified and the role of T-cell transfer has been explored in animal models. The clinical efficacy of adoptive transfer of antigen-specific T cells for prophylaxis and treatment of viral infections post-HSCT has raised interest in developing good manufacturing practice (GMP)-compliant methods for manufacturing and testing fungus-specific T cells after HSCT. SUMMARY As the outcomes of IFD post-HSCT are poor, reconstitution of antifungal immunity offers a way to correct the underlying deficiency that has caused the infection rather than simply pharmacologically suppress fungal growth. The clinical development of fungus specific T cells is in its early stages and clinical trials are needed in order to evaluate safety and efficacy.
Collapse
|
40
|
Stephen-Victor E, Karnam A, Fontaine T, Beauvais A, Das M, Hegde P, Prakhar P, Holla S, Balaji KN, Kaveri SV, Latgé JP, Aimanianda V, Bayry J. Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. J Infect Dis 2017; 216:1281-1294. [PMID: 28968869 DOI: 10.1093/infdis/jix469] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. Methods α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. Results α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. Conclusions PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | | | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Pushpa Hegde
- Institut National de la Santé et de la Recherche Médicale.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sahana Holla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers.,Université Paris Descartes, Paris, France
| | | | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers.,Université Paris Descartes, Paris, France
| |
Collapse
|
41
|
Scriven JE, Tenforde MW, Levitz SM, Jarvis JN. Modulating host immune responses to fight invasive fungal infections. Curr Opin Microbiol 2017; 40:95-103. [PMID: 29154044 PMCID: PMC5816974 DOI: 10.1016/j.mib.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Abstract
Modulation of host immunity in invasive fungal infection is an appealing but as yet mostly elusive treatment strategy. Animal studies in invasive candidiasis and aspergillosis have demonstrated beneficial effects of colony stimulating factors, interferon-gamma and monoclonal antibodies. More recent studies transfusing leukocytes pre-loaded with lipophilic anti-fungal drugs, or modulated T-cells, along with novel vaccination strategies show great promise. The translation of immune therapies into clinical studies has been limited to date but this is changing and the results of new Candida vaccine trials are eagerly awaited. Immune modulation in HIV-associated mycoses remains complicated by the risk of immune reconstitution inflammatory syndrome and although exogenous interferon-gamma therapy may be beneficial in cryptococcal meningitis, early initiation of anti-retroviral therapy leads to increased mortality. Further study is required to better target protective immune responses.
Collapse
Affiliation(s)
- James E Scriven
- Liverpool School of Tropical Medicine, Liverpool, UK; Birmingham Heartlands Hospital, Birmingham, UK.
| | - Mark W Tenforde
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK; Botswana UPenn Partnership, Gaborone, Botswana; Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
42
|
Dewi IMW, van de Veerdonk FL, Gresnigt MS. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J Fungi (Basel) 2017; 3:E55. [PMID: 29371571 PMCID: PMC5753157 DOI: 10.3390/jof3040055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Collapse
Affiliation(s)
- Intan M W Dewi
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
- Faculty of Medicine Universitas Padjadjaran, Jl. Eijkman No. 38, Bandung 40161, Indonesia.
| | - Frank L van de Veerdonk
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Mark S Gresnigt
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
44
|
Amarsaikhan N, Sands EM, Shah A, Abdolrasouli A, Reed A, Slaven JE, Armstrong-James D, Templeton SP. Caspofungin Increases Fungal Chitin and Eosinophil and γδ T Cell-Dependent Pathology in Invasive Aspergillosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:624-632. [PMID: 28566368 DOI: 10.4049/jimmunol.1700078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
The polysaccharide-rich fungal cell wall provides pathogen-specific targets for antifungal therapy and distinct molecular patterns that stimulate protective or detrimental host immunity. The echinocandin antifungal caspofungin inhibits synthesis of cell wall β-1,3-glucan and is used for prophylactic therapy in immune-suppressed individuals. However, breakthrough infections with fungal pathogen Aspergillus fumigatus are associated with caspofungin prophylaxis. In this study, we report in vitro and in vivo increases in fungal surface chitin in A. fumigatus induced by caspofungin that was associated with airway eosinophil recruitment in neutropenic mice with invasive pulmonary aspergillosis (IA). More importantly, caspofungin treatment of mice with IA resulted in a pattern of increased fungal burden and severity of disease that was reversed in eosinophil-deficient mice. Additionally, the eosinophil granule proteins major basic protein and eosinophil peroxidase were more frequently detected in the bronchoalveolar lavage fluid of lung transplant patients diagnosed with IA that received caspofungin therapy when compared with azole-treated patients. Eosinophil recruitment and inhibition of fungal clearance in caspofungin-treated mice with IA required RAG1 expression and γδ T cells. These results identify an eosinophil-mediated mechanism for paradoxical caspofungin activity and support the future investigation of the potential of eosinophil or fungal chitin-targeted inhibition in the treatment of IA.
Collapse
Affiliation(s)
- Nansalmaa Amarsaikhan
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809
| | - Ethan M Sands
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809
| | - Anand Shah
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ali Abdolrasouli
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anna Reed
- Lung Transplant Unit, Royal Brompton and Harefield National Health Service Trust, London UB9 6JH, United Kingdom; and
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steven P Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809;
| |
Collapse
|
45
|
Tondolo JSM, Loreto ÉS, Ledur PC, Jesus FPK, Silva TM, Kommers GD, Alves SH, Santurio JM. Chemically induced disseminated pythiosis in BALB/c mice: A new experimental model for Pythium insidiosum infection. PLoS One 2017; 12:e0177868. [PMID: 28542438 PMCID: PMC5438141 DOI: 10.1371/journal.pone.0177868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
Pythiosis is a severe and life-threatening disease that affects humans and various animal species. We report a model of vascular/disseminated pythiosis occurring after subcutaneous inoculation of 2 x 104Pythium insidiosum zoospores/mL in immunocompromised BALB/c mice. For this model, we carried out two rounds of experiments. First, we evaluated two protocols of immunosuppression before inoculation: cyclophosphamide at 150 mg/kg (CYP group) and cyclophosphamide 200 mg/kg plus hydrocortisone acetate at 250 mg/kg (CYP+HCA group). It was not possible to obtain mortality in the CYP group; however, the combination of CYP+HCA altered disease outcomes, with mortality rates reaching 60%. Second, we used the CYP+HCA immunosuppression protocol to analyze the histological and immunological statuses triggered by disease. When we inoculated immunocompetent mice with P. insidiosum zoospores, self-healing occurred via increased levels of IL-2, IFN-γ and IL-17A, which are characteristic of the Th1/Th17 cytokine response. For infected and immunosuppressed mice, the cytokine profiles showed high levels of IL-10, IL-6 and TNF-α. Increased IL-10 values are related to fungal infection susceptibility and led us to speculate that infection may be established through suppression of the host immune response. In addition, histopathological evaluation of the kidneys and liver demonstrated the presence of hyphae and the cellular findings suggested an acute vascular inflammation that mimics vascular/disseminated pythiosis in humans. This is the first murine model for pythiosis that is useful both for understanding the pathogenesis of this disease and for evaluating new treatment approaches.
Collapse
Affiliation(s)
- Juliana S. M. Tondolo
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Érico S. Loreto
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pauline C. Ledur
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francielli P. K. Jesus
- Instituto de Química, Programa de Pós-Graduação em Química Orgânica, Laboratório de Processos Tecnológicos e Catálise, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Taiara M. Silva
- Departamento de Patologia, Programa de Pós-Graduação em Medicina Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Glaucia D. Kommers
- Departamento de Patologia, Laboratório de Patologia Veterinária, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sydney H. Alves
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Janio M. Santurio
- Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- * E-mail:
| |
Collapse
|
46
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
47
|
Carvalho A, Duarte-Oliveira C, Gonçalves SM, Campos A, Lacerda JF, Cunha C. Fungal Vaccines and Immunotherapeutics: Current Concepts and Future Challenges. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0272-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
49
|
Thakur R, Shankar J. In silico Identification of Potential Peptides or Allergen Shot Candidates Against Aspergillus fumigatus. Biores Open Access 2016; 5:330-341. [PMID: 27872794 PMCID: PMC5116691 DOI: 10.1089/biores.2016.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is capable of causing invasive aspergillosis or acute bronchopulmonary aspergillosis, and the current situation is alarming. There are no vaccine or allergen shots available for Aspergillus-induced allergies. Thus, a novel approach in designing of an effective vaccine or allergen shot candidate against A. fumigatus is needed. Using immunoinformatics approaches from the characterized A. fumigatus allergens, we have mapped epitopic regions to predict potential peptides that elicit both Aspergillus-specific T cells and B cell immune response. Experimentally derived immunodominant allergens were retrieved from www.allergen.org. A total of 23 allergenic proteins of A. fumigatus were retrieved. Out of 23 allergenic proteins, 13 of them showed high sequence similarity to both human and mouse counterparts and thus were eliminated from analysis due to possible cross-reactivity. Remaining allergens were subjected to T cell (major histocompatibility complex class I and II alleles) and B cell epitope prediction using immune epitope database analysis resource. Only five allergens have shown a common B and T cell epitopic region between human and mouse. They are Asp f1 {147-156 region (RVIYTYPNKV); Mitogillin}, Asp f2 {5-19 region (LRLAVLLPLAAPLVA); Hypothetical protein}, Asp f5 {305-322 region (LNNYRPSSSSLSFKY); Metalloprotease}, Asp f17 {98-106 region (AANAGGTVY); Hypothetical protein}, and Asp f34 {74-82 region (YIQDGSLYL); PhiA cell wall protein}. The epitopic region from these five allergenic proteins showed potential for development of single peptide- or multipeptide-based vaccine or allergen shots for experimental prioritization.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| |
Collapse
|
50
|
Al-Bader N, Sheppard DC. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence 2016; 7:950-966. [PMID: 27687755 DOI: 10.1080/21505594.2016.1231278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Collapse
Affiliation(s)
- Nadia Al-Bader
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Donald C Sheppard
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Infectious Diseases in Global Health Program, Research Institute of the McGill University Health Center, McGill University , Montréal , Québec , Canada
| |
Collapse
|