1
|
Heat-killed Propionibacterium acnes augment the protective effect of 28-kDa glutathione S-transferases antigen against Schistosoma mansoni infection. Acta Trop 2021; 222:106033. [PMID: 34224719 DOI: 10.1016/j.actatropica.2021.106033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/13/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Sm28GST is one of the candidate antigens for Schistosoma mansoni vaccine. Already Sm28GST vaccine formulations have shown to be protective against S. mansoni infection. Currently, efforts have been put into finding an adjuvant to enhance the immunity induced by Sm28GST. In the present work, we investigated whether heat-killed Propionibacterium acnes can be served as a potential adjuvant for recombinant Sm28GST (rSm28GST) antigen. As the results showed, P. acnes successfully modulated the Th1 humoral immune response induced by rSm28GST. Stronger Th1 cytokines responses were also observed in mice immunized with P. acnes-adjuvanted rSm28GST. Immunization of mice with P. acnes-adjuvanted rSm28GST was able to reduce worm burden and hepatic egg burden by 54.20 and 73.61%. Reduced granuloma size and count, as well as improved liver histology, were seen in P. acnes-adjuvanted rSm28GST immunized mice. These data suggest that P. acnes may evoke a stronger rSm28GST-induced immune response, higher resistance to S. mansoni infection, and more profound protection against S. mansoni-induced liver damages.
Collapse
|
2
|
Potential immunomodulatory effect of allelochemical juglone in mice vaccinated with BCG. Toxicon 2019; 157:43-52. [DOI: 10.1016/j.toxicon.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/17/2018] [Accepted: 11/01/2018] [Indexed: 12/24/2022]
|
3
|
Totten AH, Xiao L, Luo D, Briles D, Hale JY, Crabb DM, Schoeb TR, Alishlash AS, Waites KB, Atkinson TP. Allergic airway sensitization impairs antibacterial IgG antibody responses during bacterial respiratory tract infections. J Allergy Clin Immunol 2018; 143:1183-1197.e7. [PMID: 30092287 DOI: 10.1016/j.jaci.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae, an atypical human pathogen, has been associated with asthma initiation and exacerbation. Asthmatic patients have been reported to have higher carriage rates of M pneumoniae compared with nonasthmatic subjects and are at greater risk for invasive respiratory infections. OBJECTIVE We sought to study whether prior allergen sensitization affects the host response to chronic bacterial infection. METHODS BALB/cJ and IL-4 receptor α-/- mice were sensitized with ovalbumin (OVA) and then infected with M pneumoniae or Streptococcus pneumoniae. Immune parameters were analyzed at 30 days postinfection and included cellular profiles in bronchoalveolar lavage fluid (BALF) and serum IgG and IgE antibody levels to whole bacterial lysate, recombinant P1 adhesin, and OVA. Total lung RNA was examined for transcript levels, and BALF was examined for cytokine protein profiles. RESULTS Anti-M pneumoniae antibody responses were decreased in allergen-sensitized, M pneumoniae-infected animals compared with control animals, but OVA-specific IgG responses were unaffected. Similar decreases in anti-S pneumoniae antibody levels were found in OVA-sensitized animals. However, M pneumoniae, but not S pneumoniae, infection augmented anti-OVA IgE antibody responses. Loss of IL-4 receptor signaling partially restored anti-M pneumoniae antibody responses in IgG2a and IgG2b subclasses. Inflammatory cytokine levels in BALF from OVA-sensitized, M pneumoniae-infected or S pneumoniae-infected animals were reduced compared with those in uninfected OVA-sensitized control animals. Unexpectedly, airway hyperreactivity to methacholine was essentially ablated in M pneumoniae-infected, OVA-sensitized animals. CONCLUSIONS An established type 2-biased host immune response impairs the host immune response to respiratory bacterial infection in a largely pathogen-independent manner. Some pathogens, such as M pneumoniae, can augment ongoing allergic responses and inhibit pulmonary type 2 cytokine responses and allergic airway hyperreactivity.
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Danlin Luo
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - David Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Joanetha Y Hale
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Donna M Crabb
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala
| | | | - Ken B Waites
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
4
|
Diliani N, Dondji B. Hookworm excretory/secretory products modulate immune responses to heterologous and species-specific antigens. Parasite Immunol 2018; 39. [PMID: 28796897 DOI: 10.1111/pim.12459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/05/2017] [Indexed: 12/27/2022]
Abstract
Approximately one billion people are currently infected with hookworm. Despite its high prevalence and the concomitant immune suppression seen in infected individuals, little research has been performed on the mechanism of immunosuppression by hookworm. Our study focused on characterizing mechanisms utilized by hookworm to suppress the host immune response. Splenocytes and draining lymph node cells from mice injected with hookworm excretory/secretory (ES) proteins showed decreased proliferation in response to both heterologous and species-specific antigens while also having increased nitric oxide secretion. Analysis by fluorescence-activated cell sorting revealed that mice injected with ES had reduced percentages of CD4+ T cells indicating potential effects of ES proteins on lymphocyte homeostasis. Antibody and cytokine response analyses demonstrated that immunization with ES proteins decreased IgG and IgG1 levels, also decreased interleukin (IL-)-4 and increased IL-12 and interferon-gamma (IFN-γ) cytokine production suggesting impairment of B-cell activation and a shift towards a nonhealing IL-12 directed T helper-1 immune response. Together, these data demonstrate for the first time that host immunosuppression by hookworms is orchestrated by ES proteins and provide mechanisms underlying the shift towards a nonhealing Th-1 profile as seen in humans suffering from hookworm infection.
Collapse
Affiliation(s)
- N Diliani
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| | - B Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| |
Collapse
|
5
|
Huang Y, Getahun A, Heiser RA, Detanico TO, Aviszus K, Kirchenbaum GA, Casper TL, Huang C, Aydintug MK, Carding SR, Ikuta K, Huang H, Wysocki LJ, Cambier JC, O'Brien RL, Born WK. γδ T Cells Shape Preimmune Peripheral B Cell Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:217-31. [PMID: 26582947 PMCID: PMC4684964 DOI: 10.4049/jimmunol.1501064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Ryan A Heiser
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Thiago O Detanico
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Katja Aviszus
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Greg A Kirchenbaum
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Tamara L Casper
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Chunjian Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - M Kemal Aydintug
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Simon R Carding
- Institute of Food Research and Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UG, United Kingdom; and
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hua Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Lawrence J Wysocki
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - John C Cambier
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045;
| |
Collapse
|
6
|
Xiao J, Zhu F, Liu X, Xiong J. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Mol Med Rep 2012; 6:1035-9. [PMID: 22941119 DOI: 10.3892/mmr.2012.1055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the expression of T-helper cell subtypes Th1, Th2, Th17 and Treg in antiphospholipid syndrome (APS), and whether they are related to anti-cardiolipin antibody (aPL) titers. Peripheral mononuclear cells (PBMCs) were isolated from healthy donors, and incubated with aPLs. Subsequent to a 48‑h incubation, PBMCs were collected and detected by flow cytometry. The results revealed that aPLs at higher concentrations may induce a significant increase in Th2 and Th17 frequencies, as opposed to a significant decrease in Th1 and Treg frequencies and the Th1/Th2 ratio. These results indicate that there is a Th1/Th2 imbalance, a Th17 upregulation and a Treg downregulation present in APS, and that these factors are positively correlated with aPL titers, suggesting a potential role of Th cells in the pathogenesis of APS.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | |
Collapse
|
7
|
Van Herle K, Behne JM, Van Herle A, Blaschke TF, Smith TJ, Yeaman MR. Integrative continuum: accelerating therapeutic advances in rare autoimmune diseases. Annu Rev Pharmacol Toxicol 2012; 52:523-47. [PMID: 22235861 DOI: 10.1146/annurev-pharmtox-010611-134628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoimmune diseases are chronic, life threatening, and of burgeoning public health concern. They rank among the 10 most common causes of death in women, and some have incidence rates surpassing those of heart disease and cancer. Emerging information regarding molecular and cellular mechanisms affords opportunities for the discovery of novel therapeutic strategies or the repurposing of FDA-approved pharmacologic agents. Yet, obstacles to drug development amplify as an inverse function of the incidence of rare autoimmune disease; challenges include heterogeneous clinical presentation, paucity of definitive biomarkers, and poorly validated measures of therapeutic response. An integrative continuum model to address these challenges is being applied to neuromyelitis optica (NMO)-a potentially devastating neurodegenerative process that has had limited therapeutic options. This model links target discovery with pharmacologic application to accelerate improved clinical efficacy. The application of such innovative strategies may help researchers overcome barriers to therapeutic advances in NMO and other rare autoimmune diseases.
Collapse
Affiliation(s)
- Katja Van Herle
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Jalili RB, Forouzandeh F, Rezakhanlou AM, Hartwell R, Medina A, Warnock GL, Larijani B, Ghahary A. Local expression of indoleamine 2,3 dioxygenase in syngeneic fibroblasts significantly prolongs survival of an engineered three-dimensional islet allograft. Diabetes 2010; 59:2219-27. [PMID: 20522587 PMCID: PMC2927944 DOI: 10.2337/db09-1560] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The requirement of systemic immunosuppression after islet transplantation is of significant concern and a major drawback to clinical islet transplantation. Here, we introduce a novel composite three-dimensional islet graft equipped with a local immunosuppressive system that prevents islet allograft rejection without systemic antirejection agents. In this composite graft, expression of indoleamine 2,3 dioxygenase (IDO), a tryptophan-degrading enzyme, in syngeneic fibroblasts provides a low-tryptophan microenvironment within which T-cells cannot proliferate and infiltrate islets. RESEARCH DESIGN AND METHODS Composite three-dimensional islet grafts were engineered by embedding allogeneic mouse islets and adenoviral-transduced IDO-expressing syngeneic fibroblasts within collagen gel matrix. These grafts were then transplanted into renal subcapsular space of streptozotocin diabetic immunocompetent mice. The viability, function, and criteria for graft take were then determined in the graft recipient mice. RESULTS IDO-expressing grafts survived significantly longer than controls (41.2 +/- 1.64 vs. 12.9 +/- 0.73 days; P < 0.001) without administration of systemic immunesuppressive agents. Local expression of IDO suppressed effector T-cells at the graft site, induced a Th2 immune response shift, generated an anti-inflammatory cytokine profile, delayed alloantibody production, and increased number of regulatory T-cells in draining lymph nodes, which resulted in antigen-specific impairment of T-cell priming. CONCLUSIONS Local IDO expression prevents cellular and humoral alloimmune responses against islets and significantly prolongs islet allograft survival without systemic antirejection treatments. This promising finding proves the potent local immunosuppressive activity of IDO in islet allografts and sets the stage for development of a long-lasting nonrejectable islet allograft using stable IDO induction in bystander fibroblasts.
Collapse
Affiliation(s)
- Reza B. Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Endocrinology and Metabolism Research Center, Medical Sciences, University of Tehran, Tehran, Iran
| | - Farshad Forouzandeh
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Ryan Hartwell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abelardo Medina
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Medical Sciences, University of Tehran, Tehran, Iran
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Aziz Ghahary,
| |
Collapse
|
9
|
Passero LFD, Marques C, Vale-Gato I, Corbett CEP, Laurenti MD, Santos-Gomes G. Histopathology, humoral and cellular immune response in the murine model of Leishmania (Viannia) shawi. Parasitol Int 2010; 59:159-65. [DOI: 10.1016/j.parint.2009.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 12/28/2009] [Accepted: 12/29/2009] [Indexed: 01/08/2023]
|
10
|
Sitaru AG, Sesarman A, Mihai S, Chiriac MT, Zillikens D, Hultman P, Solbach W, Sitaru C. T Cells Are Required for the Production of Blister-Inducing Autoantibodies in Experimental Epidermolysis Bullosa Acquisita. THE JOURNAL OF IMMUNOLOGY 2009; 184:1596-603. [DOI: 10.4049/jimmunol.0901412] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Hernandez-Pando R, Orozco H, Aguilar D. Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) 2009; 57:355-67. [PMID: 19707720 DOI: 10.1007/s00005-009-0042-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/16/2009] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.
Collapse
Affiliation(s)
- Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Tlalpan, Mexico City, CP-14000, México.
| | | | | |
Collapse
|
12
|
Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 2008; 10:1530-45. [DOI: 10.1111/j.1462-5822.2008.01147.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Choojitarom K, Verasertniyom O, Totemchokchyakarn K, Nantiruj K, Sumethkul V, Janwityanujit S. Lupus nephritis and Raynaud's phenomenon are significant risk factors for vascular thrombosis in SLE patients with positive antiphospholipid antibodies. Clin Rheumatol 2008; 27:345-351. [PMID: 17805483 DOI: 10.1007/s10067-007-0721-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/24/2007] [Accepted: 08/12/2007] [Indexed: 02/08/2023]
Abstract
This study is aimed to determine the predictors of nongravid vascular thrombosis in systemic lupus erythematosus (SLE) patients with positive antiphospholipid antibodies (SLE-aPL). A cohort of 67 SLE-aPL patients who had at least one positive test for lupus anticoagulant (LA), anticardiolipin (aCL), or anti-beta2glycoprotein-1(B2) was examined. Main outcome was the presence of vascular thrombosis. Association between thrombosis and risk factors was examined by contingency table. The odds ratio (OR) of significant predictors was determined by logistic regression. Three percent of patients were LA(+), 6% were aCL(+), 31% were B2(+), 3% were aCL(+)LA(+), 35.8% were aCL(+)B2(+), 7.5% were LA(+)B2(+), and 13.4% were positive for all tests. As for clinical manifestations, 79% had lymphopenia, 76% had lupus nephritis (LN), 41.8% had autoimmune hemolytic anemia, 34.3% had thrombocytopenia, 20.9% had abortion, and 19.4% had Raynaud's phenomenon (RP). Thrombosis occurred in 26 patients. The prevalence of thrombosis for SLE-aPL was 38.8%. Thrombosis was observed more frequently in patients with LA(+) (12 of 18) than the others (14 of 49; p = 0.01). Two-by-two table showed that oral contraceptive and LN were significantly associated with increased risk of thrombosis, while lymphopenia and antimalarials were significantly associated with decreased risk of thrombosis. Multivariate analysis confirmed that LN and RP were associated with increased risk of thrombosis (OR = 6.2 and 3.2; p = 0.005 and 0.008), while lymphopenia and antimalarials were associated with decreased risk of thrombosis (OR = 0.86 and 0.18; p = 0.02 and 0.034). LA is the strongest test to determine the risk of thrombosis in SLE-aPL. The presence of LN and RP strongly predicts thrombosis, while lymphopenia and antimalarials are protective. These findings help to identify patients who may benefit from prophylactic therapy.
Collapse
Affiliation(s)
- Kittiwan Choojitarom
- Division of Allergy-Immunology-Rheumatology, Department of Medicine, Ramathibodi Hospital, 270 Rama6 Road, Bangkok, 10400, Thailand
| | | | | | | | | | | |
Collapse
|
14
|
Systemic Antiphospholipid Syndrome and Atherosclerosis. Clin Rev Allergy Immunol 2007; 32:172-7. [DOI: 10.1007/s12016-007-0008-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
|
15
|
Kahnert A, Seiler P, Stein M, Bandermann S, Hahnke K, Mollenkopf H, Kaufmann SHE. Alternative activation deprives macrophages of a coordinated defense program toMycobacterium tuberculosis. Eur J Immunol 2006; 36:631-47. [PMID: 16479545 DOI: 10.1002/eji.200535496] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis.
Collapse
Affiliation(s)
- Antje Kahnert
- Max-Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Csencsits K, Wood SC, Lu G, Magee JC, Eichwald EJ, Chang CH, Bishop DK. Graft rejection mediated by CD4+ T cells via indirect recognition of alloantigen is associated with a dominant Th2 response. Eur J Immunol 2005; 35:843-51. [PMID: 15714582 DOI: 10.1002/eji.200425685] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD4(+) T cells that respond to indirectly presented alloantigen have been shown to mediate chronic rejection, however, the role of the indirect pathway in acute rejection has yet to be completely elucidated. To this end, BALB/c or C57BL/6 mice were depleted of CD8(+) T cells and transplanted with class II transactivator (CIITA)-deficient cardiac allografts, which cannot directly present class II alloantigens to CD4(+) T cells. In this manner, the rejection response by CD4(+) cells was forced to rely upon the indirect recognition pathway. When not depleted of CD8(+) cells, both BALB/c and C57BL/6 mice rejected CIITA-/- allografts and a polarized Th1 response was observed. In contrast, when BALB/c recipients of CIITA-/- allografts were depleted of CD8(+) T cells, the grafts were acutely rejected and a strong Th2 response characterized by eosinophil influx into the graft was observed. Interestingly, CD8-depleted C57BL/6 recipients of CIITA-/- allografts did not acutely reject their transplants and a Th2 response was not mounted. These findings indicate that CD4(+) T cells responding to indirectly presented alloantigens mediate graft rejection in a Th2-dominant manner, and provide further evidence for the role of Th2 responses in acute graft rejection.
Collapse
Affiliation(s)
- Keri Csencsits
- Department of Surgery, Section of General Surgery, University of Michigan School of Medicine, Ann Arbor, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rook GAW, Hernandez-Pando R, Dheda K, Teng Seah G. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 2004; 25:483-8. [PMID: 15324741 DOI: 10.1016/j.it.2004.06.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Current attempts to find a vaccine for tuberculosis (TB) are based on the assumption that it must drive a Th1 response. We review the evidence that progressive disease might not be due to absence of Th1, but rather to the subversive effect of an unusual Th2-like response, involving interleukin-4 (IL-4) and IL-4delta2. This Th2-like response can impair bactericidal function and lead to toxicity of tumour necrosis factor-alpha (TNF-alpha) and to pulmonary fibrosis. If this is important, effective vaccines will need to suppress pre-existing Th2-like activity. Such vaccines are feasible and are active therapeutically in mouse TB.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Infectious Diseases and International Health, Windeyer Institute for Medical Sciences, Royal Free and University College Medical School, 46 Cleveland Street, London, UK.
| | | | | | | |
Collapse
|
18
|
Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SHE, Schaible UE. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 2004; 101:10685-90. [PMID: 15243159 PMCID: PMC489995 DOI: 10.1073/pnas.0403787101] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-gamma production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|