1
|
Pfeifer Serrahima J, Schoenfeld K, Kühnel I, Harwardt J, Macarrón Palacios A, Prüfer M, Kolaric M, Oberoi P, Kolmar H, Wels WS. Bispecific killer cell engagers employing species cross-reactive NKG2D binders redirect human and murine lymphocytes to ErbB2/HER2-positive malignancies. Front Immunol 2024; 15:1457887. [PMID: 39267747 PMCID: PMC11390497 DOI: 10.3389/fimmu.2024.1457887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.
Collapse
Affiliation(s)
- Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Margareta Kolaric
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| |
Collapse
|
2
|
Thompson AA, Harbut MB, Kung PP, Karpowich NK, Branson JD, Grant JC, Hagan D, Pascual HA, Bai G, Zavareh RB, Coate HR, Collins BC, Côte M, Gelin CF, Damm-Ganamet KL, Gholami H, Huff AR, Limon L, Lumb KJ, Mak PA, Nakafuku KM, Price EV, Shih AY, Tootoonchi M, Vellore NA, Wang J, Wei N, Ziff J, Berger SB, Edwards JP, Gardet A, Sun S, Towne JE, Venable JD, Shi Z, Venkatesan H, Rives ML, Sharma S, Shireman BT, Allen SJ. Identification of small-molecule protein-protein interaction inhibitors for NKG2D. Proc Natl Acad Sci U S A 2023; 120:e2216342120. [PMID: 37098070 PMCID: PMC10160951 DOI: 10.1073/pnas.2216342120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.
Collapse
Affiliation(s)
- Aaron A. Thompson
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Michael B. Harbut
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Pei-Pei Kung
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Nathan K. Karpowich
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Jeffrey D. Branson
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Joanna C. Grant
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Deborah Hagan
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Heather A. Pascual
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Guoyun Bai
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Heather R. Coate
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Bernard C. Collins
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Marjorie Côte
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Christine F. Gelin
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Hadi Gholami
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Adam R. Huff
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Luis Limon
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kevin J. Lumb
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Puiying A. Mak
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kohki M. Nakafuku
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Edmund V. Price
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Amy Y. Shih
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Mandana Tootoonchi
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Nadeem A. Vellore
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jocelyn Wang
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Na Wei
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jeannie Ziff
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Scott B. Berger
- Discovery Immunology, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - James P. Edwards
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Agnès Gardet
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Siquan Sun
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Jennifer E. Towne
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | | | - Zhicai Shi
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | | | - Marie-Laure Rives
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Sujata Sharma
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Brock T. Shireman
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Samantha J. Allen
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| |
Collapse
|
3
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
5
|
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol 2018; 51:55-61. [PMID: 29525346 PMCID: PMC6145810 DOI: 10.1016/j.coi.2018.02.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Chicago, Northwestern University, Chicago IL60611, United States
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL60611, United States.
| |
Collapse
|
6
|
Zhai L, Wu L, Li F, Burnham RS, Pizarro JC, Xu B. A Rapid Method for Refolding Cell Surface Receptors and Ligands. Sci Rep 2016; 6:26482. [PMID: 27215173 PMCID: PMC4877712 DOI: 10.1038/srep26482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Feng Li
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Robert S. Burnham
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Antoun A, Jobson S, Cook M, O'Callaghan CA, Moss P, Briggs DC. Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations. Hum Immunol 2010; 71:610-20. [PMID: 20219610 DOI: 10.1016/j.humimm.2010.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/03/2010] [Accepted: 02/18/2010] [Indexed: 11/17/2022]
Abstract
NKG2D is an important activating receptor on NK cells and T-cells and has a diverse panel of ligands (NKG2DL) which include the ULBP and RAET1 proteins. Several NKG2DL exhibit a considerable degree of genetic polymorphism, and although the functional significance of such allelic variation remains unclear, genetic variants have been implicated in susceptibility to infection and auto-immune disease. We used sequence-specific primer polymerase chain reaction to determine the frequency of 25 single nucleotide polymorphisms (SNPs) in the promoter and coding regions of genes of the RAET1/ULBP cluster in 223 Euro-Caucasoid, 60 Afro-Caribbean, and 52 Indo-Asian individuals to determine NKG2DL allele and haplotype frequencies within these populations. We show marked differences in the frequency of NKG2DL SNPs and haplotypes among the three ethnic groups, and certain haplotypes were observed almost exclusively in Afro-Caribbean compared with the Euro-Caucasoid and Indo-Asian populations. Interestingly, variation was focused within the RAET1E (ULBP4), RAET1L, and ULBP3 genes, whereas the ULBP1, ULBP2 and RAET1G (ULBP5) genes were highly conserved. These findings suggest that individual NKG2DL alleles have been subject to divergent selective pressures during the migration of Homo sapiens. This information will be of importance in understanding the biology and clinical significance of NKG2DL polymorphism.
Collapse
Affiliation(s)
- Ayman Antoun
- School of Cancer Sciences, Birmingham University, Birmingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
8
|
Biassoni R, Ugolotti E, De Maria A. Comparative analysis of NK-cell receptor expression and function across primate species: Perspective on antiviral defenses. SELF NONSELF 2010; 1:103-113. [PMID: 21487512 DOI: 10.4161/self.1.2.11717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/06/2010] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells are lymphoid effectors that are involved in the innate immune surveillance against infected and/or tumor cells. Their function is under the fine-tuning control of cell surface receptors that display either inhibitory or activating function and in healthy condition, mediate self-tolerance. It is known that inhibitory receptors are characterized by clonal and stochastic distribution and are extremely sensible to any modification, downregulation or loss of MHC class I surface expression that are induced in autologous cells upon viral infection or cancer transformation. This alteration of the MHC class I expression weakens the strength of the inhibitory receptor-induced interaction, thus resulting in a prompt triggering of NK cell function, which ends up in the inhibition of tumor progression and proliferation of pathogen-infected cells. Thus, the inhibitory function of NK cells is only one face of the coin, since NK-cell activation is controlled by different arrays of activating receptors that finally are involved in the induction of cytolysis and/or cytokine release. Interestingly, the inhibitory NK-cell receptors that are involved in dampening NK cell-mediated responses evolved during speciation in different, often structurally unrelated surface-expressed molecules, all using a conserved signaling pathway. In detail, during evolution, the inhibitory receptors that assure the recognition of MHC class I molecules, originate in, at least, three different ways. This ended up in multigene families showing marked structural divergences that coevolved in a convergent way with the availability of appropriate MHC ligand molecules.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine-Istituto Scientifico Giannina Gaslini; Genova, Italy
| | | | | |
Collapse
|
9
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
10
|
Valés-Gómez M, Chisholm SE, Cassady-Cain RL, Roda-Navarro P, Reyburn HT. Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res 2008; 68:1546-54. [PMID: 18316620 DOI: 10.1158/0008-5472.can-07-2973] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of the activating receptor NKG2D with its ligands plays an important role in immunosurveillance of tumors and infectious pathogens, but dysregulation of this system may lead to autoimmunity. The expression of NKG2D ligands is induced by cellular "stress." However, the regulation of expression of these molecules is not well understood. Here, we show that cells treated with proteasome inhibitors can become more susceptible to cytotoxicity mediated by natural killer cells because of the induction of expression of ligands for NKG2D, specifically ULBP2, but not down-regulation of MHC class I. Treatment with proteasome inhibitors led to up-regulation of ULBP2 expression in multiple, but not all, cell lines tested. This increase in expression of ULBP2 at the cell surface correlated with induction of transcription of the ULBP2 gene and synthesis of ULBP2 protein. In contrast, treatment with inhibitors of histone deacetylases led to increased levels of mRNA and protein, for both ULBP2 and MHC class I-related chain A/B molecules. Thus, different types of stress can trigger up-regulated expression of different sets of NKG2D ligands. Proteasome inhibitors are proving to be of significant value in the treatment of hematologic malignancies and these observations may help to better understand the biology of therapy with these compounds.
Collapse
Affiliation(s)
- Mar Valés-Gómez
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Srivastava RM, Varalakshmi C, Khar A. The Ischemia-Responsive Protein 94 (Irp94) Activates Dendritic Cells through NK Cell Receptor Protein-2/NK Group 2 Member D (NKR-P2/NKG2D) Leading to Their Maturation. THE JOURNAL OF IMMUNOLOGY 2008; 180:1117-30. [DOI: 10.4049/jimmunol.180.2.1117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Watson AA, Brown J, Harlos K, Eble JA, Walter TS, O'Callaghan CA. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J Biol Chem 2007; 282:3165-72. [PMID: 17132623 DOI: 10.1074/jbc.m610383200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human C-type lectin-like molecule CLEC-2 is expressed on the surface of platelets and signaling through CLEC-2 causes platelet activation and aggregation. CLEC-2 is a receptor for the platelet-aggregating snake venom protein rhodocytin. It is also a newly identified co-receptor for human immunodeficiency virus type 1 (HIV-1). An endogenous ligand has not yet been identified. We have solved the crystal structure of the extracellular domain of CLEC-2 to 1.6-A resolution, and identified the key structural features involved in ligand binding. A semi-helical loop region and flanking residues dominate the surface that is available for ligand binding. The precise distribution of hydrophobic and electrostatic features in this loop will determine the nature of any endogenous ligand with which it can interact. Major ligand-induced conformational change in CLEC-2 is unlikely as its overall fold is compact and robust. However, ligand binding could induce a tilt of a 3-10 helical portion of the long loop region. Mutational analysis and surface plasmon resonance binding studies support these observations. This study provides a framework for understanding the effects of rhodocytin venom binding on CLEC-2 and for understanding the nature of likely endogenous ligands and will provide a basis for rational design of drugs to block ligand binding.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Spreu J, Stehle T, Steinle A. Human cytomegalovirus-encoded UL16 discriminates MIC molecules by their alpha2 domains. THE JOURNAL OF IMMUNOLOGY 2006; 177:3143-9. [PMID: 16920952 DOI: 10.4049/jimmunol.177.5.3143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CMV infection results in MHC class I down-regulation and induction of NKG2D ligand expression favoring NK recognition of infected cells. However, human CMV-encoded UL16 counteracts surface expression of several NKG2D ligands by intracellular retention. Interestingly, UL16 interacts with MICB, but not with the closely related MICA, and with UL16-binding proteins (ULBP) ULBP1 and ULBP2, which are only distantly related to MICB, but not with ULPB3 or ULBP4, although all constitute ligands for NKG2D. Here, we dissected the molecular basis of MICA-MICB discrimination by UL16 to elucidate its puzzling binding behavior. We report that the UL16-MICB interaction is independent of glycosylation and demonstrate that selective MICB recognition by UL16 is governed by helical structures of the MICB alpha2 domain. Transplantation of the MICB alpha2 domain confers UL16 binding capacity to MICA, and thus, diversification of the MICA alpha2 domain may have been driven by the selective pressure exerted by UL16.
Collapse
Affiliation(s)
- Jessica Spreu
- Department of Immunology, Interfacultary Institute for Cell Biology, Eberhard-Karls-University Tübingen, Germany
| | | | | |
Collapse
|
14
|
Abstract
Natural killer (NK) cells have originally been identified based on their capacity to kill transformed cells in a seemingly non-specific fashion. Over the last 15 years, knowledge on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. One of these receptor ligand systems, the NKG2D pathway, has received particular attention, and now serves as a paradigm for how the immune system is able to gather information about the health status of autologous host cells. In addition to its significance on NK cells, NKG2D, as well as other NK cell receptors, play significant roles on T cells. This review aims at summarizing recent insights into the regulation of NKG2D function, the control over NKG2D ligand expression and the role of NKG2D in tumor immunity. Finally, we will discuss first attempts to exploit NKG2D function to improve immunity to tumors.
Collapse
Affiliation(s)
- Jérôme D Coudert
- Ludwig Institute for Cancer Research, Lausanne Branch and University of Lausanne, Ch des Boveresses 155, Epalinges, Switzerland
| | | |
Collapse
|
15
|
González S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 2006; 298:121-38. [PMID: 16329186 DOI: 10.1007/3-540-27743-9_6] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The NKG2D-DAP10 receptor complex activates natural killer (NK) cells and costimulates effector T cell subsets upon engagement of ligands that can be conditionally expressed under physiologically harmful conditions such as microbial infections and malignancies. These characteristics have given rise to the widely embraced concept of immunorecognition of "induced or damaged self," complementing the "missing self" paradigm that is represented by MHC class I allotypes and their interactions with inhibitory receptors on NK cells. However, this notion may only be partially sustainable, as various patterns of constitutive tissue distributions have become apparent among members of one NKG2D ligand family. This review summarizes the biological properties of NKG2D and its ligands and discusses the interactions and regulation of these molecules with emphasis of their significance in microbial infections, tumor immunology, and autoimmune disease.
Collapse
Affiliation(s)
- S González
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
16
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
17
|
Backström E, Kristensson K, Ljunggren HG. Activation of natural killer cells: underlying molecular mechanisms revealed. Scand J Immunol 2004; 60:14-22. [PMID: 15238069 DOI: 10.1111/j.0300-9475.2004.01475.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells, the third major lymphocyte population, are important effector cells against certain infections and tumours. They have also been implicated as a link between innate and adaptive immune responses. In recent years, much attention has been paid to the NK cell inhibitory receptors and their interaction with major histocompatibility complex class I molecules on target cells. This review summarizes recent findings on regulation of NK cell activity with an emphasis on NK cell stimulatory receptors. A particular emphasis is devoted to the receptor NKG2D that is expressed on all NK cells.
Collapse
Affiliation(s)
- E Backström
- Department of Neuroscience, Karolinska Institutet, University Hospital, Retzius vag 8, B2:5, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Mathias Faure
- Laboratoire d'Immunochimie, Inserm U548 and CEA-DRDC, Commissariat à l'Energie Atomique, Grenoble, France.
| | | | | |
Collapse
|
19
|
Abstract
Natural killer (NK) cells are lymphocytes that were first identified for their ability to kill tumor cells without deliberate immunization or activation. Subsequently, they were also found to be able to kill cells that are infected with certain viruses and to attack preferentially cells that lack expression of major histocompatibility complex (MHC) class I antigens. The recent discovery of novel NK receptors and their ligands has uncovered the molecular mechanisms that regulate NK activation and function. Several activating NK cell receptors and costimulatory molecules have been identified that permit these cells to recognize tumors and virus-infected cells. These are modulated by inhibitory receptors that sense the levels of MHC class I on prospective target cells to prevent unwanted destruction of healthy tissues. In vitro and in vivo, their cytotoxic ability can be enhanced by cytokines, such as interleukin (IL)-2, IL-12, IL-15 and interferon alpha/beta (IFN-alpha/beta). In animal studies, they have been shown to play a critical role in the control of tumor growth and metastasis and to provide innate immunity against infection with certain viruses. Following activation, NK cells release cytokines and chemokines that induce inflammatory responses; modulate monocyte, dendritic cells, and granulocyte growth and differentiation; and influence subsequent adaptive immune responses. The underlining mechanism of discriminating tumor cells and normal cells by NK cells has provided new insights into tumor immunosurveillance and has suggested new strategies for the treatment of human cancer.
Collapse
Affiliation(s)
- Jun Wu
- Shanghai Gnomics, Inc., and Chinese National Genome Center, Shanghai, China
| | | |
Collapse
|
20
|
McFarland BJ, Strong RK. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 2004; 19:803-12. [PMID: 14670298 DOI: 10.1016/s1074-7613(03)00320-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The homodimeric immunoreceptor NKG2D drives the activation of effector cells following engagement of diverse, conditionally expressed MHC class I-like protein ligands. NKG2D recognition is highly degenerate in that a single surface on receptor monomers binds pairs of distinct surfaces on each structurally divergent ligand, simultaneously accommodating multiple nonconservative ligand allelic or isoform substitutions. In contrast to TCR-pMHC and other NK receptor-ligand interactions, thermodynamic and kinetic analyses of four NKG2D-ligand pairs (MIC-A*001, MIC-B*005, ULBP1, and RAE-1beta) reported here show that the relative enthalpic and entropic terms, heat capacity, association rates, and activation energy barriers are comparable to typical, rigid protein-protein interactions. Rather than "induced-fit" binding, NKG2D degeneracy is achieved using distinct interaction mechanisms at each rigid interface.
Collapse
Affiliation(s)
- Benjamin J McFarland
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | |
Collapse
|
21
|
Abstract
Recognition of MHC and MHC-like molecules by both natural killer (NK) and T cell receptors (TCR) reveals remarkable degeneracy. The interaction of the NKG2D NK receptor with several MHC I-like ligands has now been analyzed thermodynamically by McFarland and Strong, who suggest that a "rigid adaptation" mechanism governs such crossreactivity. This contrasts with "induced fit" that accounts for TCR adaptation to multiple MHCp ligands.
Collapse
Affiliation(s)
- David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Building 10, Room 11N311, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Radaev S, Kattah M, Rostro B, Colonna M, Sun PD. Crystal Structure of the Human Myeloid Cell Activating Receptor TREM-1. Structure 2003; 11:1527-35. [PMID: 14656437 DOI: 10.1016/j.str.2003.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Triggering receptors expressed on myeloid cells (TREM) are a family of recently discovered receptors that play important roles in innate immune responses, such as to activate inflammatory responses and to contribute to septic shock in response to microbial-mediated infections. To date, two TREM receptors in human and several homologs in mice have been identified. We report the 2.6 A resolution crystal structure of the extracellular domain of human TREM-1. The overall fold of the receptor resembles that of a V-type immunoglobulin domain with differences primarily located in the N-terminal strand. TREM-1 forms a "head-to-tail" dimer with 4100 A(2) interface area that is partially mediated by a domain swapping between the first strands. This mode of dimer formation is different from the "head-to-head" dimerization that existed in V(H)V(L) domains of antibodies or V domains of T cell receptors. As a result, the dimeric TREM-1 most likely contains two distinct ligand binding sites.
Collapse
Affiliation(s)
- Sergei Radaev
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
23
|
Biassoni R, Cantoni C, Marras D, Giron-Michel J, Falco M, Moretta L, Dimasi N. Human natural killer cell receptors: insights into their molecular function and structure. J Cell Mol Med 2003; 7:376-87. [PMID: 14754506 PMCID: PMC6740120 DOI: 10.1111/j.1582-4934.2003.tb00240.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
NK cells express receptors characterized by opposite functions that finely regulate their activities. Among inhibitory receptors, some are specific for different groups of MHC class I alleles, while others are still orphan receptors. On the contrary, various activating receptors are involved in the triggering of NK-mediated natural cytotoxicity. In general, their engagement induces human NK cells to kill target cells that are either HLA class I-negative or -deficient. Thus, the process of NK cell triggering mediated by Natural Cytotoxicity Receptors can be mainly considered as a non MHC-restricted mechanism. Here, a brief description of the molecular nature of these receptors, as well as, of their 3D-structures and of the implications for ligand recognition, is given.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/physiology
- Chromosomes, Human, Pair 17/genetics
- Cytotoxicity, Immunologic
- Humans
- Killer Cells, Natural/immunology
- Lectins/chemistry
- Lectins/genetics
- Lectins/physiology
- Models, Immunological
- Models, Molecular
- Multigene Family
- Natural Cytotoxicity Triggering Receptor 1
- Natural Cytotoxicity Triggering Receptor 2
- Psoriasis/genetics
- Psoriasis/immunology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, KIR
- Receptors, Natural Killer Cell
Collapse
Affiliation(s)
- R Biassoni
- Instituto Giannina Gaslini, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
McFarland BJ, Kortemme T, Yu SF, Baker D, Strong RK. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure 2003; 11:411-22. [PMID: 12679019 DOI: 10.1016/s0969-2126(03)00047-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Engagement of diverse protein ligands (MIC-A/B, ULBP, Rae-1, or H60) by NKG2D immunoreceptors mediates elimination of tumorigenic or virally infected cells by natural killer and T cells. Three previous NKG2D-ligand complex structures show the homodimeric receptor interacting with the monomeric ligands in similar 2:1 complexes, with an equivalent surface on each NKG2D monomer binding intimately to a total of six distinct ligand surfaces. Here, the crystal structure of free human NKG2D and in silico and in vitro alanine-scanning mutagenesis analyses of the complex interfaces indicate that NKG2D recognition degeneracy is not explained by a classical induced-fit mechanism. Rather, the divergent ligands appear to utilize different strategies to interact with structurally conserved elements of the consensus NKG2D binding site.
Collapse
Affiliation(s)
- Benjamin J McFarland
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|