1
|
Green KA, Ma C, Hoffmann FW, Hoffmann PR, Green WR. Depletion of monocytic myeloid-derived suppressor cells in LP-BM5 murine retroviral infection has a positive impact on virus-induced host immunodeficiency. Virology 2024; 600:110247. [PMID: 39307098 PMCID: PMC11560480 DOI: 10.1016/j.virol.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 11/12/2024]
Abstract
We have shown the induction of CD11b+Ly6C+ monocytic myeloid-derived suppressor cells (M-MDSCs) during infection of B6 mice by LP-BM5 immunodeficiency-inducing retrovirus. We published that the molecular mechanisms of these M-MDSCs vary, and depend on the cell type targeted by the suppression -defined by use of biochemical inhibitors, mouse M-MDSCs knock-out strains and blocking antibodies. These M-MDSCs suppressed proliferation and function of T cells, via nitric oxide synthase/nitric oxide; and that of B cells, ∼50% via INOS/NO along with the negative checkpoint regulator VISTA, reactive nitrogen and oxygen species, and other soluble mediators. Here, LP-BM5 infected mice were treated weekly with 5-Fluorouracil (5-FU), resulting in depletion of peripheral blood and splenic M-MDSCs, reduced MDSC activity, and significantly decreased standard disease parameters of: splenomegaly, impaired B-and T-cell ex vivo polyclonal responses, and viral load. In addition, 5-FU treatment significantly increased percentages of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Kathy A Green
- Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | - Chi Ma
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Fukun W Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - William R Green
- Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
2
|
Clark EA, Giltiay NV. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front Immunol 2018; 9:2235. [PMID: 30323814 PMCID: PMC6173129 DOI: 10.3389/fimmu.2018.02235] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
CD22 (Siglec 2) is a receptor predominantly restricted to B cells. It was initially characterized over 30 years ago and named “CD22” in 1984 at the 2nd International workshop in Boston (1). Several excellent reviews have detailed CD22 functions, CD22-regulated signaling pathways and B cell subsets regulated by CD22 or Siglec G (2–4). This review is an attempt to highlight recent and possibly forgotten findings. We also describe the role of CD22 in autoimmunity and the great potential for CD22-based immunotherapeutics for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, United States.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. J Virol 2015; 89:9693-8. [PMID: 26157131 DOI: 10.1128/jvi.00888-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.
Collapse
|
4
|
O'Connor MA, Green WR. The role of indoleamine 2,3-dioxygenase in LP-BPM5 murine retroviral disease progression. Virol J 2013; 10:154. [PMID: 23680027 PMCID: PMC3751850 DOI: 10.1186/1743-422x-10-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory intracellular enzyme involved in tryptophan degradation. IDO is induced during cancer and microbial infections by cytokines, ligation of co-stimulatory molecules and/or activation of pattern recognition receptors, ultimately leading to modulation of the immune response. LP-BM5 murine retroviral infection induces murine AIDS (MAIDS), which is characterized by profound and broad immunosuppression of T- and B-cell responses. Our lab has previously described multiple mechanisms regulating the development of immunodeficiency of LP-BM5-induced disease, including Programmed Death 1 (PD-1), IL-10, and T-regulatory (Treg) cells. Immunosuppressive roles of IDO have been demonstrated in other retroviral models, suggesting a possible role for IDO during LP-BM5-induced retroviral disease progression and/or development of viral load. Methods Mice deficient in IDO (B6.IDO−/−) and wildtype C57BL/6 (B6) mice were infected with LP-BM5 murine retrovirus. MAIDS and LP-BM5 viral load were assessed at termination. Results As expected, IDO was un-inducible in B6.IDO−/− during LP-BM5 infection. B6.IDO−/− mice infected with LP-BM5 retrovirus succumbed to MAIDS as indicated by splenomegaly, serum hyper IgG2a and IgM, decreased responsiveness to B- and T-cell mitogens, conversion of a proportion of CD4+ T cells from Thy1.2+ to Thy1.2-, and increased percentages of CD11b+Gr-1+ cells. LP-BM5 infected B6.IDO−/− mice also demonstrated the development of roughly equivalent disease kinetics as compared to infected B6 mice. Splenic viral loads of B6 and B6.IDO−/− mice were also equivalent after infection as measured by LP-BM5-specific Def Gag and Eco Gag viral mRNA, determined by qRT-PCR. Conclusions Collectively, these results demonstrate IDO neither plays an essential role, nor is required, in LP-BM5-induced disease progression or LP-BM5 viral load.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
5
|
Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol 2012; 87:2058-71. [PMID: 23221564 DOI: 10.1128/jvi.01547-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b(+) Gr-1(+) Ly6C(+)) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1-PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6G(low/±) Ly6C(+) CD11b(+)-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.
Collapse
|
6
|
de Jong D, Janz S. Anaplastic plasmacytoma of mouse--establishing parallels between subtypes of mouse and human plasma cell neoplasia. J Pathol 2010; 221:242-7. [PMID: 20527018 DOI: 10.1002/path.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mouse models may provide an important tool for basic and applied research on human diseases. An ideal tumour model should replicate the phenotypic and molecular characteristics of human malignancy as well as the typical physiological effects and dissemination patterns. The histopathological and molecular genetic characterization of anaplastic plasmacytoma (APCT) in strain NSF.V(+) mice provides an example to achieve this goal for a specific lymphoma subtype. Firstly, it demonstrates that, like plasma-cell neoplasms in humans, those in mice occur as distinct subtypes. Secondly, it shows that mouse APCT exhibits striking parallels to possible human tumour counterparts for which good mouse models of de novo tumour development are sorely needed: IgM(+) multiple myeloma and Waldenström's macroglobulinaemia. Thirdly, it strongly suggests that insertional somatic mutagenesis, by either a murine leukaemia virus or an oncogenic transposon, would be an effective experimental approach to accelerating malignant transformation of mature B cells and plasma cells in mice and, thereby, tagging and uncovering cancer driver genes that may be of great relevance for the tumour initiation and progression in lymphoma.
Collapse
Affiliation(s)
- Daphne de Jong
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
7
|
The programmed death-1 and interleukin-10 pathways play a down-modulatory role in LP-BM5 retrovirus-induced murine immunodeficiency syndrome. J Virol 2007; 82:2456-69. [PMID: 18094175 DOI: 10.1128/jvi.01665-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathology due to the immune system's response to viral infections often represents a delicate balance between inhibition of viral pathogenesis and regulation of protective immunity. In susceptible C57BL/6 (B6) mice, the murine retroviral isolate LP-BM5 induces splenomegaly, hypergammaglobulinemia, profound B- and T-cell immunodeficiency, and increased susceptibility to opportunistic pathogens and terminal B-cell lymphomas. Here, we report that B6.PD-1 (programmed death-1) and B6.IL-10 knockout mice are substantially more susceptible to LP-BM5-induced disease than wild-type B6 mice. LP-BM5-infected B6.PD-1(-/-) mice developed more severe splenomegaly, hypergammaglobulinemia, and immunodeficiency than infected B6 mice: PD-1(-/-) mice are more susceptible to lower doses of LP-BM5 and show more exaggerated disease early postinfection. LP-BM5-infected B6.IL-10(-/-) mice also develop exaggerated LP-BM5-induced disease, compared to B6 mice, without a significant change in the retroviral load. By reciprocal reconstitution experiments, comparing wild-type versus PD-1(-/-) sources of the requisite cells for LP-BM5 pathogenesis-CD4 T and B cells, PD-1(+) B cells appear to be crucial in the normal limitation of LP-BM5-induced disease in B6 mice. Also, infected B6 mice have increased CD11b(+) spleen cells that express interleukin-10 (IL-10). However, PD-1(-/-) mice, though showing an even greater expansion of CD11b(+) cells after LP-BM5 inoculation, did not show an equivalent increase in IL-10-producing cells. Thus, it appears that PD-1/PD-L interactions and IL-10 are primarily important in moderating the effects of LP-BM5-induced disease in B6 mice.
Collapse
|
8
|
Abstract
LP-BM5, a retroviral isolate, induces a disease featuring retrovirus-induced immunodeficiency, designated murine AIDS (MAIDS). Many of the features of the LP-BM5-induced syndrome are shared with human immunodeficiency virus-induced disease. For example, CD4 T cells are critical to the development of MAIDS. In vivo depletion of CD4 T cells before LP-BM5 infection rendered genetically susceptible B6 mice MAIDS resistant. Similarly, MAIDS did not develop in B6.nude mice. However, if reconstituted with CD4 T cells, B6.nude mice develop full-blown MAIDS. Our laboratory has shown that the interaction of B and CD4 T cells that is central to MAIDS pathogenesis requires ligation of CD154 on CD4 T cells with CD40 on B cells. However, it is not clear which additional characteristics of the phenotypically and functionally heterogeneous CD4 T-cell compartment are required. Here, in vivo adoptive transfer experiments using B6.nude recipients are employed to compare the pathogenic abilities of CD4 T-cell subsets defined on the basis of cell surface phenotypic or functional differences. Th1 and Th2 CD4 T cells equally supported MAIDS induction. The rare Thy1.2(-) CD4 subset that expands upon LP-BM5 infection was not necessary for MAIDS. Interestingly, CD45RB(low) CD4 T cells supported significantly less disease than CD45RB(high) CD4 T cells. Because the decreased MAIDS pathogenesis could not be attributed to inhibition by CD45RB(low) CD25(+) natural T-regulatory cells, an intrinsic property of the CD45RB(low) cells appeared responsible. Similarly, there was no evidence that natural T-regulatory cells played a role in LP-BM5-induced pathogenesis in the context of the intact CD4 T-cell population.
Collapse
Affiliation(s)
- Wen Li
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
9
|
Gaur A, Green WR. Role of a cytotoxic-T-lymphocyte epitope-defined, alternative gag open reading frame in the pathogenesis of a murine retrovirus-induced immunodeficiency syndrome. J Virol 2005; 79:4308-15. [PMID: 15767431 PMCID: PMC1061551 DOI: 10.1128/jvi.79.7.4308-4315.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
LP-BM5 murine leukemia virus-infected C57BL/6 mice develop profound immunodeficiency and B-cell lymphomas. The LP-BM5 complex contains a mixture of defective (BM5def) and replication-competent helper viruses among which BM5def is the primary causative agent of disease. The BM5def primary open reading frame (ORF1) encodes the single gag precursor protein (Pr60gag). Our lab has recently demonstrated that a novel immunodominant cytotoxic-T-lymphocyte (CTL) epitope (SYNTGRFPPL) is expressed from a +1-nucleotide translational open reading frame of BM5def during the course of normal retrovirus expression. The SYNTGRFPPL CTL epitope may be generated from either of two initiation methionines present, ORF2a or ORF2b, located downstream of the ORF1 initiation site. This study investigates the role(s) of the alternative ORF2-derived gag protein(s) of BM5def in viral pathogenesis. We have examined the disease-inducing capabilities of mutant viruses in which the translational potential of either the initiating ORF2a or ORF2b AUG has been disrupted. Although these mutated viruses are capable of wild-type ORF1 expression, they are unable to induce disease. Our data strongly suggest the existence of a novel ORF2 product(s) that is required for LP-BM5-induced pathogenesis and have potentially broad implications for other retroviral diseases.
Collapse
MESH Headings
- Animals
- Codon, Initiator
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Viral
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/physiology
- Immunodominant Epitopes
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Murine Acquired Immunodeficiency Syndrome/physiopathology
- Murine Acquired Immunodeficiency Syndrome/virology
- Mutation
- Open Reading Frames
- Protein Biosynthesis
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Arti Gaur
- Department of Microbiology and Immunology, Norris Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | |
Collapse
|
10
|
Green KA, Ahonen CL, Cook WJ, Green WR. CD40-associated TRAF 6 signaling is required for disease induction in a retrovirus-induced murine immunodeficiency. J Virol 2004; 78:6055-60. [PMID: 15141004 PMCID: PMC415804 DOI: 10.1128/jvi.78.11.6055-6060.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LP-BM5 retrovirus-infected C57BL/6 mice develop splenomegaly, lymphadenopathy, hypergammaglobulinemia, and immunodeficiency; thus, this disease has been named mouse AIDS. In this syndrome, CD154/CD40 interactions are required for but do not mediate disease by upregulation of CD80 or CD86. We report here that there is nonetheless a necessity for CD40 signaling competence, specifically an intact tumor necrosis factor receptor-associated factor 6 (TRAF 6) binding site.
Collapse
Affiliation(s)
- Kathy A Green
- Department of Microbiology and Immunology, 1 Medical Center Dr., Dartmouth Medical School, Lebanon, NH 03750, USA.
| | | | | | | |
Collapse
|