1
|
Kellerer M, Javed S, Casar C, Will N, Berkhout LK, Schwinge D, Krebs CF, Schramm C, Neumann K, Tiegs G. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis. Hepatology 2024; 80:844-858. [PMID: 38441998 PMCID: PMC11407778 DOI: 10.1097/hep.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.
Collapse
Affiliation(s)
- Mareike Kellerer
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacy, The University of Faisalabad, Pakistan
| | - Christian Casar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Will
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K. Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Tang Y, Wang Y, Wang S, Wang R, Xu J, Peng Y, Ding L, Zhao J, Zhou G, Sun S, Zhang Z. Methylation and transcriptomic expression profiles of HUVEC in the oxygen and glucose deprivation model and its clinical implications in AMI patients. Front Genet 2023; 14:1293393. [PMID: 38145212 PMCID: PMC10740152 DOI: 10.3389/fgene.2023.1293393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δβ|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.
Collapse
Affiliation(s)
- Yuning Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yongxiang Wang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shengxiang Wang
- School of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Jin Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yu Peng
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liqiong Ding
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Gang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zheng Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Casari G, Dall'Ora M, Melandri A, Masciale V, Chiavelli C, Prapa M, Neri G, Spano MC, Murgia A, D'Esposito A, Baschieri MC, Ceccherelli GB, Dominici M, Grisendi G. Impact of soluble tumor necrosis factor-related apoptosis-inducing ligand released by engineered adipose mesenchymal stromal cells on white blood cells. Cytotherapy 2023; 25:605-614. [PMID: 37012089 DOI: 10.1016/j.jcyt.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AIMS The proapoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is physiologically expressed by immune cells and performs regulatory functions in infections, autoimmune diseases and cancer, where it acts as a tumor suppressor. Adipose-derived mesenchymal stromal cells (AD-MSCs) also may play immunomodulatory roles in both primary and acquired immune responses. We have previously demonstrated the efficacy of an anticancer gene therapy based on AD-MSC engineered to secrete a soluble TRAIL variant (sTRAIL) against pancreatic cancer. However, the impact of AD-MSC sTRAIL on leukocyte subsets has been not yet considered also to predict a possible immunotoxicity profile in the clinical translation of this cell-based anticancer strategy. METHODS Monocytes, polymorphonuclear cells and T lymphocytes were freshly isolated from the peripheral blood of healthy donors. Immunophenotype and functional (DR4 and DR5) and decoy (DcR1 and DcR2) TRAIL receptors were tested by flow cytometry. The viability of white blood cells treated with sTRAIL released by gene-modified AD-MSC or co-cultured with AD-MSC sTRAIL was then evaluated by both metabolic assays and flow cytometry. In addition, cytokine profile in co-cultures was analyzed by multiplex enzyme-linked immunosorbent assay. RESULTS Monocytes and polymorphonuclear cells showed high positivity for DR5 and DcR2, respectively, whereas T cells revealed negligible expression of all TRAIL receptors. Irrespective of TRAIL receptors' presence on the cell membrane, white blood cells were refractory to the proapoptotic effect displayed by sTRAIL secreted by gene-modified AD-MSC, and direct cell-to-cell contact with AD-MSC sTRAIL had negligible impact on T-cell and monocyte viability. Cytokine crosstalk involving interleukin 10, tumor necrosis factor alpha, and interferon gamma secreted by T lymphocytes and vascular endothelial growth factor A and interleukin 6 released by AD-MSC was highlighted in T-cell and AD-MSC sTRAIL co-cultures. CONCLUSIONS In summary, this study demonstrates the immunological safety and thus the clinical feasibility of an anticancer approach based on AD-MSC expressing the proapoptotic molecule sTRAIL.
Collapse
Affiliation(s)
- Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | | | - Aurora Melandri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Medical Technical Sciences, Universiteti Barleti, Tirana, Albania
| | - Giovanni Neri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Angela D'Esposito
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cristina Baschieri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; EVOTEC (Modena) Srl, Medolla, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
5
|
Weng SC, Wen MC, Hsieh SL, Chen NJ, Tarng DC. Decoy Receptor 3 Suppresses T-Cell Priming and Promotes Apoptosis of Effector T-Cells in Acute Cell-Mediated Rejection: The Role of Reverse Signaling. Front Immunol 2022; 13:879648. [PMID: 35720343 PMCID: PMC9201909 DOI: 10.3389/fimmu.2022.879648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Decoy receptor 3 (DcR3) belongs to the tumor necrosis factor (TNF) receptor superfamily and neutralizes TNF ligands, including FasL and TRAIL, to prevent T activation during T-cell priming. However, the cellular mechanisms underlying acute cell-mediated rejection (ACMR) remain unknown. Methods We generated DcR3 transgenic (Tg) mice and mice with high DcR3 expression (HDE) to study both in vivo and in vitro. FasR RNA knockdown in immortalized CD4+CD8+ T-cells was used to survey the role of DcR3 on FasR/Fas-associated protein with death domain (FADD)/caspase 8 pathway and its cross-link to TNF receptor-associated factor 1 (TNFR1)-associated death domain protein (TRADD) in suppressing TNFR1. TNF/TRADD knockout mice were used to show the importance of TNF adaptor protein. Results DcR3.Fc suppressed C57BL/6 female T-cell activation and transformation into CD4+CD69+, CD4+CD44+, and CD4+CD25+Foxp3+ when compared with isotype IgG1 and its co-treatment with FasL/TRAIL after exposing to bone marrow-derived dendritic cells (BMDCs) that carried alloantigen with male H-Y and minor antigenic determinant. Interleukin-17 and interferon-γ productions by BMDC-activated T-cells were lowered after co-treating with DcR3.Fc. DcR3.Fc induced effector T-cells (Teffs) and was susceptible to FasR-mediated apoptosis through the FADD/TRADD/caspase 8 pathway. After exposing to DcR3.Fc, TRADD was silenced, likely turning down the inflammatory response. The systemic effects of DcR3 Tg mice and HDE phenotype induced by the promoter of cytomegalovirus not only attenuated ACMR severity but also ameliorated the high serum creatinine and blood urea nitrogen levels even with high T-cell exposure frequencies. Besides this, DcR3 has minor biological effects on both MHC-matched and MHC-mismatched models. Conclusions High DcR3 doses protect renal tubular epithelial cells from acute T-cell attack during the T-cell priming stage via interfering with TNF ligand-mediated reverse signaling and possibly promoting Teff apoptosis through FasR upregulation. Our findings supported that the decoy receptor is involved in T-cell modulation in kidney transplant rejection.
Collapse
Affiliation(s)
- Shuo-Chun Weng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Geriatrics and Gerontology, Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chin Wen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Inflammation and Immunity Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Chyuan IT, Chu CL, Hsu CL, Pan MH, Liao HJ, Wu CS, Hsu PN. T Cell-Specific Deletion of TRAIL Receptor Reveals Its Critical Role for Regulating Pathologic T Cell Activation and Disease Induction in Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1534-1544. [PMID: 35264458 DOI: 10.4049/jimmunol.2100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Recent evidence from several autoimmune animal models has demonstrated that TRAIL suppresses the activation of T cells and inhibits autoimmune inflammation via an apoptosis-independent pathway. However, it remains unclear whether the immunosuppressive effects of TRAIL are dependent on its direct effects on T cells or on other immune cells to regulate T cells for the induction of disease. Therefore, we generated mice with T cell-specific TRAIL receptor (TRAIL-R) conditional knockout to investigate the impact of TRAIL on autoimmune inflammation and disease induction in experimental autoimmune encephalomyelitis (EAE). T cell-specific TRAIL-R knockout mice were found to completely reverse the TRAIL-mediated suppression of inflammation and disease induction, indicating that TRAIL-R on T cells is essential for TRAIL-mediated suppression of inflammation and disease induction in EAE. Moreover, the immune suppression effects were not due to the induction of cell apoptosis, but to the direct inhibition of T cell activation. In addition, RNA sequencing and transcriptome analysis revealed that TRAIL-R signaling significantly downregulated the genes involved in TCR signaling pathways, T cell differentiation, and proinflammatory cytokines. These results indicate that TRAIL-R on T cells is critical for pathologic T cell activation and induction of inflammation in EAE, suggesting that TRAIL-R serves as a novel immune checkpoint receptor in T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Hsun Pan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan;
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Koliaki C, Katsilambros N. Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence. Int J Mol Sci 2022; 23:ijms23063225. [PMID: 35328646 PMCID: PMC8949963 DOI: 10.3390/ijms23063225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF protein superfamily, represents a multifaceted cytokine with unique biological features including both proapoptotic and pro-survival effects in different cell types depending on receptor interactions and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a growing body of experimental and clinical evidence over the past two decades suggests a protective role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities, caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship and delineate its therapeutic implications in metabolic disease.
Collapse
|
8
|
Zhukovsky C, Herman S, Wiberg A, Cunningham JL, Kultima K, Burman J. Urokinase, CX3CL1, CCL2, TRAIL and IL-18 induced by interferon-β treatment. Acta Neurol Scand 2021; 143:602-607. [PMID: 33626181 DOI: 10.1111/ane.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To identify serum proteins associated with MS and affected by interferon beta treatment. METHODS Plasma samples from 29 untreated relapsing-remitting MS patients and 15 healthy controls were investigated with a multiplexed panel containing 92 proteins related to inflammation. Follow-up samples were available from 13 patients at 1 and 3 months after initiation of treatment with interferon beta-1a. RESULTS Ten proteins were differentially expressed in MS patients. Five of these were altered by treatment with IFN-β 1a: uPA, CX3CL1, CCL2, TRAIL and IL18. CONCLUSION CCL2 and TRAIL were confirmed to be modulated with interferon beta treatment in MS. As novel findings, we now report that uPA and CX3CL1 were differentially expressed in MS and increased after IFN-beta-1a treatment. Conflicting results have been reported on how interferon beta affects IL-18.
Collapse
Affiliation(s)
| | - Stephanie Herman
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology Uppsala University Uppsala Sweden
| | | | - Kim Kultima
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Joachim Burman
- Department of Neuroscience Neurology Uppsala University Uppsala Sweden
| |
Collapse
|
9
|
Lin DP, Jin YL, Hu DY, Ying SJ, Jiang Y. Influence of TRAIL Deficiency on Th17 Cells and Colonic Microbiota in Experimental Colitis Mouse Model. Am J Med Sci 2021; 362:188-197. [PMID: 33932348 DOI: 10.1016/j.amjms.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/21/2020] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The abnormalities of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are implicated in various autoimmune disorders and tumors. This study investigated the influence of TRAIL deficiency on Th17 cells and colonic microbiota in experimental colitis mouse model. METHODS Mice were randomly divided into 4 groups: wild-type, TRAIL gene knock-out (TRAIL-/-), wild-type colitis and TRAIL-/- colitis groups. Colitis was induced by oral administration of 3.5% dextran sulfate sodium (DSS) for 7 consecutive days. Mice were given scores for disease severity both clinically and histopathologically. Th17 cells in peripheral blood and mesenteric lymph nodes (MLNs) were assessed using flow cytometry. The expression levels of Th17 cell markers IL-17A and ROR-γt were evaluated by quantitative real-time polymerase chain reaction. The colonic samples were also analyzed for microbiota profile by 16s-rDNA gene sequencing on variable V4 region. RESULTS Compared with wild-type counterparts, TRAIL-/- mice developed more severe colitis after DSS treatment. Colitis TRAIL-/- mice had increased proportion of Th17 cells and elevated mRNA expression levels of IL-17A and ROR-γt in peripheral blood and MLNs compared with colitis wild-type mice. In contrast to colitis wild-type mice, the composition of colonic microbiota was shifted in colitis TRAIL-/- mice, and was characterized by increased alpha diversity, increased TM7, deferribacteres and tenericutes, and decreased proteobacteria at the phylum level. CONCLUSIONS These findings suggested that TRAIL deficiency not only aggravated DSS-induced colitis, but also led to enhanced Th17 cell response and altered colonic microbiota composition.
Collapse
Affiliation(s)
- Dao-Po Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Li Jin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ding-Yuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shi-Jie Ying
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Dadey RE, Grebinoski S, Zhang Q, Brunazzi EA, Burton A, Workman CJ, Vignali DAA. Regulatory T Cell-Derived TRAIL Is Not Required for Peripheral Tolerance. Immunohorizons 2021; 5:48-58. [PMID: 33483333 PMCID: PMC8663370 DOI: 10.4049/immunohorizons.2000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
TRAIL (Tnfsf10/TRAIL/CD253/Apo2L) is an important immune molecule that mediates apoptosis. TRAIL can play key roles in regulating cell death in the tumor and autoimmune microenvironments. However, dissecting TRAIL function remains difficult because of the lack of optimal models. We have now generated a conditional knockout (Tnfsf10 L/L) for cell type-specific analysis of TRAIL function on C57BL/6, BALB/c, and NOD backgrounds. Previous studies have suggested a role for TRAIL in regulatory T cell (Treg)-mediated suppression. We generated mice with a Treg-restricted Tnfsf10 deletion and surprisingly found no impact on tumor growth in C57BL/6 and BALB/c tumor models. Furthermore, we found no difference in the suppressive capacity of Tnfsf10-deficient Tregs and no change in function or proliferation of T cells in tumors. We also assessed the role of TRAIL on Tregs in two autoimmune mouse models: the NOD mouse model of autoimmune diabetes and the myelin oligodendrocyte glycoprotein (MOG) C57BL/6 model of experimental autoimmune encephalomyelitis. We found that deletion of Tnfsf10 on Tregs had no effect on disease progression in either model. We conclude that Tregs do not appear to be dependent on TRAIL exclusively as a mechanism of suppression in both the tumor and autoimmune microenvironments, although it remains possible that TRAIL may contribute in combination with other mechanisms and/or in different disease settings. Our Tnfsf10 conditional knockout mouse should prove to be a useful tool for the dissection of TRAIL function on different cell populations in multiple mouse models of human disease.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261;
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
11
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
12
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
14
|
Ji Z, Zhao W, Lin HK, Zhou X. Systematically understanding the immunity leading to CRPC progression. PLoS Comput Biol 2019; 15:e1007344. [PMID: 31504033 PMCID: PMC6754164 DOI: 10.1371/journal.pcbi.1007344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/20/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of cancer-related death in American men. Androgen deprivation therapy (ADT) has become a standard treatment strategy for advanced PCa. Although a majority of patients initially respond to ADT well, most of them will eventually develop castration-resistant PCa (CRPC). Previous studies suggest that ADT-induced changes in the immune microenvironment (mE) in PCa might be responsible for the failures of various therapies. However, the role of the immune system in CRPC development remains unclear. To systematically understand the immunity leading to CRPC progression and predict the optimal treatment strategy in silico, we developed a 3D Hybrid Multi-scale Model (HMSM), consisting of an ODE system and an agent-based model (ABM), to manipulate the tumor growth in a defined immune system. Based on our analysis, we revealed that the key factors (e.g. WNT5A, TRAIL, CSF1, etc.) mediated the activation of PC-Treg and PC-TAM interaction pathways, which induced the immunosuppression during CRPC progression. Our HMSM model also provided an optimal therapeutic strategy for improving the outcomes of PCa treatment.
Collapse
Affiliation(s)
- Zhiwei Ji
- School of Biomedical Informatics, The University of Texas Health science center at Houston, Houston, Texas, United States of America
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health science center at Houston, Houston, Texas, United States of America
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health science center at Houston, Houston, Texas, United States of America
| |
Collapse
|
15
|
Di Benedetto G, Burgaletto C, Carta AR, Saccone S, Lempereur L, Mulas G, Loreto C, Bernardini R, Cantarella G. Beneficial effects of curtailing immune susceptibility in an Alzheimer's disease model. J Neuroinflammation 2019; 16:166. [PMID: 31409354 PMCID: PMC6693231 DOI: 10.1186/s12974-019-1554-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Currently, there are no effective therapeutic options for Alzheimer's disease, the most common, multifactorial form of dementia, characterized by anomalous amyloid accumulation in the brain. Growing evidence points to neuroinflammation as a major promoter of AD. We have previously shown that the proinflammatory cytokine TNFSF10 fuels AD neuroinflammation, and that its immunoneutralization results in improved cognition in the 3xTg-AD mouse. METHODS Here, we hypothesize that inflammatory hallmarks of AD might parallel with central and peripheral immune response dysfunction. To verify such hypothesis, we used a triple transgenic mouse model of AD. 3xTg-AD mice were treated for 12 months with an anti-TNFSF10 antibody, and thereafter immune/inflammatory markers including COX2, iNOS, IL-1β and TNF-α, CD3, GITR, and FoxP3 (markers of regulatory T cells) were measured in the spleen as well as in the hippocampus. RESULTS Spleens displayed accumulation of amyloid-β1-42 (Aβ1-42), as well as high expression of Treg cell markers FoxP3 and GITR, in parallel with the increased levels of inflammatory markers COX2, iNOS, IL-1β and TNF-α, and blunted IL-10 expression. Moreover, CD3 expression was increased in the hippocampus, consistently with FoxP3 and GITR. After chronic treatment of 3xTg-AD mice with an anti-TNFSF10 antibody, splenic FoxP3, GITR, and the above-mentioned inflammatory markers expression was restored to basal levels, while expression of IL-10 was increased. A similar picture was observed in the hippocampus. Such improvement of peripheral and CNS inflammatory/immune response was associated with decreased microglial activity in terms of TNFα production, as well as decreased expression of both amyloid and phosphorylated tau protein in the hippocampus of treated 3xTg-AD mice. Interestingly, we also reported an increased expression of both CD3 and FoxP3, in sections from human AD brain. CONCLUSIONS We suggest that neuroinflammation in the brain of 3xTg-AD mice triggered by TNFSF10 might result in a more general overshooting of the immune response. Treatment with an anti-TNFSF10 antibody blunted inflammatory processes both in the spleen and hippocampus. These data confirm the detrimental role of TNFSF10 in neurodegeneration, and corroborate the hypothesis of the anti-TNFSF10 strategy as a potential treatment to improve outcomes in AD.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Laurence Lempereur
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy & Histology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
16
|
Rossin A, Miloro G, Hueber AO. TRAIL and FasL Functions in Cancer and Autoimmune Diseases: Towards an Increasing Complexity. Cancers (Basel) 2019; 11:cancers11050639. [PMID: 31072029 PMCID: PMC6563024 DOI: 10.3390/cancers11050639] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) and Fas Ligand (FasL/TNFSF6), two major cytokines of the TNF (Tumor Necrosis Factor) superfamily, exert their main functions from the immune system compartment. Mice model studies revealed that TRAIL and FasL-mediated signalling both control the homeostasis of the immune cells, mainly from the lymphoid lineage, and function on cytotoxic cells as effector proteins to eliminate the compromised cells. The first clues in the physiological functions of TRAIL arose from the analysis of TRAIL deficient mice, which, even though they are viable and fertile, are prone to cancer and autoimmune diseases development, revealing TRAIL as an important safeguard against autoimmunity and cancer. The naturally occurring gld (generalized lymphoproliferative disease) and lpr (lymphoproliferation) mutant mice develop lymphadenopathy and lupus-like autoimmune disease. The discovery that they are mutated in the fasl and the fas receptor gene, respectively, demonstrates the critical role of the FasL/Fas system in lymphocyte homeostasis and autoimmunity. This review summarizes the state of current knowledge regarding the key death and non-death immune functions that TRAIL and FasL play in the initiation and progression of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Aurélie Rossin
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | - Giorgia Miloro
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France.
| | | |
Collapse
|
17
|
Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2019; 68:835-847. [PMID: 30406374 PMCID: PMC11028327 DOI: 10.1007/s00262-018-2269-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy based on checkpoint inhibitors is providing substantial clinical benefit, but only to a minority of cancer patients. The current priority is to understand why the majority of patients fail to respond. Besides T-cell dysfunction, T-cell apoptosis was reported in several recent studies as a relevant mechanism of tumoral immune resistance. Several death receptors (Fas, DR3, DR4, DR5, TNFR1) can trigger apoptosis when activated by their respective ligands. In this review, we discuss the immunomodulatory role of the main death receptors and how these are shaping the tumor microenvironment, with a focus on Fas and its ligand. Fas-mediated apoptosis of T cells has long been known as a mechanism allowing the contraction of T-cell responses to prevent immunopathology, a phenomenon known as activation-induced cell death, which is triggered by induction of Fas ligand (FasL) expression on T cells themselves and qualifies as an immune checkpoint mechanism. Recent evidence indicates that other cells in the tumor microenvironment can express FasL and trigger apoptosis of tumor-infiltrating lymphocytes (TIL), including endothelial cells and myeloid-derived suppressor cells. The resulting disappearance of TIL prevents anti-tumor immunity and may in fact contribute to the absence of TIL that is typical of "cold" tumors that fail to respond to immunotherapy. Interfering with the Fas-FasL pathway in the tumor microenvironment has the potential to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium
| | - Pierre-Florent Petit
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium.
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.
| |
Collapse
|
18
|
Hyun JW, Kim G, Kim Y, Kong B, Joung A, Park NY, Jang H, Shin HJ, Kim SH, Ahn SW, Shin HY, Huh SY, Kim W, Park MS, Kim BJ, Kim BJ, Oh J, Kim HJ. Neutralizing Antibodies Against Interferon-Beta in Korean Patients with Multiple Sclerosis. J Clin Neurol 2018; 14:186-190. [PMID: 29504299 PMCID: PMC5897201 DOI: 10.3988/jcn.2018.14.2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients treated with interferon-beta (IFN-β) can develop neutralizing antibodies (NAbs) against IFN-β that can negatively affect the therapeutic response. This study assessed the prevalence of NAbs and the impact of NAb positivity on the therapeutic response to IFN-β in Korean patients with multiple sclerosis (MS). METHODS This was a multicenter study involving 150 MS patients from 9 Korean medical centers who were treated with IFN-β for at least 6 months. Sera that had not been influenced by acute treatment were assessed for NAbs using a luciferase reporter gene assay. To evaluate the association between persistent positivity for NAbs and disease activity, NAbs were tested at 2 different time points in 75 of the 150 patients. Disease activity was defined as the presence of clinical exacerbations and/or active MRI lesions during a 1-year follow-up after NAb positivity was confirmed. RESULTS NAbs were found in 39 of the 150 (26%) MS patients: 30 of the 85 (35%) who were treated with subcutaneous IFN-β-1b, 9 of the 60 (15%) who were treated with subcutaneous IFN-β-1a, and 0 of the 5 (0%) who were treated with intramuscular IFN-β-1a. Thirty of the 39 patients exhibiting NAb positivity were tested at different time points, and 20 of them exhibited persistent NAb positivity. Disease activity was observed more frequently in patients with persistent NAb positivity than in those with transient positivity or persistent negativity [16/20 (80%) vs. 4/55 (7%), respectively; p<0.001]. When disease activity was compared between patients with persistent and transient NAb positivity, the difference was unchanged and remained statistically significant [16/20 (80%) vs. 2/10 (20%), p=0.004]. CONCLUSIONS These results further support that persistent NAb positivity is associated with disease activity in MS patients treated with IFN-β.
Collapse
Affiliation(s)
- Jae Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Gayoung Kim
- Division of Clinical Research, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Yeseul Kim
- Division of Clinical Research, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Byungsoo Kong
- Division of Clinical Research, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - AeRan Joung
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Na Young Park
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Hyunmin Jang
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Hyun June Shin
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Su Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Suk Won Ahn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - So Young Huh
- Department of Neurology, Kosin University College of Medicine, Busan, Korea
| | - Woojun Kim
- Department of Neurology, College of Medicine, Catholic University, Seoul, Korea
| | - Min Su Park
- Department of Neurology, Yeungnam University College of Medicine, Daegu, Korea
| | - Byung Jo Kim
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyoung Oh
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea.,Division of Clinical Research, Research Institute and Hospital of National Cancer Center, Goyang, Korea.
| |
Collapse
|
19
|
An apoptosis-independent role of TRAIL in suppressing joint inflammation and inhibiting T-cell activation in inflammatory arthritis. Cell Mol Immunol 2017; 15:846-857. [PMID: 28392572 DOI: 10.1038/cmi.2017.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been implicated in the regulation of inflammation in rheumatoid arthritis (RA), primarily due to its ability to promote apoptosis in synoviocytes and infiltrating lymphocytes. The aim of this study was to investigate the immunomodulatory mechanism and role of TRAIL in inflammatory arthritis. We created an animal model of inflammatory arthritis and demonstrated that TRAIL significantly inhibited joint inflammation and reduced the severity of arthritis. The suppression of joint inflammation was not due to the TRAIL-mediated induction of apoptosis in T cells, macrophages or synovial fibroblasts. In contrast, TRAIL directly inhibited T-cell proliferation and suppressed the production of cytokines, which indicated that TRAIL exerted its anti-inflammatory effects by direct inhibition of T-cell activation. Moreover, TRAIL receptor (TRAIL-R)-knockout mice developed more severe disease, and the protective effects of TRAIL were abolished in the experimental arthritis model in TRAIL-R knockout mice. From these results, we conclude that TRAIL suppresses joint inflammation via an apoptosis-independent pathway and directly inhibits T-cell activation. Our results provide a novel apoptosis-independent, immune regulatory role for TRAIL in suppressing inflammatory arthritis and shed light on the development of effective new therapies for autoimmune inflammatory diseases.
Collapse
|
20
|
El Ayoubi NK, Khoury SJ. Blood Biomarkers as Outcome Measures in Inflammatory Neurologic Diseases. Neurotherapeutics 2017; 14:135-147. [PMID: 27757816 PMCID: PMC5233628 DOI: 10.1007/s13311-016-0486-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system. Only a few biomarkers are available in MS clinical practice, such as cerebrospinal fluid oligoclonal bands and immunoglobulin index, serum anti-aquaporin 4 antibodies, and serum anti-John Cunningham virus antibodies. Thus, there is a significant unmet need for biomarkers to assess prognosis, response to therapy, or potential treatment complications. Here we describe emerging biomarkers that are in development, focusing on those from peripheral blood. There are several limitations in the process of discovery and validation of a good biomarker, such as the pathophysiological complexity of MS and the technical difficulties in globally standardizing methods for sampling, processing, and conserving biological specimens. In spite of these limitations, ongoing international collaborations allow the exploration of many interesting molecules and markers to validate diagnostic, prognostic, and therapeutic-response biomarkers.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Samia J Khoury
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
21
|
Arabpour M, Cool RH, Faber KN, Quax WJ, Haisma HJ. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target 2016; 25:360-369. [PMID: 27885847 DOI: 10.1080/1061186x.2016.1262867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activated hepatic stellate cells (HSCs) are known to play a central role in liver fibrosis and their elimination is a crucial step toward the resolution and reversion of liver fibrosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a molecule that may contribute to the apoptotic removal of activated HSC through binding to its dedicated receptors. In the present study, we investigated the potential application of recombinant receptor-specific TRAIL proteins in the efficient elimination of activated HSCs. Our finding revealed differential contribution of TRAIL receptors among HSCs populations with activated hepatic stellate cells expresses more TRAIL receptors DR5. In vitro treatment of activated HSCs with DR5-specific or wild-type TRAIL variants induced a significant reduction in viability and extracellular matrix production, whereas no significant decrease in viability was associated with the treatment of cells by DR4-specific TRAIL. Our analysis indicate the successful application of the DR5 receptor-specific TRAIL variant in the targeted elimination of activated HSCs via interference with collagen production and simultaneous induction of apoptosis via activation of the caspase pathway. DR5 receptor-specific TRAIL may thus represent a new therapeutic compound for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Mohammad Arabpour
- a Mivac Development , Arvid Wallgrens backe 20 , Gothenburg , Sweden.,b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Robbert H Cool
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Klaas Nico Faber
- c Department of Gastrointestinal and Liver Diseases , University Medical Center Groningen , Groningen , the Netherlands
| | - Wim J Quax
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Hidde J Haisma
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| |
Collapse
|
22
|
Liguori M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiovine C, Allavena P. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget 2016; 7:41662-41676. [PMID: 27191500 PMCID: PMC5173086 DOI: 10.18632/oncotarget.9340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022] Open
Abstract
Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors.
Collapse
Affiliation(s)
- Manuela Liguori
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Chiara Buracchi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Pasqualini
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Francesca Bergomas
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Samantha Pesce
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Marina Sironi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Alberto Mantovani
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
- Humanitas University, 20089 Rozzano, Milano, Italy
| | - Cristina Belgiovine
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
- Humanitas University, 20089 Rozzano, Milano, Italy
| |
Collapse
|
23
|
Arbour N, Rastikerdar E, McCrea E, Lapierre Y, Dörr J, Bar-Or A, Antel JP. Upregulation of TRAIL expression on human T lymphocytes by interferon b and glatiramer acetate. Mult Scler 2016; 11:652-7. [PMID: 16320724 DOI: 10.1191/1352458505ms1222oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We measured the in vivo and in vitro effects of interferon (IFN)b and glatiramer acetate (GA) on the expression of the regulatory molecule, tumor necrosis factor related apoptosis inducing ligand (TRAIL), in patients with multiple sclerosis (MS). We confirmed the prior observation that TRAIL is enhanced on anti-CD3 activated T cells by the in vitro addition of IFNβ. T cells from IFNβ-treated patients stimulated with anti-CD3 only, had higher levels of TRAIL than untreated patients, suggesting that in vivo IFNβ exposure has an effect on TRAIL expression in association with T cell activation. In vitro IFNβ-induced TRAIL upregulation on anti-CD3 or phytohemagglutinin-activated T cells was comparable for IFNβ-treated and non-treated MS patients and controls, indicating that IFN receptors were neither saturated nor down-regulated by current IFNβ therapy. Although GAin vivo orin vitro did not induce TRAIL, the IFNβ-GA combination in vitro enhanced TRAIL expression to higher levels than IFNβ alone on CD4+ T cells obtained from MS patients, regardless of GA treatment status, and healthy donors, and on GA reactive T cell lines derived from GA-treated patients or controls. Whether any observed therapeutic effects of GA/IFNβ combination therapy will correlate with TRAIL expression and function remains to be determined.
Collapse
Affiliation(s)
- N Arbour
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Death ligands induce apoptosis, which is a cell suicide program leading mainly to selective elimination of an organism's useless cells. Importantly, the dying cell is an active participant in its own demise (“cellular suicide”). Under physiological conditions, apoptosis is most often found during normal cell turnover and tissue homeostasis, embryogenesis, induction and maintenance of immune tolerance, development of the nervous system, and endocrine-dependent tissue atrophy. However, apoptotic processes have also been suggested to contribute to the pathology of the autoimmune demyelinating disease multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis. Here, apoptosis plays a double role. On one hand, impaired apoptosis may result in increased numbers or persistence of activated myelinspecific T cells. On the other hand, local tissue damage involves apoptosis of oligodendrocytes and neurons, leading to the clinical symptoms. In this article, an overview is given of the current knowledge of the roles of apoptosis-mediating and immune regulatory death ligands of the tumor necrosis factor (TNF) family (TNF, lymphotoxin-beta, OX40L [CD134L], CD154 [CD40L], CD95L, CD70 [CD27L], CD153 [CD30L], 4-1BBL [CD137L], TRAIL, TWEAK, BAFF, GITRL) in the pathogenesis of MS and of their implications for related therapeutic strategies.
Collapse
Affiliation(s)
- Orhan Aktas
- Institute of Neuroimmunology, Clinical and Experimental Neuroimmunology, Charité--Universitätsmedizin Berlin, Germany
| | | | | |
Collapse
|
25
|
Taheri M, Nemati S, Movafagh A, Saberi M, Mirfakhraie R, Eftekharian MM, Arsang-Jang S, Rezagholizadeh A, Sayad A. TRAIL gene expression analysis in multiple sclerosis patients. Hum Antibodies 2016; 24:33-38. [PMID: 27472871 DOI: 10.3233/hab-160291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) as an autoimmune disorder in which the insulating covers of neurons in the Central Nervous System are destructed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an immunomodulatory molecule to protect against T cells hyper activation. METHODS In this Case-control study, we compare TRAIL gene expression in peripheral blood between 50 relapse remitting MS patients and 50 healthy controls by TaqMan Real time PCR. All the patients were negative for HLA-DRB1*15 susceptible allele, normal serum vitamin D, responder to Interferon beta. All the health individuals were matched to patients. Also, we tried to find correlation between TRAIL gene expression and clinical characteristics of patients. RESULTS No statistically significant difference was found in TRAIL mRNA expression between MS patients and controls (p> 0.05). There was no correlation in the TRAIL expression and age of onset, disease duration and Expanded Disability Status Scale of Kurtzke (EDSS). As IFN-b may have stimulatory effects on immunoregulatory function of TRAIL and all of our patients were treated with interferon beta and were responder, it lead to no significant change in TRAIL expression. We suggest comparing between responders and non-responders should be investigated.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Nemati
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saberi
- Department of Medical Genetics, Tehran medical University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Eftekharian
- Neurophysiology Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
- Molecular Immunology Research Group, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Amir Rezagholizadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 2016; 73:2017-27. [PMID: 26910728 PMCID: PMC4834097 DOI: 10.1007/s00018-016-2164-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
Abstract
The TNF-related apoptosis inducing ligand TRAIL is a member of the TNF superfamily that has been firstly studied and evaluated for its anti-cancer activity, and the insights into its biology have already led to the identification of several TRAIL-based anticancer strategies with strong clinical therapeutic potentials. Nonetheless, the TRAIL system is far more complex and it can lead to a wider range of biological effects other than the ability of inducing apoptosis in cancer cells. By virtue of the different receptors and the different signalling pathways involved, TRAIL plays indeed a role in the regulation of different processes of the innate and adaptive immune system and this feature makes it an intriguing molecule under consideration in the development/progression/treatment of several immunological disorders. In this context, central nervous system represents a peculiar anatomic site where, despite its "status" of immune-privileged site, both innate and adaptive inflammatory responses occur and are involved in several pathological conditions. A number of studies have evaluated the role of TRAIL and of TRAIL-related pathways as pro-inflammatory or protective stimuli, depending on the specific pathological condition, confirming a twofold nature of this molecule. In this light, the aim of this review is to summarize the main preclinical evidences of the potential/involvement of TRAIL molecule and TRAIL pathways for the treatment of central nervous system disorders and the key suggestions coming from their assessment in preclinical models as proof of concept for future clinical studies.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
27
|
Gyurkovska V, Ivanovska N. Distinct roles of TNF-related apoptosis-inducing ligand (TRAIL) in viral and bacterial infections: from pathogenesis to pathogen clearance. Inflamm Res 2016; 65:427-37. [PMID: 26943649 DOI: 10.1007/s00011-016-0934-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Apoptotic death of different cells observed during infection is thought to limit overwhelming inflammation in response to microbial challenge. However, the underlying apoptotic death mechanisms have not been well defined. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF superfamily, which is involved not only in tumor growth suppression but in infection control and also in the regulation of both innate and adaptive immune responses. FINDINGS In this review, we have summarized data of recent studies on the influence of the TRAIL/TRAIL receptor (TRAIL-R) system on the development of viral and bacterial infections. TRAIL may have a dual function in the immune system being able to kill infected cells and also to participate in the pathogenesis of multiple infections. Moreover, many pathogens have evolved mechanisms to manipulate TRAIL signaling thus increasing pathogen replication. CONCLUSION Present data highlight an essential role for the TRAIL/TRAIL-R system in the regulation and modulation of apoptosis and show that TRAIL has distinct roles in pathogenesis and pathogen elimination. Knowledge of the factors that determine whether TRAIL is helpful or harmful supposes its potential therapeutic implications that are only beginning to be explored.
Collapse
Affiliation(s)
- Valeriya Gyurkovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria
| | - Nina Ivanovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
28
|
Kawata K, Iwai A, Muramatsu D, Aoki S, Uchiyama H, Okabe M, Hayakawa S, Takaoka A, Miyazaki T. Stimulation of macrophages with the β-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). PLoS One 2015; 10:e0124809. [PMID: 25875639 PMCID: PMC4395393 DOI: 10.1371/journal.pone.0124809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/19/2015] [Indexed: 01/29/2023] Open
Abstract
A β-glucan produced by Aureobasidium pullulans (AP-PG) is consisting of a β-(1,3)-linked main chain with β-(1,6)-linked glucose side residues. Various β-glucans consisting of β-(1,3)-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells.
Collapse
Affiliation(s)
- Koji Kawata
- Aureo Science Co., Ltd., Sapporo, Hokkaido, Japan
- Aureo Co., Ltd., Kimitsu, Chiba, Japan
| | - Atsushi Iwai
- Aureo Science Co., Ltd., Sapporo, Hokkaido, Japan
- Aureo Co., Ltd., Kimitsu, Chiba, Japan
- * E-mail:
| | | | - Shiho Aoki
- Aureo Science Co., Ltd., Sapporo, Hokkaido, Japan
| | | | | | - Sumio Hayakawa
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
TRAIL modulates the immune system and protects against the development of diabetes. J Immunol Res 2015; 2015:680749. [PMID: 25759846 PMCID: PMC4352427 DOI: 10.1155/2015/680749] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 01/10/2023] Open
Abstract
TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors. In nontransformed cells, however, the actions of TRAIL are less well characterized. Recent studies suggest that TRAIL may be implicated in the development and progression of diabetes. Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.
Collapse
|
30
|
Lehnert C, Weiswange M, Jeremias I, Bayer C, Grunert M, Debatin KM, Strauss G. TRAIL-receptor costimulation inhibits proximal TCR signaling and suppresses human T cell activation and proliferation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4021-31. [PMID: 25217163 DOI: 10.4049/jimmunol.1303242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The TRAIL-receptor/TRAIL system originally described to induce apoptosis preferentially in malignant cells is also known to be involved in T cell homeostasis and the response to viral infections and autoimmune diseases. Whereas the expression of TRAIL on activated NK and T cells increases their cytotoxicity, induction of TRAIL on APCs can turn them into apoptosis inducers but might also change their immunostimulatory capacity. Therefore, we analyzed how TRAIL-receptor (TRAIL-R) costimulation is modulating TCR-mediated activation of human T cells. T cells triggered by rTRAIL in combination with anti-CD3 and -CD28 Abs exhibited a strong decrease in the expression of activation markers and Th1 and Th2 cytokines compared with CD3/CD28-activated T cells. Most importantly, proliferation of TRAIL-R costimulated T cells was strongly impaired, but no apoptosis was induced. Addition of exogenous IL-2 could not rescue T cells silenced by TRAIL-R costimulation, and TRAIL-mediated inhibition of T cell proliferation only prevented TCR-triggered proliferation but was ineffective if T cells were activated downstream of the TCR. Inhibition of T cell proliferation was associated with abrogation of proximal TCR signaling by inhibiting recruitment of TCR-associated signaling molecules to lipid rafts, followed by abrogation of protein tyrosine phosphorylation of ZAP70, phospholipase C-γ1, and protein kinase C-θ, and impaired nuclear translocation of NFAT, AP-1, and NF-κB. Most importantly, TRAIL-R costimulation efficiently inhibited alloantigen-induced T cell proliferation and CD3/28-induced activation and proliferation of autoreactive T cells derived from patients with Omenn syndrome, indicating that coactivation of TRAIL-R and TCR represents a mechanism to downmodulate T cell immune responses.
Collapse
Affiliation(s)
- Corinna Lehnert
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Maxi Weiswange
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Irmela Jeremias
- Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany; and
| | - Carina Bayer
- University Medical Center Ulm, Institute of Virology, 89081 Ulm, Germany
| | - Michaela Grunert
- Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany; and
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany;
| |
Collapse
|
31
|
Tawdy MH, Abd el Nasser MM, Abd el Shafy SS, Nada MA, El Sirafy MNI, Magd AHA. Role of serum TRAIL level and TRAIL apoptosis gene expression in multiple sclerosis and relation to brain atrophy. J Clin Neurosci 2014; 21:1606-11. [DOI: 10.1016/j.jocn.2013.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 12/28/2022]
|
32
|
Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes Secreted by Human Placenta Carry Functional Fas Ligand and TRAIL Molecules and Convey Apoptosis in Activated Immune Cells, Suggesting Exosome-Mediated Immune Privilege of the Fetus. THE JOURNAL OF IMMUNOLOGY 2013; 191:5515-23. [DOI: 10.4049/jimmunol.1301885] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Hegen H, Millonig A, Bertolotto A, Comabella M, Giovanonni G, Guger M, Hoelzl M, Khalil M, Killestein J, Lindberg R, Malucchi S, Mehling M, Montalban X, Polman CH, Rudzki D, Schautzer F, Sellebjerg F, Sørensen PS, Deisenhammer F. Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients: binding antibodies predict neutralizing antibody development. Mult Scler 2013; 20:577-87. [PMID: 24009164 DOI: 10.1177/1352458513503597] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neutralizing antibodies (NAb) affect efficacy of interferon-beta (IFN-b) treatment in multiple sclerosis (MS) patients. NAbs evolve in up to 44% of treated patients, usually between 6-18 months on therapy. OBJECTIVES To investigate whether early binding antibody (BAb) titers or different IFN-b biomarkers predict NAb evolution. METHODS We included patients with MS or clinically isolated syndrome (CIS) receiving de novo IFN-b treatment in this prospective European multicenter study. Blood samples were collected at baseline, before and after the first IFN-b administration, and again after 3, 12 and 24 months on that therapy; for determination of NAbs, BAbs, gene expression of MxA and protein concentrations of MMP-9, TIMP-1, sTRAIL, CXCL-10 and CCL-2. RESULTS We found that 22 of 164 (13.4%) patients developed NAbs during a median time of 23.8 months on IFN-b treatment. Of these patients, 78.9% were BAb-positive after 3 months. BAb titers ≥ 1:2400 predicted NAb evolution with a sensitivity of 74.7% and a specificity of 98.5%. Cross-sectionally, MxA levels were significantly diminished in the BAb/NAb-positive samples; similarly, CXCL-10 and sTRAIL concentrations in BAb/NAb-positive and BAb-positive/NAb-negative samples, respectively, were also diminished compared to BAb/NAb-negative samples. CONCLUSIONS BAb titers reliably predict NAbs. CXCL-10 is a promising sensitive biomarker for IFN-b response and its abrogation by anti-IFN-b antibodies.
Collapse
Affiliation(s)
- H Hegen
- Department of Neurology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Audo R, Combe B, Hahne M, Morel J. The two directions of TNF-related apoptosis-inducing ligand in rheumatoid arthritis. Cytokine 2013; 63:81-90. [DOI: 10.1016/j.cyto.2013.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
|
35
|
López-Gómez C, Pino-Ángeles A, Órpez-Zafra T, Pinto-Medel MJ, Oliver-Martos B, Ortega-Pinazo J, Arnáiz C, Guijarro-Castro C, Varadé J, Álvarez-Lafuente R, Urcelay E, Sánchez-Jiménez F, Fernández Ó, Leyva L. Candidate gene study of TRAIL and TRAIL receptors: association with response to interferon beta therapy in multiple sclerosis patients. PLoS One 2013; 8:e62540. [PMID: 23658636 PMCID: PMC3639207 DOI: 10.1371/journal.pone.0062540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/22/2013] [Indexed: 12/31/2022] Open
Abstract
TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS.
Collapse
Affiliation(s)
- Carlos López-Gómez
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Almudena Pino-Ángeles
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Teresa Órpez-Zafra
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - María Jesús Pinto-Medel
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Begoña Oliver-Martos
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Jesús Ortega-Pinazo
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Carlos Arnáiz
- Department of Neurology. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Cristina Guijarro-Castro
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Jezabel Varadé
- Multiple Sclerosis Unit, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Roberto Álvarez-Lafuente
- Multiple Sclerosis Unit, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Elena Urcelay
- Multiple Sclerosis Unit, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Óscar Fernández
- Department of Neurology. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
| | - Laura Leyva
- Research Laboratory. Clinical Neurosciences Institute, Hospital Regional Universitario Carlos Haya, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM RD 07/0060), Málaga, Spain
- * E-mail:
| |
Collapse
|
36
|
Larsson M, Shankar EM, Che KF, Saeidi A, Ellegård R, Barathan M, Velu V, Kamarulzaman A. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 2013; 10:31. [PMID: 23514593 PMCID: PMC3610157 DOI: 10.1186/1742-4690-10-31] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-cell responses in HIV infection both in vitro and in vivo. The expression of these molecules that negatively impacts the normal functions of the host immune armory and the underlying signaling pathways associated with their enhanced expression need to be discussed. Targets to restrain the expression of these molecular markers of immune inhibition is likely to contribute to development of therapeutic interventions that augment the functionality of host immune cells leading to improved immune control of HIV infection. In this review, we focus on the functions of inhibitory molecules that are expressed or secreted following HIV infection such as BTLA, CTLA-4, CD160, IDO, KLRG1, LAG-3, LILRB1, PD-1, TRAIL, TIM-3, and regulatory cytokines, and highlight their significance in immune inhibition. We also highlight the ensemble of transcriptional factors such as BATF, BLIMP-1/PRDM1, FoxP3, DTX1 and molecular pathways that facilitate the recruitment and differentiation of suppressor T cells in response to HIV infection.
Collapse
Affiliation(s)
- Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58 185, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Targeted delivery of tumor necrosis factor-related apoptosis-inducing ligand to keratinocytes with a pemphigus mAb. J Invest Dermatol 2013; 133:2212-20. [PMID: 23439393 PMCID: PMC3681880 DOI: 10.1038/jid.2013.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
We determined the feasibility of using an anti-desmoglein (Dsg) mAb, Px44, to deliver a biologically active protein to keratinocytes. Recombinantly produced Px44-green fluorescent protein (GFP) injected into mice and skin organ culture delivered GFP to the cell surface of keratinocytes. We replaced GFP with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to produce Px44-TRAIL. We chose TRAIL as a biological model because it inhibits activated lymphocytes and causes apoptosis of hyperproliferative keratinocytes, features of various skin diseases. Px44-TRAIL formed a trimer, the biologically active form of TRAIL. Standard assays of TRAIL activity showed that Px44-TRAIL caused apoptosis of Jurkat cells and inhibited IFN-γ production by activated CD4+ T cells. Enzyme-linked immunoassay with Px44-TRAIL showed delivery of TRAIL to Dsg. Immunofluorescence with Px44-TRAIL incubated on skin sections and cultured keratinocytes or injected into mouse skin, human organ culture, or human xenografts detected TRAIL on keratinocytes. Px44-TRAIL caused apoptosis of the hyperproliferative, but not differentiating, cultured keratinocytes through binding to Dsg3. Foldon, a small trimerization domain, cloned into Px44-TRAIL maintained its stability and biological activity at 37° C for at least 48 hours. These data suggest that such targeted therapy is feasible and may be useful for hyperproliferative and inflamed skin diseases.
Collapse
|
38
|
Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation 2012; 19:40-51. [PMID: 22360752 DOI: 10.1111/j.1399-3089.2011.00688.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Efficient and precise techniques for the genetic modification of pigs facilitate the generation of tailored donor animals for xenotransplantation. Numerous transgenic pig lines exist with the focus on inhibition of the complement system and of humoral immune responses. In addition, immune cell-based responses need to be controlled to prevent pig-to-primate xenograft rejection. Expression of human (hu) TNF-related apoptosis-inducing ligand (TRAIL) on porcine cells has the potential to ameliorate human T cell responses. METHODS We generated transgenic pigs expressing human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (huTRAIL) under the control of either the mouse H2K(b) promoter or a CMV enhancer/chicken β-actin (CAG) promoter, the latter one (CAG-huTRAIL) on a GGTA1 knockout/huCD46 transgenic background. The biological activity of huTRAIL was demonstrated by its apoptosis-inducing effect on Jurkat lymphoma cells. To clarify whether huTRAIL affects also primary immune cells and whether its effects depend on the presence of co-stimulatory molecules, we exposed human peripheral blood mononuclear cells (PBMC) or isolated T cells to huTRAIL-expressing porcine fibroblasts or dendritic cells in vitro. RESULTS H2Kb-huTRAIL transgenic pigs express huTRAIL mainly in the spleen and secondary lymphoid tissues. The CAG-huTRAIL construct facilitated huTRAIL expression in multiple organs, the level being at least one order of magnitude higher than in H2Kb-huTRAIL transgenic pigs. Incubation with huTRAIL-expressing H2Kb-huTRAIL transgenic porcine dendritic cells decreased human T cell proliferation significantly without any signs of apoptosis. In spite of the high transgene expression level, CAG-huTRAIL transgenic fibroblasts did not affect proliferation of human PBMC, independent of their activation state. CONCLUSIONS These results suggest huTRAIL expression on porcine dendritic cells as a possible strategy to attenuate T cell responses against pig-to-primate xenografts.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mc Guire C, Beyaert R, van Loo G. Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 2011; 34:619-28. [PMID: 21999927 DOI: 10.1016/j.tins.2011.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/13/2011] [Accepted: 09/18/2011] [Indexed: 12/31/2022]
Abstract
Death receptors (DRs) are members of the tumor necrosis factor receptor (TNF-R) superfamily that are characterised by the presence of a conserved intracellular death domain and are able to trigger a signalling pathway leading to apoptosis. Strong evidence suggests that DRs contribute to the pathology of tissue destructive diseases, including multiple sclerosis (MS), the most common inflammatory demyelinating disease of the central nervous system (CNS). Here, we review the evidence supporting a role for DRs in MS pathology and its implications for the development of therapeutic strategies for MS and other demyelinating pathologies of the CNS.
Collapse
Affiliation(s)
- Conor Mc Guire
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
40
|
Brincks EL, Gurung P, Langlois RA, Hemann EA, Legge KL, Griffith TS. The magnitude of the T cell response to a clinically significant dose of influenza virus is regulated by TRAIL. THE JOURNAL OF IMMUNOLOGY 2011; 187:4581-8. [PMID: 21940678 DOI: 10.4049/jimmunol.1002241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An immune response of appropriate magnitude should be robust enough to control pathogen spread but not simultaneously lead to immunopathology. Primary infection with influenza A virus (IAV) results in a localized pulmonary infection and inflammation and elicits an IAV-specific CD8 T cell immune response necessary for viral clearance. Clearance of IAV-infected cells, and recovery from infection, is mediated by perforin/granzyme B- and Fas/FasL-mediated mechanisms. We recently reported that TRAIL is another means by which IAV-specific CD8 T cells can kill IAV-infected cells. The current study examined the role of TRAIL in the pulmonary CD8 T cell response to a clinically significant IAV [A/PR/8/34 (PR8; H1N1)] infection (i.e., leads to observable, but limited, morbidity and mortality in wild-type [WT] mice). Compared with WT mice, IAV-infected Trail(-/-) mice experienced increased morbidity and mortality despite similar rates of viral clearance from the lungs. The increased morbidity and mortality in Trail(-/-) mice correlated with increased pulmonary pathology and inflammatory chemokine production. Analysis of lung-infiltrating lymphocytes revealed increased numbers of IAV-specific CD8 T cells in infected Trail(-/-) mice, which correlated with increased pulmonary cytotoxic activity and increased pulmonary expression of MIG and MIP-1α. In addition, there was decreased apoptosis and increased proliferation of IAV-specific CD8 T cells in the lungs of Trail(-/-) mice compared with WT mice. Together, these data suggest that TRAIL regulates the magnitude of the IAV-specific CD8 T cell response during a clinically significant IAV infection to decrease the chance for infection-induced immunopathology.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
41
|
TRAIL/TRAIL receptor system and susceptibility to multiple sclerosis. PLoS One 2011; 6:e21766. [PMID: 21814551 PMCID: PMC3140982 DOI: 10.1371/journal.pone.0021766] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/06/2011] [Indexed: 01/10/2023] Open
Abstract
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Collapse
|
42
|
Crowder RN, Zhao H, Chatham WW, Zhou T, Carter RH. B lymphocytes are resistant to death receptor 5-induced apoptosis. Clin Immunol 2011; 139:21-31. [PMID: 21276756 DOI: 10.1016/j.clim.2010.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 11/02/2010] [Accepted: 12/08/2010] [Indexed: 12/31/2022]
Abstract
Death Receptor 5 (DR5) induces apoptosis in various types of cells and is a potential therapeutic target. We have investigated whether targeting DR5 could be used to eliminate pathogenic B lymphocytes from systemic lupus erythematosus (SLE) patients. We examined DR5 expression and function on B lymphocytes from healthy controls subjects, SLE patients, and human tonsil. DR5 was expressed similarly on all B cell subpopulations, including resting and activated B cells. Expression of DR5 was equivalent on B cells from SLE patients and healthy subjects. Additionally, DR5 expression was unchanged after B lymphocyte stimulation. However, B cells were resistant to DR5-induced apoptosis, including after in vitro activation. No changes in subsets of B cells were observed in subjects of a trial of CS-1008, an agonist anti-DR5. While DR5 shows promise as a way to selectively eliminate tumor cells and activated synoviocytes, these data suggest DR5 alone cannot be used as a target to remove pathogenic SLE B cells.
Collapse
Affiliation(s)
- Roslyn N Crowder
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
43
|
Kurne A, Guc D, Canpinar H, Aydin OF, Sayat G, Yörübulut M, Esendagli G, Karabudak R. Analysis of BAFF and TRAIL expression levels in multiple sclerosis patients: evaluation of expression under immunomodulatory therapy. Acta Neurol Scand 2011; 123:8-12. [PMID: 20456241 DOI: 10.1111/j.1600-0404.2010.01346.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and B cell-activating factor (BAFF), the members of tumor necrosis factor superfamily, play essential roles in immune homeostasis and may have potential contributions to the autoimmune process in multiple sclerosis (MS). MATERIAL AND METHODS Thirty-five relapsing remitting MS (RRMS) patients and 19 healthy individuals were enrolled in the study. The expression of TRAIL on peripheral blood lymphocytes was analyzed by flow cytometry. The serum levels of soluble TRAIL (sTRAIL) and soluble BAFF (sBAFF) were determined by ELISA. Further, we evaluated the effect of IFN-β on sTRAIL, sBAFF levels and on TRAIL surface expression in these patients on the third and sixth months following the treatment. RESULTS AND CONCLUSION These preliminary results signify that MS patients are heterogenous in TRAIL expression. Additionally, during the IFN-β treatment, the soluble form of TRAIL increases concomitantly as its surface expression decreases on lymphocytes. The basal sBAFF levels of patients were significantly higher than the control group and no significant change was observed. Thus, the changes in TRAIL expression may be a potential parameter indicating the response to IFN-β1 therapy at individual level.
Collapse
Affiliation(s)
- A Kurne
- Department of Neurology, Hacettepe University Hospitals, Neuroimmunology Unit, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Che KF, Sabado RL, Shankar EM, Tjomsland V, Messmer D, Bhardwaj N, Lifson JD, Larsson M. HIV-1 impairs in vitro priming of naïve T cells and gives rise to contact-dependent suppressor T cells. Eur J Immunol 2010; 40:2248-58. [PMID: 20455275 PMCID: PMC3258541 DOI: 10.1002/eji.201040377] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Priming of T cells in lymphoid tissues of HIV-infected individuals occurs in the presence of HIV-1. DC in this milieu activate T cells and disseminate HIV-1 to newly activated T cells, the outcome of which may have serious implications in the development of optimal antiviral responses. We investigated the effects of HIV-1 on DC–naïve T-cell interactions using an allogeneic in vitro system. Our data demonstrate a dramatic decrease in the primary expansion of naïve T cells when cultured with HIV-1-exposed DC. CD4+ and CD8+ T cells showed enhanced expression of PD-1 and TRAIL, whereas CTLA-4 expression was observed on CD4+ T cells. It is worth noting that T cells primed in the presence of HIV-1 suppressed priming of other naïve T cells in a contact-dependent manner. We identified PD-1, CTLA-4, and TRAIL pathways as responsible for this suppresion, as blocking these negative molecules restored T-cell proliferation to a higher degree. In conclusion, the presence of HIV-1 during DC priming produced cells with inhibitory effects on T-cell activation and proliferation, i.e. suppressor T cells, a mechanism that could contribute to the enhancement of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Karlhans F Che
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shankar EM, Che KF, Messmer D, Lifson JD, Larsson M. Expression of a broad array of negative costimulatory molecules and Blimp-1 in T cells following priming by HIV-1 pulsed dendritic cells. Mol Med 2010; 17:229-40. [PMID: 21103670 DOI: 10.2119/molmed.2010.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/16/2010] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence indicates that immune impairment in persistent viral infections could lead to T-cell exhaustion. To evaluate the potential contribution of induction of negative costimulatory molecules to impaired T-cell responses, we primed naïve T cells with mature monocyte-derived dendritic cells (MDDCs) pulsed with HIV-1 in vitro. We used quantitative real-time polymerase chain reaction and flow cytometry, respectively, to compare the gene and surface-protein expression profiles of naïve T cells primed with HIV-pulsed or mock-pulsed DCs. We detected elevated expressions of negative costimulatory molecules, including lymphocyte activation gene-3 (LAG-3), CD160, cytolytic T-lymphocyte antigen-4 (CTLA-4), T-cell immunoglobulin mucin-containing domain-3 (TIM-3), programmed death-1 (PD-1) and TRAIL (tumor necrosis-factor-related apoptosis-inducing ligand) in T cells primed by HIV-pulsed DCs. The PD-1(+) T-cell population also coexpressed TIM-3, LAG-3, and CTLA-4. Interestingly, we also found an increase in gene expression of the transcriptional repressors Blimp-1 (B-lymphocyte-induced maturation protein-1) and Foxp3 (forkhead transcription factor) in T-cells primed by HIV-pulsed DCs; Blimp-1 expression was directly proportional to the expression of the negative costimulatory molecules. Furthermore, levels of the effector cytokines interleukin-2, tumor necrosis factor-α and interferon-γ, and perforin and granzyme B were decreased in T-cell populations primed by HIV-pulsed DCs. In conclusion, in vitro priming of naïve T-cells with HIV-pulsed DC leads to expansion of T cells with coexpression of a broad array of negative costimulatory molecules and Blimp-1, with potential deleterious consequences for T-cell responses.
Collapse
Affiliation(s)
- Esaki Muthu Shankar
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Keller CW, Fokken C, Turville SG, Lünemann A, Schmidt J, Münz C, Lünemann JD. TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem 2010; 286:3970-80. [PMID: 20980264 DOI: 10.1074/jbc.m110.159392] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II molecules. Skeletal muscle fibers show a high level of constitutive macroautophagy and express MHC class II molecules upon immune activation. We found that tumor necrosis factor-α (TNF-α), a monokine overexpressed in inflammatory myopathies, led to a marked up-regulation of macroautophagy in skeletal myocytes. Furthermore, TNF-α augmented surface expression of MHC class II molecules in interferon-γ (IFN-γ)-treated myoblasts. The synergistic effect of TNF-α and IFN-γ on the induction of MHC class II surface expression was not reflected by higher intracellular human leukocyte antigen (HLA)-DR levels and was reversed by macroautophagy inhibition, suggesting that TNF-α facilitates antigen processing via macroautophagy for more efficient MHC class II loading. Muscle biopsies from patients with sporadic inclusion body myositis, a well defined myopathy with chronic inflammation, showed that over 20% of fibers that contained autophagosomes costained for MHC class II molecules and that more than 40% of double-positive muscle fibers had contact with CD4(+) and CD8(+) immune cells. These findings establish a mechanism through which TNF-α regulates both macroautophagy and MHC class II expression and suggest that macroautophagy-mediated antigen presentation contributes to the immunological environment of the inflamed human skeletal muscle.
Collapse
Affiliation(s)
- Christian W Keller
- Laboratory of Viral Immunobiology, Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ikeda T, Hirata S, Fukushima S, Matsunaga Y, Ito T, Uchino M, Nishimura Y, Senju S. Dual Effects of TRAIL in Suppression of Autoimmunity: The Inhibition of Th1 Cells and the Promotion of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5259-67. [DOI: 10.4049/jimmunol.0902797] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Rinta S, Airas L, Elovaara I. Is the modulatory effect of pregnancy in multiple sclerosis associated with changes in blood apoptotic molecules? Acta Neurol Scand 2010; 122:168-74. [PMID: 20695850 DOI: 10.1111/j.1600-0404.2009.01301.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We examined whether the modulatory effect of pregnancy on multiple sclerosis (MS) is associated with changes in the apoptotic molecules in sera. SUBJECTS AND METHODS The serum levels of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), sFas, Fas ligand (sFasL) and macrophage migration inhibitory factor were analyzed from 19 MS patients and 14 controls during late pregnancy and post-partum. The obtained results were related to disease activity and the progression of MS. RESULTS Disease activity decreased during pregnancy. The levels of sTRAIL and sFasL increased from late pregnancy to post-partum situation in both MS patients and controls, but in MS patients the changes in the levels of sTRAIL from late pregnancy to post-partum were smaller than in controls. CONCLUSIONS Post-partum upregulation of TRAIL and FasL seems to be caused by physiologic reactivation of the mother's immune system after pregnancy. An increased risk of relapses in MS post-partum may be associated with changes in the immunomodulatory potential of these apoptotic molecules.
Collapse
Affiliation(s)
- S Rinta
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
49
|
Herz J, Zipp F, Siffrin V. Neurodegeneration in autoimmune CNS inflammation. Exp Neurol 2010; 225:9-17. [DOI: 10.1016/j.expneurol.2009.11.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/24/2009] [Indexed: 02/06/2023]
|
50
|
Kang S, Park SY, Lee HJ, Yoo YH. TRAIL upregulates decoy receptor 1 and mediates resistance to apoptosis in insulin-secreting INS-1 cells. Biochem Biophys Res Commun 2010; 396:731-5. [PMID: 20451496 DOI: 10.1016/j.bbrc.2010.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 11/16/2022]
Abstract
TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) is a multifunctional protein regulating the homeostasis of the immune system, infection, autoimmune diseases, and apoptosis. In particular, the potential role of TRAIL in type 1 diabetes (T1D) has been studied by several research groups. A previous study found that TRAIL did not have significant cytotoxic effects on the insulin-secreting pancreatic beta cell line, INS-1. However, the mechanism was not clear. Here we demonstrate that INS-1 cells are resistant to TRAIL-induced apoptosis and show alteration in the expression of death and decoy receptors upon TRAIL treatment. To compare TRAIL-resistant INS-1 cells with TRAIL-sensitive cells, we utilized U87MG cells, which are known to be TRAIL-sensitive. TRAIL treatment showed NF-kappaB translocation to the nucleus in TRAIL-resistant INS-1 cells, and TRAIL-induced NF-kappaB activation was preceded by IkappaBalpha degradation. A pharmacological inhibitor of NF-kappaB, Bay 11-7082, blocked TRAIL-induced NF-kappaB translocation to the nucleus and IkappaBalpha degradation. Four related receptors bind TRAIL: two death receptors (DR4 and DR5) that promote apoptosis, and two decoy receptors (DcR1 and DcR2) that act as dominant-negative inhibitors of TRAIL-mediated apoptosis. In the present study, TRAIL treatment in INS-1 cells upregulated DcR1 and downregulated DR5 without altering the expression of DcR2 and DR4. The resistance to apoptosis in INS-1 cells might therefore, be a consequence of DcR1 upregulation and DR5 downregulation, and the transcription factor, NF-kappaB, could regulate the sensitivity of cells to TRAIL by controlling the ratio of decoy to death receptors. Thus, TRAIL may play an important role in the survival of pancreatic beta cells by regulating receptor expression in an NF-kappaB-dependent manner.
Collapse
Affiliation(s)
- Soojeong Kang
- Department of Pharmacology, Dong-A University College of Medicine, Medical Science Research Center, Busan 602-714, Republic of Korea
| | | | | | | |
Collapse
|