1
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Johnson HM, Ahmed CM. Disparate viral pandemics from COVID19 to monkeypox and beyond: a simple, effective and universal therapeutic approach hiding in plain sight. Front Immunol 2023; 14:1208828. [PMID: 38106428 PMCID: PMC10722180 DOI: 10.3389/fimmu.2023.1208828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The field of antiviral therapeutics is fixated on COVID19 and rightly so as the fatalities at the height of the pandemic in the United States were almost 1,000,000 in a twelve month period spanning parts of 2020/2021. A coronavirus called SARS-CoV2 is the causative virus. Development of a vaccine through molecular biology approaches with mRNA as the inducer of virus spike protein has played a major role in driving down mortality and morbidity. Antivirals have been of marginal value in established infections at the level of hospitalization. Thus, the current focus is on early symptomatic infection of about the first five days. The Pfizer drug paxlovid which is composed of nirmatrelvir, a peptidomimetic protease inhibitor of SARS-CoV2 Mpro enzyme, and ritonavir to retard degradation of nirmatrelvir, is the current FDA recommended treatment of early COVID19. There is no evidence of broad antiviral activity of paxlovid against other diverse viruses such as the influenza virus, poxviruses, as well as a host of respiratory viruses. Although type I interferons (IFNs) are effective against SARS-CoV2 in cell cultures and in early COVID19 infections, they have not been broadly recommended as therapeutics for COVID19. We have developed stable peptidomimetics of both types I and II IFNs based on our noncanonical model of IFN signaling involving the C-terminus of the IFNs. We have also identified two members of intracellular checkpoint inhibitors called suppressors of cytokine signaling (SOCS), SOCS1 and SOCS3 (SOCS1/3), and shown that they are virus induced intrinsic virulence proteins with activity against IFN signaling enzymes JAK2 and TYK2. We developed a peptidomimetic antagonist, based on JAK2 activation loop, against SOCS1/3 and showed that it synergizes with the IFN mimetics for potent broad spectrum antiviral activity without the toxicity of intact IFN molecules. IFN mimetics and the SOCS1/3 antagonist should have an advantage over currently used antivirals in terms of safety and potency against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
3
|
Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, Liu S, Liu B, Wang J, Ding Y, Chen J, Jiang C, Wren JD, Csiszar A, Ungvari Z, Greco C, Kanie T, Peng J, Zhang XA. Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci 2023; 80:154. [PMID: 37204469 PMCID: PMC10484302 DOI: 10.1007/s00018-023-04803-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.
Collapse
Affiliation(s)
- Jiang Min
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Shenglan Yang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yang Cai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - David R Vanderwall
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shuping Li
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Songlan Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Anna Csiszar
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Zoltan Ungvari
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Céline Greco
- Department of Pain and Palliative Care Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
4
|
Haram CS, Moitra S, Keane R, Kuhlmann FM, Frankfater C, Hsu FF, Beverley SM, Zhang K, Keyel PA. The sphingolipids ceramide and inositol phosphorylceramide protect the Leishmania major membrane from sterol-specific toxins. J Biol Chem 2023; 299:104745. [PMID: 37094699 PMCID: PMC10209034 DOI: 10.1016/j.jbc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the Leishmania major sphingolipids inositol phosphorylceramide (IPC), and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity, and that ceramide reduced perfringolysin O-, but not streptolysin O-, mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.
Collapse
Affiliation(s)
- Chaitanya S Haram
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Rilee Keane
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - F Matthew Kuhlmann
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409.
| |
Collapse
|
5
|
Woo JH, Park SJ, Park SM, Joe E, Jou I. Interleukin‐6 signaling requires EHD1‐mediated alteration of membrane rafts. FEBS J 2022; 289:5914-5932. [DOI: 10.1111/febs.16458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Joo Hong Woo
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
| | - Soo Jung Park
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
| | - Sang Myun Park
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
- Center for Convergence Research of Neurological Disorders Ajou University School of Medicine Suwon Korea
| | - Eun‐hye Joe
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
- Center for Convergence Research of Neurological Disorders Ajou University School of Medicine Suwon Korea
| | - Ilo Jou
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
| |
Collapse
|
6
|
Lee JH, Han JH, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med 2022; 179:252-265. [PMID: 34808332 DOI: 10.1016/j.freeradbiomed.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Acute microglial activation plays an important role in neuroprotection. However, dysregulated, prolonged microgliosis exacerbates neurodegeneration through excessive release of pro-inflammatory cytokines and cytotoxic factors. Interferon-gamma (IFN-γ), an inflammatory cytokine, exacerbates the detrimental microglial response. Although various anti-inflammatory drugs have been evaluated as interventions for microglia-mediated neuroinflammation, no anti-inflammatories are in clinical use for microgliosis. The present study evaluated the anti-inflammatory mechanisms of oxysterols, blood brain barrier (BBB) penetrable bioactive lipids, revealing that this intervention suppresses neuroinflammation by disrupting membrane lipid raft formation and caveolae-mediated endosomal IFN-γ signaling. We find that 25-hydroxycholesterol (25-HC) rapidly repressed IFN-γ receptor trafficking to lipid rafts in microglia by disrupting raft formation, thereby suppressing microglial inflammatory response. IFN-γ treatment upregulated expression of Cav-1, a major component of caveolae, and IFN-γ signaling was sustained through Cav-1+ signaling endosomes. 25-HC repressed IFN-γ induction of Cav-1 expression in microglia, and subsequently suppressed the chronic inflammatory response. Taken together, these findings demonstrated that 25-HC effectively regulate the inflammatory status of microglia by mediating the formation of rafts and caveolae-dependent signaling endosomes. Given the important roles of IFN-γ and microglia in the pathology of neurodegenerative brain diseases, a novel anti-inflammatory mechanism of 25-HC that is not receptor-dependent, but rather is related to the regulation of membrane rafts and caveolae, suggests a new therapeutic target for inflammatory neurodegenerations.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | - Ji-Hye Han
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Joo Hong Woo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
7
|
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, Aasen T, Kwak BR, Girao H. Biological Functions of Connexin43 Beyond Intercellular Communication. Trends Cell Biol 2019; 29:835-847. [PMID: 31358412 DOI: 10.1016/j.tcb.2019.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 (Cx43) is commonly associated with direct cell-cell communication through gap junctions (GJs). However, recent groundbreaking studies have challenged this dogma, implicating Cx43 in other biological processes, such as transcription, metabolism, autophagy, and ion channel trafficking. How Cx43 participates in these processes remains largely unknown, although its high turnover rate, capacity to bind to myriad proteins, and the discovery of truncated isoforms of Cx43, ascribe to this protein unanticipated roles in chief processes that require fine-tuned regulation. Accordingly, Cx43 can be regarded as a central integrative hub to which diverse cues converge to be processed in a concerted manner. In this review, we examine the noncanonical roles of Cx43 and discuss the implications of these functions in human diseases and future therapeutic strategies.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Daniela Batista-Almeida
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate an important role of the secreted apolipoprotein A-I binding protein (AIBP) in regulation of cholesterol efflux and lipid rafts. The article discusses these findings in the context of angiogenesis and inflammation. RECENT FINDINGS Lipid rafts are cholesterol-rich and sphingomyelin-rich membrane domains in which many receptor complexes assemble upon activation. AIBP mediates selective cholesterol efflux, in part via binding to toll-like receptor-4 (TLR4) in activated macrophages and microglia, and thus reverses lipid raft increases in activated cells. Recent articles report AIBP regulation of vascular endothelial growth factor receptor-2, Notch1 and TLR4 function. In zebrafish and mouse animal models, AIBP deficiency results in accelerated angiogenesis, increased inflammation and exacerbated atherosclerosis. Spinal delivery of recombinant AIBP reduces neuraxial inflammation and reverses persistent pain state in a mouse model of chemotherapy-induced polyneuropathy. Inhalation of recombinant AIBP reduces lipopolysaccharide-induced acute lung injury in mice. These findings are discussed in the perspective of AIBP's proposed other function, as an NAD(P)H hydrate epimerase, evolving into a regulator of cholesterol trafficking and lipid rafts. SUMMARY Novel findings of AIBP regulatory circuitry affecting lipid rafts and related cellular processes may provide new therapeutic avenues for angiogenic and inflammatory diseases.
Collapse
Affiliation(s)
- Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, 6550 Fannin St, TX77030
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 407 E 61st St, New York, NY 10065
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
9
|
Noncanonical IFN Signaling, Steroids, and STATs: A Probable Role of V-ATPase. Mediators Inflamm 2019; 2019:4143604. [PMID: 31275057 PMCID: PMC6558600 DOI: 10.1155/2019/4143604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
A small group of only seven transcription factors known as STATs (signal transducer and activator of transcription) are considered to be canonical determinants of specific gene activation for a plethora of ligand/receptor systems. The activation of STATs involves a family of four tyrosine kinases called JAK kinases. JAK1 and JAK2 activate STAT1 in the cytoplasm at the heterodimeric gamma interferon (IFNγ) receptor, while JAK1 and TYK2 activate STAT1 and STAT2 at the type I IFN heterodimeric receptor. The same STATs and JAKs are also involved in signaling by functionally different cytokines, growth factors, and hormones. Related to this, IFNγ-activated STAT1 binds to the IFNγ-activated sequence (GAS) element, but so do other STATs that are not involved in IFNγ signaling. Activated JAKs such as JAK2 and TYK2 are also involved in the epigenetics of nucleosome unwrapping for exposure of DNA to transcription. Furthermore, activated JAKs and STATs appear to function coordinately for specific gene activation. These complex events have not been addressed in canonical STAT signaling. Additionally, the function of noncoding enhancer RNAs, including their role in enhancer/promoter interaction is not addressed in the canonical STAT signaling model. In this perspective, we show that JAK/STAT signaling, involving membrane receptors, is essentially a variation of cytoplasmic nuclear receptor signaling. Focusing on IFN signaling, we showed that ligand, IFN receptor, the JAKs, and the STATs all undergo endocytosis and ATP-dependent nuclear translocation to promoters of genes specifically activated by IFNs. We argue here that the vacuolar ATPase (V-ATPase) proton pump probably plays a key role in endosomal membrane crossing by IFNs for receptor cytoplasmic binding. Signaling of nuclear receptors such as those of estrogen and dihydrotestosterone provides templates for making sense of the specificity of gene activation by closely related cytokines, which has implications for lymphocyte phenotypes.
Collapse
|
10
|
Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep 2018; 8:6458. [PMID: 29691463 PMCID: PMC5915385 DOI: 10.1038/s41598-018-24955-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Necrotizing soft tissue infections are lethal polymicrobial infections. Two key microbes that cause necrotizing soft tissue infections are Streptococcus pyogenes and Clostridium perfringens. These pathogens evade innate immunity using multiple virulence factors, including cholesterol-dependent cytolysins (CDCs). CDCs are resisted by mammalian cells through the sequestration and shedding of pores during intrinsic membrane repair. One hypothesis is that vesicle shedding promotes immune evasion by concomitantly eliminating key signaling proteins present in cholesterol-rich microdomains. To test this hypothesis, murine macrophages were challenged with sublytic CDC doses. CDCs suppressed LPS or IFNγ-stimulated TNFα production and CD69 and CD86 surface expression. This suppression was cell intrinsic. Two membrane repair pathways, patch repair and intrinsic repair, might mediate TNFα suppression. However, patch repair did not correlate with TNFα suppression. Intrinsic repair partially contributed to macrophage dysfunction because TLR4 and the IFNγR were partially shed following CDC challenge. Intrinsic repair was not sufficient for suppression, because pore formation was also required. These findings suggest that even when CDCs fail to kill cells, they may impair innate immune signaling responses dependent on cholesterol-rich microdomains. This is one potential mechanism to explain the lethality of S. pyogenes and C. perfringens during necrotizing soft tissue infections.
Collapse
|
11
|
Williams JJL, Alotaiq N, Mullen W, Burchmore R, Liu L, Baillie GS, Schaper F, Pilch PF, Palmer TM. Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nat Commun 2018; 9:168. [PMID: 29330478 PMCID: PMC5766592 DOI: 10.1038/s41467-017-02585-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Effective suppression of JAK-STAT signalling by the inducible inhibitor "suppressor of cytokine signalling 3" (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.
Collapse
Affiliation(s)
- Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| | - Nasser Alotaiq
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Libin Liu
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Schaper
- Department of Systems Biology, Institute for Biology, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
| | - Paul F Pilch
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
12
|
Green DS, Young HA, Valencia JC. Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem 2017; 292:13925-13933. [PMID: 28652404 PMCID: PMC5572907 DOI: 10.1074/jbc.r116.774745] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon γ (IFNγ) is a pleiotropic protein secreted by immune cells. IFNγ signals through the IFNγ receptor, a protein complex that mediates downstream signaling events. Studies into IFNγ signaling have provided insight into the general concepts of receptor signaling, receptor internalization, regulation of distinct signaling pathways, and transcriptional regulation. Although IFNγ is the central mediator of the adaptive immune response to pathogens, it has been shown to be involved in several non-infectious physiological processes. This review will provide an introduction into IFNγ signaling biology and the functional roles of IFNγ in the autoimmune response.
Collapse
Affiliation(s)
- Daniel S Green
- From the Women's Malignancy Branch, Translational Genomics Section, Center for Cancer, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201.
| | - Julio C Valencia
- Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201.
| |
Collapse
|
13
|
Noncanonical IFN Signaling: Mechanistic Linkage of Genetic and Epigenetic Events. Mediators Inflamm 2016; 2016:9564814. [PMID: 28077919 PMCID: PMC5203919 DOI: 10.1155/2016/9564814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
Abstract
The canonical model of cytokine signaling via the JAK/STAT pathway dominates our view of signal transduction but provides no insight into the significance of the simultaneous presence of activated JAKs and STATs in the nucleus of cells treated with cytokines. Such a mechanistic shortcoming challenges the usefulness of the model in its present form. Focusing on the interferon (IFN) cytokines, we have developed a noncanonical model of IFN signaling that naturally connects activated JAKs and STATs at or near response elements of genes that are activated by the IFNs. Specifically, cells treated with IFNγ showed association of activated STAT1α and JAK2 at the GAS element of genes activated by IFNγ. For IFNα treated cells, the association involved activated STAT1α and TYK2 JAK kinase at the ISRE promoter. The power of the noncanonical model is that it provides mechanistic insight into specific gene activation at the level of the associated epigenetics, akin to that of steroid/steroid receptor signaling.
Collapse
|
14
|
Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 2016; 32:63-73. [DOI: 10.1016/j.cytogfr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
|
15
|
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted Therapies in Liver Fibrosis: Combining the Best Parts of Platelet-Derived Growth Factor BB and Interferon Gamma. Front Med (Lausanne) 2015; 2:72. [PMID: 26501061 PMCID: PMC4594310 DOI: 10.3389/fmed.2015.00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022] Open
Abstract
Cytokines, growth factors, and other locally produced mediators play key roles in the regulation of disease progression. During liver fibrosis, these mediators orchestrate the balance between pro- and antifibrotic activities as exerted by the hepatic cells. Two important players in this respect are the profibrotic mediator platelet-derived growth factor BB (PDGF-BB) and the antifibrotic cytokine interferon gamma (IFNγ). PDGF-BB, produced by many resident and infiltrating cells, causes extensive proliferation, migration, and contraction of hepatic stellate cells (HSCs) and myofibroblasts. These cells are the extracellular matrix-producing hepatic cells and they highly express the PDGFβ receptor. On the other hand, IFNγ is produced by natural killer cells in fibrotic livers and is endowed with proinflammatory, antiviral, and antifibrotic activities. This cytokine attracted much attention as a possible therapeutic compound in fibrosis. However, clinical trials yielded disappointing results because of low efficacy and adverse effects, most likely related to the dual role of IFNγ in fibrosis. In our studies, we targeted the antifibrotic IFNγ to the liver myofibroblasts. For that, we altered the cell binding properties of IFNγ, by delivery of the IFNγ-nuclear localization sequence to the highly expressed PDGFβ receptor using a PDGFβ receptor recognizing peptide, thereby creating a construct referred to as “Fibroferon” (i.e., fibroblast-targeted interferon γ). In recent years, we demonstrated that HSC-specific delivery of IFNγ increased its antifibrotic potency and improved its general safety profile in vivo, making Fibroferon highly suitable for the treatment of (fibrotic) diseases associated with elevated PDGFβ receptor expression. The present review summarizes the knowledge on these two key mediators, PDGF-BB and IFNγ, and outlines how we used this knowledge to create the cell-specific antifibrotic compound Fibroferon containing parts of both of these mediators.
Collapse
Affiliation(s)
- Fransien van Dijk
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| |
Collapse
|
16
|
Krause CD, Izotova LS, Pestka S. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes. Cytokine 2013; 64:298-309. [PMID: 23769803 PMCID: PMC3770794 DOI: 10.1016/j.cyto.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022]
Abstract
Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855, USA.
| | | | | |
Collapse
|
17
|
Blouin CM, Lamaze C. Interferon gamma receptor: the beginning of the journey. Front Immunol 2013; 4:267. [PMID: 24027571 PMCID: PMC3760442 DOI: 10.3389/fimmu.2013.00267] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Our view of endocytosis and membrane trafficking of transmembrane receptors has dramatically changed over the last 20 years. Several new endocytic routes have been discovered and mechanistically characterized in mammalian cells. Long considered as a passive means to terminate signaling through down-regulation of the number of activated receptors at the plasma membrane, it is now established that receptor endocytosis and endosomal sorting can be directly linked to the regulation of intracellular signaling pathways. The functional links between membrane trafficking of interferon receptors and JAK/STAT signaling have recently begun to be unraveled. These studies raise the exciting possibility that a certain level of signal specificity can be achieved through endocytosis and selective localization of the activated complexes within cellular membranes. The ongoing development of high-resolution cell imaging techniques with better spatial and temporal resolution gives new means of deciphering the inherent complexity of membrane trafficking and signaling. This should help to better comprehend the molecular mechanisms by which endocytosis and endosomal sorting of interferon receptors can orchestrate signaling selectivity within the JAK/STAT pathway that can be activated by as many as 60 different cytokines, growth factors, and hormones.
Collapse
Affiliation(s)
- Cédric M. Blouin
- Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Institut Curie – Centre de Recherche, Paris, France
- CNRS UMR144, Paris, France
| | - Christophe Lamaze
- Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Institut Curie – Centre de Recherche, Paris, France
- CNRS UMR144, Paris, France
| |
Collapse
|
18
|
Johnson HM, Noon-Song EN, Dabelic R, Ahmed CM. IFN signaling: how a non-canonical model led to the development of IFN mimetics. Front Immunol 2013; 4:202. [PMID: 23898330 PMCID: PMC3722551 DOI: 10.3389/fimmu.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs). The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH) and insulin, and growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus activated kinase (JAK) family, phosphorylation and dimerization of the signal transducer and activator of transcription (STAT) transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone (SH)/steroid receptor (SR) signaling. We have shown that ligand, receptor, activated JAKs, and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The SH/SR nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and properties.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | | | | | | |
Collapse
|
19
|
Steroid-like signalling by interferons: making sense of specific gene activation by cytokines. Biochem J 2012; 443:329-38. [PMID: 22452815 DOI: 10.1042/bj20112187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many cytokines, hormones and growth factors use the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway for cell signalling and specific gene activation. In the classical model, ligand is said to interact solely with the receptor extracellular domain, which triggers JAK activation of STATs at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation. Given the limited number of STATs (seven) and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on IFNγ (interferon γ), we have shown that ligand, receptor and activated JAKs are involved in nuclear events that are associated with specific gene activation, where the receptor subunit IFNGR1 (IFNγ receptor 1) functions as a transcription/co-transcription factor and the JAKs are involved in key epigenetic events. RTKs (receptor tyrosine kinases) such as EGFR [EGF (epidermal growth factor) receptor] and FGFR [FGF (fibroblast growth factor) receptor] also undergo nuclear translocation in association with their respective ligands. EGFR and FGFR, like IFNGR1, have been shown to function as transcription/co-transcription factors. The RTKs also regulate other kinases that have epigenetic effects. Our IFNγ model, as well as the RTKs EGFR and FGFR, have similarities to that of steroid receptor signalling. These systems consist of ligand-receptor-co-activator complexes at the genes that they activate. The co-activators consist of transcription factors and kinases, of which the latter play an important role in the associated epigenetics. It is our view that signalling by cytokines such as IFNγ is but a variation of specific gene activation by steroid hormones.
Collapse
|
20
|
de Weerd NA, Nguyen T. The interferons and their receptors--distribution and regulation. Immunol Cell Biol 2012; 90:483-91. [PMID: 22410872 PMCID: PMC7165917 DOI: 10.1038/icb.2012.9] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/07/2012] [Accepted: 02/12/2012] [Indexed: 12/19/2022]
Abstract
The interferons (IFNs) were originally described over 50 years ago, identified by their ability to confer viral resistance to cells. We now know that they are much more than just anti-viral cytokines collectively having roles in both innate and adaptive immune responses, in tumor surveillance and defense, and modulation of immune cell function. Three types of IFN have now been described, simply referred to as type I, II and III. Distinguishable by the unique receptors that they rely on for signal transduction, the three types of IFN have specific and varied roles in the maintenance of human health and defense against pathogens. In mounting an IFN-mediated immune response, the human body has developed the ability to regulate IFN-mediated signal transduction. Like all cytokines, the ability of a cell to respond to IFN is completely dependent on the presence of its cognate receptor on the surface of the target cell. Thus, one of the major mechanisms used by the human body to regulate the strength and duration of the IFN response is through regulation of receptor levels, thereby altering the cytokine-specific responsiveness of the target cell. This review will discuss the receptor system utilized by the type I IFNs and compare it with that of the type II and III IFNs, which also regulate immune responses through controlling receptor level on the cell surface.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
21
|
Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn's disease alters MHC-rafts in CD4+ T-cells. Cytometry A 2011; 81:149-64. [PMID: 22128034 DOI: 10.1002/cyto.a.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/09/2022]
Abstract
Clusters of MHCI, ICAM-1, CD44, CD59, IL-2R, and IL-15R molecules have been studied on the surface of CD4(+) T-cells from peripheral blood and lymph nodes of patients in Crohn's disease and healthy individuals as controls by using a dual-laser flow cytometric fluorescence resonance energy transfer (FRET) technique and fluorescently stained Fabs. When cells from patients in Crohn's disease are compared to those of controls, the surface expression level for the MHCI reduced by ∼45%, for CD44 enhanced by ∼100%, and for IL-2Rα, IL-15Rα, and common γ(c) enhanced by ∼50%, ∼70%, and ∼130%, respectively. Efficiencies of FRET monitoring homoassociation for the MHCI and CD44 reduced, that for IL-2Rα enhanced. While efficiencies of FRET monitoring the association of γ(c) and ICAM-1 with the MHCI reduced, those monitoring association of IL-2/15Rα, CD44, and CD59 with MHCI enhanced. Efficiencies of FRET measured between the MHCI and IL-2Rα, IL-15Rα differently enhanced to the advantage of IL-15Rα, the one measured between γ(c) and IL-2Rα reduced, suggesting modulations in the strength of interaction of MHCI with IL-2R, IL-15R, and γ(c). The increases in density of surface bound cTx and in the associations of the receptors with the G(M1)-ganglioside lipid molecules suggest stronger lipid raft interactions of the receptors. The observed alterations of MHC-rafts in Crohn's disease--summarized in models of receptor patterns of diseased and control cells--may have functional consequences regarding signaling by the raft components.
Collapse
Affiliation(s)
- László Damjanovich
- Department of Surgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
22
|
Gonnord P, Blouin CM, Lamaze C. Membrane trafficking and signaling: two sides of the same coin. Semin Cell Dev Biol 2011; 23:154-64. [PMID: 22085846 DOI: 10.1016/j.semcdb.2011.11.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Recent findings on clathrin-dependent and non clathrin-dependent endocytic routes are currently changing our classical view of endocytosis. Originally seen as a way for the cell to internalize membrane, receptors or various soluble molecules, this process is in fact directly linked to complex signaling pathways. Here, we review new insights in endocytosis and present latest development in imaging techniques that allow us to visualize and follow the dynamics of membrane-associated signaling events at the plasma membrane and other intracellular compartments. The immune synapse is taken as an illustration of the importance of membrane reorganization and proteins clustering to initiate and maintain signaling. Future challenges include understanding the crosslink between traffic and signaling and how all compartmentalized signals are integrated inside the cell at a higher level.
Collapse
Affiliation(s)
- Pauline Gonnord
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
23
|
Johnson HM, Noon-Song E, Ahmed CM. Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifn γ and Other Cytokines: A Possible Steroid-like Connection. ACTA ACUST UNITED AC 2011; 2. [PMID: 22924155 DOI: 10.4172/2155-9899.1000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
24
|
Cho O, Hong SH, Kim JS, Yoon JK, Kim K, Chwae YJ, Shin HJ, Park S. IFN-λ endocytosis and IFN-λ responsive promoter activation are dependent on cholesterol. Cytokine 2010; 51:93-100. [DOI: 10.1016/j.cyto.2010.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/26/2010] [Accepted: 03/16/2010] [Indexed: 11/24/2022]
|
25
|
Kostanyan IA, Vonarshenko AV, Lipkin VM. STAT1: A many-sided transcription factor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1068162010010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Carpenter G, Liao HJ. Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 2009; 315:1556-66. [PMID: 18951890 PMCID: PMC2709404 DOI: 10.1016/j.yexcr.2008.09.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022]
Abstract
It has been known for at least 20 years that growth factors induce the internalization of cognate receptor tyrosine kinases (RTKs). The internalized receptors are then sorted to lysosomes or recycled to the cell surface. More recently, data have been published to indicate other intracellular destinations for the internalized RTKs. These include the nucleus, mitochondria, and cytoplasm. Also, it is recognized that trafficking to these novel destinations involves new biochemical mechanisms, such as proteolytic processing or interaction with translocons, and that these trafficking events have a function in signal transduction, implicating the receptor itself as a signaling element between the cell surface and the nucleus.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
27
|
Maldonado RA, Soriano MA, Perdomo LC, Sigrist K, Irvine DJ, Decker T, Glimcher LH. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med 2009; 206:877-92. [PMID: 19349465 PMCID: PMC2715121 DOI: 10.1084/jem.20082900] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/06/2009] [Indexed: 01/14/2023] Open
Abstract
The antigen recognition interface formed by T helper precursors (Thps) and antigen-presenting cells (APCs), called the immunological synapse (IS), includes receptors and signaling molecules necessary for Thp activation and differentiation. We have recently shown that recruitment of the interferon-gamma receptor (IFNGR) into the IS correlates with the capacity of Thps to differentiate into Th1 effector cells, an event regulated by signaling through the functionally opposing receptor to interleukin-4 (IL4R). Here, we show that, similar to IFN-gamma ligation, TCR stimuli induce the translocation of signal transducer and activator of transcription 1 (STAT1) to IFNGR1-rich regions of the membrane. Unexpectedly, STAT1 is preferentially expressed, is constitutively serine (727) phosphorylated in Thp, and is recruited to the IS and the nucleus upon TCR signaling. IL4R engagement controls this process by interfering with both STAT1 recruitment and nuclear translocation. We also show that in cells with deficient Th1 or constitutive Th2 differentiation, the IL4R is recruited to the IS. This observation suggest that the IL4R is retained outside the IS, similar to the exclusion of IFNGR from the IS during IL4R signaling. This study provides new mechanistic cues for the regulation of lineage commitment by mutual immobilization of functionally antagonistic membrane receptors.
Collapse
Affiliation(s)
- Roberto A Maldonado
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Iron Chelators and Hypoxia Mimetics Inhibit IFNγ-Mediated Jak-STAT Signaling. J Invest Dermatol 2009; 129:723-9. [DOI: 10.1038/jid.2008.269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Sehgal PB. Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 2008; 19:329-40. [PMID: 18691663 PMCID: PMC2597702 DOI: 10.1016/j.semcdb.2008.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 01/25/2023]
Abstract
In recent years several of the key tenets of the original cytokine-STAT-signaling paradigm had to be revised. First, the notion that nonphosphorylated "inactive" STATs are present in the cytoplasm as free monomers which dimerized only subsequent to Tyr-phosphorylation has been replaced by the understanding that nonphosphorylated STATs in the cytoplasm exist largely as dimers and high molecular mass "statosome" complexes. Second, the notion that phosphorylation, either of Tyr or Ser residues or both, in STAT species is required for transcriptional activation has been replaced by the realization that nonphosphorylated STATs can be transcriptionally active albeit with respect to sets of target genes distinct from phosphorylated STATs. Third, the notion that it is the activation by phosphorylation of STATs at the plasma membrane that then leads to their import into the nucleus has been replaced by the recognition that even nonphosphorylated STATs shuttle between the cytoplasm and nucleus at all times in a constitutive manner. Fourth, the notion that the trans-cytoplasmic transit of STATs from the plasma membrane to the nuclear import machinery takes place exclusively as a free cytosolic process has been replaced by the understanding that at least a portion of this trans-cytoplasmic transit is mediated via membrane-associated caveolar and endocytic trafficking (the "signaling endosome" hypothesis). Fifth, the targeting and sequestration of activated STAT3 to long-lived endosomes in the cytoplasm requires consideration of STAT3-mediated "signal transduction" from the plasma membrane to cytoplasmic membrane destinations potentially for function(s) in the cytoplasm. Indeed, in tissue sections many discrete histologic cell types display PY-STAT3 almost exclusively in the cytoplasm with little, if any, in the nucleus. New challenges include determining the structural bases for the recruitment of nonphosphorylated dimeric STAT species to the cytosolic face of membranes including at the cytoplasmic tails of respective receptor complexes, the conformational changes subsequent to phosphorylation and the structural bases for the targeting and functions of STAT proteins within the cytoplasm per se.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
30
|
Lei JT, Martinez-Moczygemba M. Separate endocytic pathways regulate IL-5 receptor internalization and signaling. J Leukoc Biol 2008; 84:499-509. [PMID: 18511572 DOI: 10.1189/jlb.1207828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are critically dependent on IL-5 for their activation, differentiation, survival, and augmentation of cytotoxic activity. We previously showed that the cytoplasmic domain of the hematopoietic receptor, betac, which is shared by IL-5, IL-3, and GM-CSF, is directly ubiquitinated and degraded by the proteasomes in a JAK2-dependent manner. However, studies describing the spatial distribution, endocytic regulation, and trafficking of betac-sharing receptors in human eosinophils are currently lacking. Using deconvolution microscopy and biochemical methods, we clearly demonstrate that IL-5Rs reside in and are internalized by clathrin- and lipid raft-dependent endocytic pathways. Microscopy analyses in TF1 cells and human eosinophils revealed significant colocalization of betac, IL-5Ralpha, and Cy3-labeled IL-5 with transferrin- (clathrin) and cholera toxin-B- (lipid raft) positive vesicles. Moreover, whereas internalized IL-5Rs were detected in both clathrin- and lipid raft-positive vesicles, biochemical data revealed that tyrosine phosphorylated, ubiquitinated, and proteasome-degraded IL-5Rs partitioned to the soluble, nonraft fractions (clathrin-containing). Lastly, we show that optimal IL-5-induced signaling requires entry of activated IL-5Rs into the intracellular compartment, as coimmunoprecipitation of key signaling molecules with the IL-5R was completely blocked when either endocytic pathway was inhibited. These data provide the first evidence that IL-5Rs segregate and traffic into two distinct plasma membrane compartments, and they further establish that IL-5R endocytosis regulates signaling both positively and negatively.
Collapse
Affiliation(s)
- Jonathan T Lei
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
31
|
Fulcher AJ, Ahmed CM, Noon-Song EN, Kwan RY, Subramaniam PS, Johnson HM, Jans DA. Interferon gamma is recognised by importin alpha/beta: enhanced nuclear localising and transactivation activities of an interferon gamma mimetic. FEBS Lett 2008; 582:1569-74. [PMID: 18405666 PMCID: PMC2689648 DOI: 10.1016/j.febslet.2008.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 11/30/2022]
Abstract
Interferon (IFN) gamma's ability to localise in the nucleus and function in gene activation has been known for some time, although the role of the conventional nuclear transporting importin molecules is unclear. Here, we demonstrate for the first time the direct recognition of IFNgamma and an IFNgamma mimetic peptide by IMPalpha and the IMPalpha/beta heterodimer, where the IFNgamma mimetic shows higher affinity. Significantly, this correlates well both with in vivo ability to target green fluorescent protein to the nucleus in transfected cells as determined by quantitative confocal laser scanning microscopy, as well as GAS promoter activity of a luciferase reporter. This has important implications for IFNgamma's anti-viral action, and the potential use of the IFNgamma mimetic in antiviral therapies.
Collapse
Affiliation(s)
- Alex J. Fulcher
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, P.O. Box 13D, Victoria, Clayton 3800, Australia
| | - Chulbul M.I. Ahmed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Ezra N. Noon-Song
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Rain Y.Q. Kwan
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, P.O. Box 13D, Victoria, Clayton 3800, Australia
| | - Prem S. Subramaniam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - David A. Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, P.O. Box 13D, Victoria, Clayton 3800, Australia
- ARC Centre of Excellence for Biotechnology and Development, Australia
| |
Collapse
|
32
|
Claudinon J, Monier MN, Lamaze C. Interfering with interferon receptor sorting and trafficking: impact on signaling. Biochimie 2007; 89:735-43. [PMID: 17493737 DOI: 10.1016/j.biochi.2007.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking.
Collapse
Affiliation(s)
- Julie Claudinon
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
33
|
Lo HW, Hsu SC, Hung MC. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat 2006; 95:211-8. [PMID: 16261406 DOI: 10.1007/s10549-005-9011-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is a major characteristic of many human malignancies including breast cancer. Since the discovery of EGF in 1960's and its receptor in 1980's, our understanding of the EGF/EGFR pathway has been significantly advanced and consequently, EGFR is considered as a major oncogenic factor and an attractive therapeutic target. The well-established traditional function of EGFR is known to transmit extra-cellular mitogenic signals, such as EGF and transforming growth factor-alpha (TGF-alpha), through activating a number of downstream signaling cascades. These include signaling modules that involve phospholipase C-gamma, Ras, and phosphatidylinositol-3 kinase (PI-3K). In cancer cells, the common outcomes following the activation of the EGFR-mediated downstream pathways are altered gene activities, leading to un-controlled tumor proliferation and apoptosis. Interestingly, emerging evidences suggest the existence of a direct mode of the EGFR pathway that is distinct from the traditional transduction pathway. This new mode of EGFR signaling involves cellular transport of EGFR from the cell-surface to the cell nucleus, association of nuclear EGFR complex with gene promoters, and transcriptional regulation of the target genes. Although the nature and pathological consequences of the nuclear EGFR pathway remain elusive, accumulating evidences suggest its association with increased tumor cell proliferation and poor survival rate in breast cancer patients. While several anti-EGFR agents are being tested in breast cancer patients clinically and others under pre-clinical development, a better understanding of the traditional and the nuclear EGFR pathways will facilitate the identification of patients that are likely to respond to these agents as well as future development of more effective anti-EGFR therapeutic interventions.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
34
|
Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol 2006; 84:287-97. [PMID: 16902576 DOI: 10.1139/y05-127] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE(2) and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.
Collapse
Affiliation(s)
- Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Fleurimont, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006; 98:1570-83. [PMID: 16552725 DOI: 10.1002/jcb.20876] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ahmed CMI, Johnson HM. IFN-gamma and its receptor subunit IFNGR1 are recruited to the IFN-gamma-activated sequence element at the promoter site of IFN-gamma-activated genes: evidence of transactivational activity in IFNGR1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:315-21. [PMID: 16785527 DOI: 10.4049/jimmunol.177.1.315] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have shown previously that IFN-gamma and one of its receptor subunits, IFNGR1, are translocated to the nucleus, together with STAT1alpha as one macromolecular complex, via the classical importin-dependent pathway. In this study, we have identified the nuclear targets of IFN-gamma and IFNGR1. By chromatin immunoprecipitation followed by PCR, IFN-gamma, its receptor subunit IFNGR1, and STAT1alpha were found to be associated with the IFN-gamma-activated sequence (GAS) in the promoter of two of the genes stimulated by IFN-gamma. Immunoprecipitated chromatin also showed the association of the IFN-gamma, IFNGR1, and STAT1alpha on the same DNA sequence. Examination of nuclear extracts from WISH cells treated with IFN-gamma revealed the specific binding of IFN-gamma, IFNGR1, and STAT1alpha to biotinylated GAS nucleotide sequence. Association of IFN-gamma, IFNGR1, and STAT1alpha with the GAS promoter was also demonstrated by EMSA. Transfection with a GAS-luciferase gene together with the IFNGR1 and nonsecreted IFN-gamma resulted in enhanced reporter activity. In addition, IFNGR1 fused to the yeast GAL4 DNA binding domain resulted in enhanced transcription from a GAL4 response element, suggesting the presence of a trans activation domain in IFNGR1. Our observations put IFN-gamma and its receptor subunit, IFNGR1, in direct contact with the promoter region of IFN-gamma-activated genes with associated increased activity, thus suggesting a transcriptional/cotranscriptional role for IFN-gamma/IFNGR1 as well as a possible role in determining the specificity of IFN-gamma action.
Collapse
Affiliation(s)
- Chulbul M I Ahmed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
37
|
Jandu N, Ceponis PJM, Kato S, Riff JD, McKay DM, Sherman PM. Conditioned medium from enterohemorrhagic Escherichia coli-infected T84 cells inhibits signal transducer and activator of transcription 1 activation by gamma interferon. Infect Immun 2006; 74:1809-18. [PMID: 16495555 PMCID: PMC1418659 DOI: 10.1128/iai.74.3.1809-1818.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFN-gamma) is a cytokine important to host defense which can signal through signal transducer and activator of transcription 1 (Stat1). Enterohemorrhagic Escherichia coli (EHEC) modulates host cell signal transduction to establish infection, and EHEC serotypes O113:H21 and O157:H7 both inhibit IFN-gamma-induced Stat1 tyrosine phosphorylation in vitro. The aim of this study was to delineate both bacterial and host cell factors involved in the inhibition of Stat1 tyrosine phosphorylation. Human T84 colonic epithelial cells were challenged with direct infection, viable EHEC separated from T84 cells by a filter, sodium orthovanadate, isolated flagellin, bacterial culture supernatants, and conditioned medium treated with proteinase K, trypsin, or heat inactivation. Epithelial cells were then stimulated with IFN-gamma and protein extracts were analyzed by immunoblotting. The data showed that IFN-gamma-inducible Stat1 tyrosine phosphorylation was inhibited when EHEC adhered to T84 cells, but not by bacterial culture supernatants or bacteria separated from the epithelial monolayer. Conditioned medium from T84 cells infected with EHEC O157:H7 suppressed Stat1 activation, and this was not reversed by treatment with proteinases or heat inactivation. Use of pharmacological inhibitors showed that time-dependent bacterial, but not epithelial, protein synthesis was involved. Stat1 inhibition was also independent of bacterial flagellin, host proteasome activity, and protein tyrosine phosphatases. Infection led to altered IFN-gamma receptor domain 1 subcellular distribution and decreased expression in cholesterol-enriched membrane microdomains. Thus, suppression of host cell IFN-gamma signaling by production of a contact-dependent, soluble EHEC factor may represent a novel mechanism for this pathogen to evade the host immune system.
Collapse
Affiliation(s)
- Narveen Jandu
- Research Institute, Gastroenterology and Nutrition Room 8409, Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
38
|
Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, Eid P, Johannes L, Lamaze C. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell 2006; 17:2896-909. [PMID: 16624862 PMCID: PMC1483027 DOI: 10.1091/mbc.e06-01-0076] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type I (alpha/beta) and type II (gamma) interferons (IFNs) bind to distinct receptors, although they activate the same signal transducer and activator of transcription, Stat1, raising the question of how signal specificity is maintained. Here, we have characterized the sorting of IFN receptors (IFN-Rs) at the plasma membrane and the role it plays in IFN-dependent signaling and biological activities. We show that both IFN-alpha and IFN-gamma receptors are internalized by a classical clathrin- and dynamin-dependent endocytic pathway. Although inhibition of clathrin-dependent endocytosis blocked the uptake of IFN-alpha and IFN-gamma receptors, this inhibition only affected IFN-alpha-induced Stat1 and Stat2 signaling. Furthermore, the antiviral and antiproliferative activities induced by IFN-alpha but not IFN-gamma were also affected. Finally, we show that, unlike IFN-alpha receptors, activated IFN-gamma receptors rapidly become enriched in plasma membrane lipid microdomains. We conclude that IFN-R compartmentalization at the plasma membrane, through clathrin-dependent endocytosis and lipid-based microdomains, plays a critical role in the signaling and biological responses induced by IFNs and contributes to establishing specificity within the Jak/Stat signaling pathway.
Collapse
Affiliation(s)
- Marta Marchetti
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| | - Marie-Noelle Monier
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| | - Alexandre Fradagrada
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| | - Keith Mitchell
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| | | | - Pierre Eid
- Laboratoire d’Oncologie Virale, CNRS-UPR 9045, 94801 Villejuif, France
| | - Ludger Johannes
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| | - Christophe Lamaze
- *Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France; and
| |
Collapse
|
39
|
Shuto T, Kato K, Mori Y, Viriyakosol S, Oba M, Furuta T, Okiyoneda T, Arima H, Suico MA, Kai H. Membrane-anchored CD14 is required for LPS-induced TLR4 endocytosis in TLR4/MD-2/CD14 overexpressing CHO cells. Biochem Biophys Res Commun 2005; 338:1402-9. [PMID: 16263085 DOI: 10.1016/j.bbrc.2005.10.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/16/2005] [Indexed: 10/25/2022]
Abstract
Lipopolysaccharide (LPS) induces inflammatory activation through TLR4 (toll-like receptor-4)/MD-2 (myeloid differentiation-2)/CD14 (cluster of differentiation-14) complex. Although optimal LPS signaling is required to activate our innate immune systems against gram-negative bacterium, excessive amount of LPS signaling develops a detrimental inflammatory response in gram-negative bacterial infections. Downregulation of surface TLR4 expression is one of the critical mechanisms that can restrict LPS signaling. Here, we found that membrane-anchored CD14 is required for LPS-induced downregulation of TLR4 and MD-2 in CHO cells. Moreover, pretreatment of the cells with sterol-binding agent filipin reduced LPS-induced TLR4 downregulation, suggesting the involvement of caveolae-mediated endocytosis pathway. Involvement of caveolae in LPS-induced TLR4 endocytosis was further confirmed by immunoprecipitation. Thus, our data indicate that caveolae-dependent endocytosis pathway is involved in LPS-induced TLR4 downregulation and that this is dependent on membrane-anchored CD14 expression.
Collapse
Affiliation(s)
- Tsuyoshi Shuto
- Department of Molecular Medicine, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
41
|
Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7:575-89. [PMID: 15950906 DOI: 10.1016/j.ccr.2005.05.007] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/08/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) exists in the nucleus of highly proliferative cells where it functions as a transcription factor. Although EGFR has transactivational activity, it lacks a DNA binding domain and, therefore, may require a DNA binding transcription cofactor for its transcriptional function. Here, we report that EGFR physically interacts with signal transducers and activators of transcription 3 (STAT3) in the nucleus, leading to transcriptional activation of inducible nitric oxide synthase (iNOS). In breast carcinomas, nuclear EGFR positively correlates with iNOS. This study describes a mode of transcriptional control involving cooperated efforts of STAT3 and nuclear EGFR. Our work suggests that the deregulated iNOS/NO pathway may partly contribute to the malignant biology of tumor cells with high levels of nuclear EGFR and STAT3.
Collapse
|
42
|
Hortala M, Estival A, Pradayrol L, Susini C, Clemente F. Identification of c-Jun as a critical mediator for the intracrine 24 kDa FGF-2 isoform-induced cell proliferation. Int J Cancer 2005; 114:863-9. [PMID: 15609298 DOI: 10.1002/ijc.20744] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tumor cells frequently synthesize an N-terminally extended the FGF-2 isoform of 24 kDa devoid of signal peptide but that contains a functional nuclear localization sequence (NLS). Although the signaling pathways elicited by secreted FGF-2 are well described, the molecular mechanisms involved in the growth promoting action of nuclearized 24 kDa FGF-2 remain unknown. The cancer cell line AR4-2J was engineered to stably express only the 24 kDa FGF-2 isoform and cDNA microarrays were used to identify targets implicated in the intracrine-induced cell proliferation. Levels of 27 transcripts were found either upregulated or downregulated compared to control cells. Among the 18 upregulated genes was c-jun, which is often involved in cell proliferation. Real-time PCR and Western blot analyses confirmed c-jun induction at both mRNA and protein levels. The c-jun antisense oligonucleotide strategy pointed out the involvement of c-Jun in the 24 kDa FGF-2-induced cell proliferation. The mitogenic effect was found to depend on ERK pathway and not on phosphoinositide 3-kinase, p38 MAPK, c-Jun NH2-terminal kinase signal transducers. In addition, the MEK inhibitor PD98059 reduced the 24 kDa FGF-2-dependent c-Jun level. These data show that intracrine FGF-2-mediated regulation of cell growth involves ERK activation and consequent c-Jun expression. Thus, despite its incapacity to be secreted, the intracellular-localized 24 kDa FGF-2 can activate a growth-related signaling pathway normally elicited by cell surface receptors.
Collapse
Affiliation(s)
- Marylis Hortala
- INSERM U 531, IFR31, Institut Louis Bugnard, CHU Rangueil Bat L3, TSA 50032, 31059 Toulouse, France
| | | | | | | | | |
Collapse
|
43
|
Regis G, Bosticardo M, Conti L, De Angelis S, Boselli D, Tomaino B, Bernabei P, Giovarelli M, Novelli F. Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo. Blood 2005; 105:3214-21. [PMID: 15626737 DOI: 10.1182/blood-2004-07-2686] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The refractoriness of T cells to the interferon-gamma (IFN-gamma)/signal transducer and activator of transcription 1 (STAT1) pathway, which shields them from the antiproliferative effect of IFN-gamma, is attributed mainly to down-regulation of the IFN-gammaR2 signaling chain. However, the mechanisms responsible for this down-regulation are unclear. Here we show that iron uptake mediated by the transferrin receptor (TfR) delivers a signal that leads to IFN-gammaR2 internalization and thus plays an essential role in attenuating activation of the IFN-gamma/STAT1 pathway in human T lymphocytes. The effect of iron on IFN-gammaR2 internalization was specific as it did not affect expression of the IFN-gammaR1 binding chain. Deferoxamine (DFO), an iron-chelating agent, up-regulated IFN-gammaR2 surface expression and reinstated IFN-gamma/STAT1 activation in proliferating T lymphocytes. Resistance of malignant T cells to the antiproliferative effect of IFN-gamma in vitro was abrogated by addition of DFO. Conversely, iron inhibited IFN-gamma-induced apoptosis in malignant T cells in serum-free conditions. In combination but not individually, DFO and IFN-gamma strongly inhibited growth of human malignant T cells in an in vivo severe combined immunodeficient (SCID) mouse model. These data provide valuable insights for novel therapeutic approaches aimed at reinstating the IFN-gamma/STAT1 apoptotic signaling pathway in autoreactive or neoplastic T cells by means of iron chelation.
Collapse
Affiliation(s)
- Gabriella Regis
- Laboratory of Tumor Immunology, CERMS, San Giovanni Battista Hospital-Molinette, Via Santena 5, I-10126 Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC. Novel Prognostic Value of Nuclear Epidermal Growth Factor Receptor in Breast Cancer. Cancer Res 2005. [DOI: 10.1158/0008-5472.338.65.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
Epidermal growth factor receptor (EGFR) has been detected in the nucleus of cancer cells and primary tumors for decades. While localized in the nucleus, EGFR functions as a transcriptional regulator resulting in the activation of the cyclin D1 gene. Despite nuclear accumulation of EGFR is linked to increased DNA synthesis and proliferative potential, the pathological significance of nuclear EGFR, however, remains uninvestigated. Furthermore, expression of EGFR has not provided a consistent predictive value for survival of breast cancer patients. Here, we analyzed 130 breast carcinomas via immunohistochemical analyses for the levels of nuclear and non-nuclear EGFR. We found 37.7% of the cohort immunostained positively for nuclear EGFR and 6.9% with high levels of expression. Importantly, Kaplan-Meier survival analysis and log-rank test revealed a significant inverse correlation between high nuclear EGFR and overall survival (P = 0.009). Expression of nuclear EGFR correlated positively with increased levels of cyclin D1 and Ki-67, both are indicators for cell proliferation. In contrast, expression of non-nuclear EGFR did not significantly correlate with those of cyclin D1 and Ki-67 or the overall survival rate. In addition, we analyzed 37 oral squamous carcinomas for EGFR expression and found 24.3% of the cases to contain moderate/high levels of nuclear EGFR. Taken together, our findings indicate pathological significance of nuclear EGFR and may have important clinical implication.
Collapse
Affiliation(s)
- Hui-Wen Lo
- 1Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| | - Weiya Xia
- 1Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| | - Yongkun Wei
- 1Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| | - Mohamed Ali-Seyed
- 1Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| | - Shiu-Feng Huang
- 2Division of Molecular and Genomic Medicine, National Health Research Institutes, 128 Yen-Chiu-Yuan Road, sec. 2, Taipei, 115, Taiwan
| | - Mien-Chie Hung
- 1Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| |
Collapse
|
45
|
Abstract
Lipid rafts are established as critical structures for a variety of cellular processes, including immune cell activation. Beyond their importance for initial immune cell activation at the immunological synapse, lipid rafts are now also being recognized as important sites for cytokine and growth factor signal transduction, both in immune cells as part of secondary regulatory processes, and in non-immune cells. This review summarizes current knowledge regarding the roles of rafts in cytokine signaling and emphasizes the need for measures to better standardize the study of rafts.
Collapse
Affiliation(s)
- Rakesh Rao
- Department of Pediatrics, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
46
|
Curry H, Alvarez GR, Zwilling BS, Lafuse WP. Toll-like receptor 2 stimulation decreases IFN-gamma receptor expression in mouse RAW264.7 macrophages. J Interferon Cytokine Res 2004; 24:699-710. [PMID: 15684737 DOI: 10.1089/jir.2004.24.699] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon-gamma (IFN-gamma) is a key cytokine in the immune defense against mycobacteria. IFN-gamma activates macrophages to resist the growth of mycobacteria and induces expression of MHC class II molecules required for antigen presentation. Macrophages infected with mycobacteria or stimulated by the interaction of mycobacterial products with toll-like receptor 2 (TLR2) have reduced responses to IFN-gamma. Previous research has shown that infection of mouse macrophages with Mycobacterium avium causes decreased expression of the IFN-gamma receptor (IFNGR). In the present study, we show that TLR2 stimulation of RAW264.7 macrophages with a synthetic lipoprotein, Pam3CSK4, also causes rapid decrease in expression of IFNGR-1 protein, with little change in IFNGR-2 protein levels. The decrease in IFNGR-2 expression in TLR2-stimulated cells required receptor internalization and proteasomal degradation. The level of IFNGR-1 mRNA also decreased in TLR2-stimulated RAW264.7 cells and M. avium-infected cells. The decrease in IFNGR-1 mRNA was shown to be due to decreased transcription. In spite of the decrease in IFNGR-2 receptor expression, activation of Stat1 activation by an optimal dose of IFN-gamma was identical between control and TLR2-stimulated RAW264.7 cells. However, at low suboptimal doses of IFN-gamma, Stat1 activation was decreased in TLR2-stimulated cells.
Collapse
Affiliation(s)
- Heather Curry
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
47
|
Johnson HM, Subramaniam PS, Olsnes S, Jans DA. Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. Bioessays 2004; 26:993-1004. [PMID: 15351969 DOI: 10.1002/bies.20086] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interaction of ligands such as epidermal growth factor and interferon-gamma with the extracellular domains of their plasma membrane receptors results in internalization followed by translocation into the nucleus of the ligand and/or receptor. There has been reluctance, however, to ascribe signaling importance to this, the focus instead being on second messenger pathways, including mobilization of kinases and inducible transcription factors (TFs). The latter, however, fails to explain the fact that so many ligands stimulate the same second messenger cascades/TFs, and yet show distinct gene activation profiles. This is particularly apt in the case of the seven STAT TFs that are held to be the mediators of the distinct cellular functions of over 60 ligands. The current review focuses on five representative nuclear localizing ligands for which there is documentation of translocation into the cytosol and nucleus through well-characterized pathways, in addition to a role in gene activation by ligand/receptor in the nucleus.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, FL, USA.
| | | | | | | |
Collapse
|
48
|
Switzer KC, Fan YY, Wang N, McMurray DN, Chapkin RS. Dietary n-3 polyunsaturated fatty acids promote activation-induced cell death in Th1-polarized murine CD4+ T-cells. J Lipid Res 2004; 45:1482-92. [PMID: 15145980 PMCID: PMC4469998 DOI: 10.1194/jlr.m400028-jlr200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary n-3 PUFAs have been shown to attenuate T-cell-mediated inflammation. To investigate whether dietary n-3 PUFAs promote activation-induced cell death (AICD) in CD4+ T-cells induced in vitro to a polarized T-helper1 (Th1) phenotype, C57BL/6 mice were fed diets containing either 5% corn oil (CO; n-6 PUFA control) or 4% fish oil (FO) plus 1% CO (n-3 PUFA) for 2 weeks. Splenic CD4+ T-cells were cultured with alpha-interleukin-4 (alphaIL-4), IL-12, and IL-2 for 2 days and then with recombinant (r) IL-12 and rIL-2 for 3 days in the presence of diet-matched homologous mouse serum (HMS) to prevent loss of cell membrane fatty acids, or with fetal bovine serum. After polarization, Th1 cells were reactivated and analyzed for interferon-gamma and IL-4 by intracellular cytokine staining and for apoptosis by Annexin V/propidium iodide. Dietary FO enhanced Th1 polarization by 49% (P = 0.0001) and AICD by 24% (P = 0.0001) only in cells cultured in the presence of HMS. FO enhancement of Th1 polarization and AICD after culture was associated with the maintenance of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) in plasma membrane lipid rafts. In conclusion, n-3 PUFAs enhance the polarization and deletion of proinflammatory Th1 cells, possibly as a result of alterations in membrane microdomain fatty acid composition.
Collapse
Affiliation(s)
- Kirsten C. Switzer
- Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University, College Station, TX
| | - Yang-Yi Fan
- Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University, College Station, TX
| | - Naisyin Wang
- Department of Statistics, Texas A&M University, College Station, TX
| | - David N. McMurray
- Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University, College Station, TX
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Texas A&M University Health Science Center, College Station, TX
| | - Robert S. Chapkin
- Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University, College Station, TX
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX
- To whom correspondence should be addressed.
| |
Collapse
|
49
|
Yang N, Huang Y, Jiang J, Frank SJ. Caveolar and lipid raft localization of the growth hormone receptor and its signaling elements: impact on growth hormone signaling. J Biol Chem 2004; 279:20898-20905. [PMID: 15010456 DOI: 10.1074/jbc.m400625200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth hormone receptor (GHR) is a cell surface receptor that mediates the somatogenic and metabolic effects of the growth hormone (GH). GHR signaling is transduced via the receptor-associated cytoplasmic tyrosine kinase called Janus protein kinase 2 (JAK2). The major intracellular signaling systems activated by JAK2 in response to GH include the signal transducer and activator of transcription (STAT) 5 and extracellular signal-regulated kinase (ERK)-1 and -2 pathways. In this report, we investigate the role of cholesterol-rich plasma membrane microdomains (caveolae and lipid rafts) in GH signaling. By subcellular fractionation of the GH-responsive 3T3-F442A murine preadipocyte, we found dramatic enrichment (6.7-fold) of plasma membrane GHR in the caveolae membranes (CM). JAK2 was also represented in the CM fraction, but was less enriched (2.5-fold) than GHR. ERK1/2 and the important ERK pathway upstream small adaptor protein, Grb2 (growth factor receptor-bound protein 2), were also enriched in caveolae (2.3- and 8.3-fold, respectively), but STAT5 was barely detected in the same fraction. Correspondingly, GH-induced tyrosine-phosphorylated GHR, JAK2, and ERK1/2 were highly represented in the CM fraction, whereas tyrosine-phosphorylated STAT5 was enriched in the non-membranous fraction of the post-nuclear supernatant. Additionally, GH induced further accumulation of GHR, Grb2, and SHC proteins in the CM fraction. Interestingly, treatment of the cells with the caveolae-disrupting agent, methyl-beta-cyclodextrin (mbetaCD), selectively inhibited GH-induced ERK1/2 activation but not STAT5 phosphorylation; repletion of cholesterol in mbetaCD-treated cells restored GH-induced ERK activation. Comparison of 3T3-F442A cells with the GHR-expressing human IM-9 lymphoblasts revealed similar enrichment of GHR in the lipid raft fraction of IM-9 as in the CM fraction of 3T3-F442A, but there were dramatic differences in the ERKs and Grb2. The IM-9 cell, in which ERKs are not activated by GH, displayed no enrichment of ERKs and Grb2 in the lipid raft fraction. Our results suggest that localization of GHRs in the CM fraction of the plasma membrane plays important roles in signaling.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cell Biology, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
50
|
Horejsí V. Transmembrane adaptor proteins in membrane microdomains: important regulators of immunoreceptor signaling. Immunol Lett 2004; 92:43-9. [PMID: 15081526 DOI: 10.1016/j.imlet.2003.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 10/10/2003] [Indexed: 11/26/2022]
Abstract
Membrane microdomains enriched in glycosphingolipids, cholesterol, glycosylphosphatidylinositol-anchored proteins and Src-family kinases (lipid rafts, GEMs) appear to play many important roles, especially in immunoreceptor signaling. Most transmembrane proteins are excluded from these specialized areas of membranes, notable exceptions being several palmitoylated proteins such as the T cell coreceptors CD4 and CD8, and several recently described transmembrane adaptor proteins, LAT, non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), phosphoprotein associated with GEMs (PAG)/Csk-binding protein (Cbp) and LIME. All these molecules possess a very short N-terminal extracellular peptide (4-17 amino acids), transmembrane segment followed by a palmitoylation motif (CxxC) and cytoplasmic domain containing up to 10 tyrosine residues potentially phosphorylated by the Src- or Syk-family kinases. Tyrosine-phosphorylated transmembrane adaptors bind (directly via SH2 domains or indirectly) other signaling molecules such as several cytoplasmic adaptors and enzymes. LAT is indispensable for TCR signaling (and participates also at signal transduction initiated by some other receptors), NTAL/LAB appears to play a LAT-like role in signaling initiated by BCR and some Fc-receptors; PAG/Cbp cooperates with Csk, the cytoplasmic tyrosine kinase negatively regulating Src-family kinases. Additional transmembrane adaptors exist (TRIM, SIT, LAX) that are however not palmitoylated and therefore excluded from the lipid rafts; structurally and functionally, the zeta-chain family proteins tightly associated with immunoreceptors and activating NK-receptors may be also considered as transmembrane adaptors.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|