1
|
Lu Q, Grotzke JE, Cresswell P. A novel probe to assess cytosolic entry of exogenous proteins. Nat Commun 2018; 9:3104. [PMID: 30082832 PMCID: PMC6079096 DOI: 10.1038/s41467-018-05556-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells use a specialized pathway called cross-presentation to activate CD8+ T cells by presenting peptides from exogenous protein antigens on major histocompatibility complex class I molecules. Considerable evidence suggests that internalized antigens cross endocytic membranes to access cytosolic proteasomes for processing. The mechanism of protein dislocation represents a major unsolved problem. Here we describe the development of a sensitive reporter substrate, an N-glycosylated variant of Renilla luciferase fused to the Fc region of human IgG1. The luciferase variant is designed to be enzymatically inactive when glycosylated, but active after the asparagine to aspartic acid conversion that occurs upon deglycosylation by the cytosolic enzyme N-glycanase-1. The generation of cytosolic luminescence depends on internalization, deglycosylation, the cytosolic AAA-ATPase VCP/p97, and the cytosolic chaperone HSP90. By incorporating a T cell epitope into the fusion protein, we demonstrate that antigen dislocation into the cytosol is the rate limiting step in cross-presentation.
Collapse
Affiliation(s)
- Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff E Grotzke
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Medina F, Ramos M, Iborra S, de León P, Rodríguez-Castro M, Del Val M. Furin-processed antigens targeted to the secretory route elicit functional TAP1-/-CD8+ T lymphocytes in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:4639-47. [PMID: 19752221 DOI: 10.4049/jimmunol.0901356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most pathogen-derived peptides recognized by CD8+ CTL are produced by proteasomes and delivered to the endoplasmic reticulum by the TAP transporters associated with Ag processing. Alternative proteases also produce antigenic peptides, but their actual relevance is unclear. There is a need to quantify the contribution of these supplementary pathways in vitro and in vivo. A well-defined TAP-independent secretory route of Ag processing involves the trans-Golgi network protease furin. Quantitation of this route by using OVA constructs encoded by vaccinia viruses indicates that it provides approximately one-third of all surface complexes of peptide and MHC class I molecules. Generation of the epitope carboxyl terminus is a dramatic rate-limiting step, since bypassing it increased efficiency by at least 1000-fold. Notably, the secretory construct activated a similar percentage of Ag-specific CD8+ T cells in wild type as in TAP1-deficient mice, which allow only secretory routes but which have a 10- to 20-fold smaller CD8 compartment. Moreover, these TAP1(-/-) OVA-specific CD8+ T lymphocytes accomplished elimination of epitope-bearing cells in vivo. The results obtained with this experimental system underscore the potential of secretory pathways of MHC class I Ag presentation to elicit functional CD8+ T lymphocytes in vivo and support the hypothesis that noncytosolic processing mechanisms may compensate in vivo for the lack of proteasome participation in Ag processing in persons genetically deficient in TAP and thus contribute to pathogen control.
Collapse
Affiliation(s)
- Francisco Medina
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) E-28220, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 2008; 283:33276-86. [PMID: 18832379 PMCID: PMC2586253 DOI: 10.1074/jbc.m805222200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Indexed: 12/04/2022] Open
Abstract
The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.
Collapse
Affiliation(s)
- Kerry L Chamberlain
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
4
|
Pauk VV, Tuktarova IA, Nasibullin TR, Zueva LP, Adel'guzhina AK, Khusnutdinova EK, Mustafina OE. [Paraoxonase 1 gene polymorphism 192Q/R in old men and long-livers from Tatars ethnic group]. Mol Biol 2007; 41:601-7. [PMID: 17936978 DOI: 10.1134/s0026893307040127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Comparison in genotype and allele frequencies of people groups of younger (from 1 till 20 years), middle (21-55 years), elderly (56-74 years), senile (75-89 years) age and long-livers (90-109 years) have been performed (only 1116 person) with the purpose of analysis of molecular-genetic bases of ageing and longevity of the person. Allele variants of PON1 gene have been identified by polymerase chain reaction in a combination with restriction analysis. In the general sample of Tatars genotypes PON1*Q/*Q, PON1*Q/*R and PON1*R/*R are revealed with frequencies of 46.15, 44.35 and 9.5%, alleles PON1*Q and PON1*R are found with frequencies of 68.32 and 31.68% accordingly. Statistically significant distinctions on frequencies of genotypes and alleles between separate age groups are found. It has appeared, that frequency of PON1*R allele (28.46%) is lowered among old men in comparison with those among persons of younger age (37.42%, P = 0.009). However essentially above in group of long-livers, than in group of old men, frequencies allele PON1*R (P = 0.005) and genotype PON1*R/*R (P = 0.01).
Collapse
|
5
|
Johnstone C, Del Val M. Traffic of proteins and peptides across membranes for immunosurveillance by CD8(+) T lymphocytes: a topological challenge. Traffic 2007; 8:1486-94. [PMID: 17822406 DOI: 10.1111/j.1600-0854.2007.00635.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.
Collapse
Affiliation(s)
- Carolina Johnstone
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Pozuelo km 2, E-28220 Majadahonda, Madrid, Spain
| | | |
Collapse
|
6
|
|
7
|
Babon A, Almunia C, Boccaccio C, Beaumelle B, Gelb MH, Ménez A, Maillère B, Abastado JP, Salcedo M, Gillet D. Cross-presentation of a CMV pp65 epitope by human dendritic cells using bee venom PLA2 as a membrane-binding vector. FEBS Lett 2005; 579:1658-64. [PMID: 15757657 DOI: 10.1016/j.febslet.2005.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 01/27/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
We have used bee venom phospholipase A2 as a vector to load human dendritic cells ex vivo with a major histocompatibility complex (MHC) class I-restricted epitope fused to its C-terminus. The fusion protein bound to human monocyte-derived dendritic cells and was internalized into early endosomes. In vitro immunization experiments showed that these dendritic cells were able to generate specific CD8 T cell lines against the epitope carried by the fusion protein. Cross-presentation did not require proteasome, transporter associated with antigen processing, or endosome proteases, but required newly synthesized MHC molecules. Comparison of the antigen presentation pathway observed in this study to that followed by other toxins used as vectors is discussed.
Collapse
Affiliation(s)
- Aurélie Babon
- Protein Engineering and Research Department (DIEP), bat 152, CEA-Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reed DG, Nopo-Olazabal LH, Funk V, Woffenden BJ, Reidy MJ, Dolan MC, Cramer CL, Medina-Bolivar F. Expression of functional hexahistidine-tagged ricin B in tobacco. PLANT CELL REPORTS 2005; 24:15-24. [PMID: 15599751 DOI: 10.1007/s00299-004-0901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/30/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
Ricin B (RTB), the lectin subunit of ricin, shows promise as an effective mucosal adjuvant and carrier for use in humans. In order to obtain a recombinant plant source of RTB that is devoid of the toxic ricin A subunit, we expressed RTB in Nicotiana tabacum. RTB was engineered with an N-terminal hexahistidine tag (His-RTB), which may affect protein stability. Lactose-affinity purification of His-RTB from leaves yielded three major glycosylated products of 32, 33.5 and 35 kDa. Their identity as RTB was verified by mass spectrometry and immunoblotting with anti-ricin antibodies. Functionality of His-RTB was confirmed by binding to asialofetuin, lactose and galactose.
Collapse
Affiliation(s)
- Deborah G Reed
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0331, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Ricin is a potent, plant-derived, ribosome inactivating protein. To target ribosomes in the mammalian cytosol, ricin must firstly negotiate the endomembrane system of the cell to reach the endoplasmic reticulum. Here, the toxin is reduced and the catalytic A chain is recognised by ER components that facilitate its membrane translocation to the cytosol. To be toxic, ricin A chain must then avoid degradation, a conundrum made more tricky in that ubiquitination and proteasomal degradation are normally tightly coupled to the translocation process. This mini-review summarises current understanding of these events.
Collapse
Affiliation(s)
- Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
10
|
|
11
|
|
12
|
Schmitz A, Herzog V. Endoplasmic reticulum-associated degradation: exceptions to the rule. Eur J Cell Biol 2004; 83:501-9. [PMID: 15679096 DOI: 10.1078/0171-9335-00412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | |
Collapse
|
13
|
Smith DC, Marsden CJ, Lord JM, Roberts LM. Expression, Purification and Characterization of Ricin vectors used for exogenous antigen delivery into the MHC Class I presentation pathway. Biol Proced Online 2003; 5:13-19. [PMID: 12734560 PMCID: PMC150387 DOI: 10.1251/bpo42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Revised: 12/03/2002] [Accepted: 12/12/2002] [Indexed: 11/27/2022] Open
Abstract
Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smith et al. J Immunol 2002; 169:99-107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression in E. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterized in vitro, via an N-glycosidase assay, and in vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass.
Collapse
Affiliation(s)
- Daniel C. Smith
- Department of Biological Sciences, University of Warwick. Coventry, CV4 7AL. UK
| | | | - J. Michael Lord
- Department of Biological Sciences, University of Warwick. Coventry, CV4 7AL. UK
| | - Lynne M. Roberts
- Department of Biological Sciences, University of Warwick. Coventry, CV4 7AL. UK
| |
Collapse
|
14
|
Abstract
Ricin is a heterodimeric protein produced in the seeds of the castor oil plant (Ricinus communis). It is exquisitely potent to mammalian cells, being able to fatally disrupt protein synthesis by attacking the Achilles heel of the ribosome. For this enzyme to reach its substrate, it must not only negotiate the endomembrane system but it must also cross an internal membrane and avoid complete degradation without compromising its activity in any way. Cell entry by ricin involves a series of steps: (i) binding, via the ricin B chain (RTB), to a range of cell surface glycolipids or glycoproteins having beta-1,4-linked galactose residues; (ii) uptake into the cell by endocytosis; (iii) entry of the toxin into early endosomes; (iv) transfer, by vesicular transport, of ricin from early endosomes to the trans-Golgi network; (v) retrograde vesicular transport through the Golgi complex to reach the endoplasmic reticulum; (vi) reduction of the disulphide bond connecting the ricin A chain (RTA) and the RTB; (vii) partial unfolding of the RTA to render it translocationally-competent to cross the endoplasmic reticulum (ER) membrane via the Sec61p translocon in a manner similar to that followed by misfolded ER proteins that, once recognised, are targeted to the ER-associated protein degradation (ERAD) machinery; (viii) avoiding, at least in part, ubiquitination that would lead to rapid degradation by cytosolic proteasomes immediately after membrane translocation when it is still partially unfolded; (ix) refolding into its protease-resistant, biologically active conformation; and (x) interaction with the ribosome to catalyse the depurination reaction. It is clear that ricin can take advantage of many target cell molecules, pathways and processes. It has been reported that a single molecule of ricin reaching the cytosol can kill that cell as a consequence of protein synthesis inhibition. The ready availability of ricin, coupled to its extreme potency when administered intravenously or if inhaled, has identified this protein toxin as a potential biological warfare agent. Therapeutically, its cytotoxicity has encouraged the use of ricin in 'magic bullets' to specifically target and destroy cancer cells, and the unusual intracellular trafficking properties of ricin potentially permit its development as a vaccine vector. Combining our understanding of the ricin structure with ways to cripple its unwanted properties (its enzymatic activity and promotion of vascular leak whilst retaining protein stability and important immunodominant epitopes), will also be crucial in the development of a long awaited protective vaccine against this toxin.
Collapse
Affiliation(s)
- Michael J Lord
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | |
Collapse
|