1
|
Yin H, Xin Y, Yang J, Luo Q, Yang M, Sun J, Wang Y, Wang Q, Kalvakolanu DV, Guo B, Jiang W, Zhang L. Multifunctional nanozymes: Promising applications in clinical diagnosis and cancer treatment. Biosens Bioelectron 2025; 279:117383. [PMID: 40121930 DOI: 10.1016/j.bios.2025.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/09/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains one of the greatest challenges in modern medicine. Traditional chemotherapy drugs often cause severe side effects, including nausea, vomiting, diarrhea, neurotoxicity, liver damage, and nephrotoxicity. In addition to these adverse effects, high recurrence and metastasis rates following treatment pose significant challenges for clinicians. There is an urgent need for novel therapeutic strategies to improve cancer treatment outcomes. In this context, nanozymes-artificial enzyme mimetics-have attracted considerable attention due to their unique advantages, including potent tumor-killing effects, enhanced biocompatibility, and reduced toxicity. Notably, nanozymes can dynamically monitor tumors through imaging and tracing. The multifunctional nanozyme (MN) is a promising research focus, integrating multiple catalytic activities, signal enhancement, sensing capabilities, and diverse modifications within a single nanozyme system. MNs can selectively target tumor regions, facilitating synergistic effects with other cancer therapies while enabling real-time imaging and tumor tracking. In this review, we first categorize MNs based on their composition and structural characteristics. We then discuss the primary mechanisms by which MNs exert their anticancer effects. Additionally, we review three types of MN biosensors and four MN-based therapeutic approaches applied in cancer treatment. Finally, we highlight the current challenges in MN research and provide an outlook on future developments in this field.
Collapse
Affiliation(s)
- Hailin Yin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yang Xin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qian Luo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Mei Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Qi Wang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ling Zhang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Sharma DS, Jamwal VL, Siddharth PHS, Angurana SL, Gandhi SG, Rath D. Electrochemical microfluidic biosensors for the detection of cancer biomarker miRNAs. Talanta 2025; 294:128282. [PMID: 40339339 DOI: 10.1016/j.talanta.2025.128282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cancer is a formidable adversary in contemporary healthcare. Routine screening and early diagnosis are crucial for favourable therapeutic outcomes. Publications, clinical trials, and patent landscape analysis suggest miRNA as promising biomarkers for diagnosis and prognosis of various cancers. This review intends to shed a holistic view of the current and futuristic methods for electrochemical biosensing platforms, using miRNA as biomarkers, coupled with microfluidics, machine learning techniques, and portable electronic devices. Electrochemical biosensors are thoroughly reviewed as they are promising candidate in the design and development of such devices where there is an in-depth exploration of the existing molecular techniques and sophisticated electrochemical biosensing strategies developed for the detection of miRNAs. Additionally, the review will critically analyze diverse signal enhancement strategies and microfluidic platforms specifically tailored for the detection of miRNA. Practical examples of such integrated electrochemical microfluidic biosensors are thoroughly cited along with the prospect of integration of these techniques with portable electronics, highlighting the future potential of highly integrated and accessible diagnostic solutions. Furthermore, the review will also encompass an assessment of the ongoing clinical trials investigating the utility of miRNA as cancer biomarker in diagnostic settings. Moreover, by assessing existing patents, the review shall provide a nuanced understanding of the intellectual property landscape, identifying key players, emerging technologies, and potential future directions. Our review with a 360-degree updated view on molecular biology components, electrochemical biosensors, engineering device design, clinical trials and patent landscape would appeal to researchers, engineers and clinicians working in the area of cancer molecular diagnosis.
Collapse
Affiliation(s)
- Dakshita Snud Sharma
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Vijay Lakshmi Jamwal
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - P H Sai Siddharth
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Shabab Lalit Angurana
- Radiation Oncology, All India Institute of Medical Sciences, Vijaypur, Jammu, 184 120, Jammu and Kashmir, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu, 180 001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Dharitri Rath
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Zhao Z, Cutmore LC, Baleeiro RB, Hartlebury JJ, Brown N, Chard-Dunmall L, Lemoine N, Wang Y, Marshall JF. The Combination of Oncolytic Virus and Antibody Blockade of TGF-β Enhances the Efficacy of αvβ6-Targeting CAR T Cells Against Pancreatic Cancer in an Immunocompetent Model. Cancers (Basel) 2025; 17:1534. [PMID: 40361460 PMCID: PMC12070938 DOI: 10.3390/cancers17091534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES CAR T cell therapy, as a rapidly advancing immuno-oncology modality, has achieved significant success in the treatment of leukaemia and lymphoma. However, its application in solid tumours remains limited. The challenges include the heterogeneity of tumours, local immunosuppression, poor trafficking and infiltration, life-threatening toxicity and the lack of precise representative immunocompetent research models. Considering its typically dense and immunosuppressive tumour microenvironment (TME) and early metastasis, pancreatic ductal adenocarcinoma (PDAC) was employed as a model to address the challenges that hinder CAR T cell therapies against solid tumours and to expand immunotherapeutic options for advanced disease. METHODS A novel murine A20FMDV2 (A20) CAR T cell targeting integrin αvβ6 (mA20CART) was developed, demonstrating efficient and specific on-target cytotoxicity. The mA20CART cell as a monotherapy for orthotopic pancreatic cancer in an immunocompetent model demonstrated modest efficacy. Therefore, a novel triple therapy regimen, combining mA20CART cells with oncolytic vaccinia virus encoding IL-21 and a TGF-β-blocking antibody was evaluated in vivo. RESULTS The triple therapy improved overall survival, improved the safety profile of the CAR T cell therapy, attenuated metastasis and enhanced T cell infiltration. Notably, the potency of mA20CART was dependent on IL-2 supplementation. CONCLUSIONS This study presents an αvβ6-targeting murine CAR T cell, offering a novel approach to developing CAR T cell technologies for solid tumours and a potential adjuvant therapy for pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| | - John F. Marshall
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| |
Collapse
|
5
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Wang Q, Cui H, Zhu Y, Zhu Y, He C. Serum Golgi protein 73 (GP73) is a diagnostic and prognostic marker of hepatocellular carcinoma. Front Med (Lausanne) 2025; 12:1571761. [PMID: 40297156 PMCID: PMC12034698 DOI: 10.3389/fmed.2025.1571761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) constitutes a significant global health burden, and is characterized by limited early detection methods and poor survival rates. Golgi protein 73 (GP73), previously associated with liver-related diseases, has a controversial diagnostic value for HCC. The present study aimed to determine the diagnostic efficacy of serum GP73 (sGP73) levels in HCC and to explore their potential correlations with the development of HCC. Methods The levels of sGP73 and serum alpha-fetoprotein (sAFP) were measured in 134 HCC patients, 200 healthy controls (HCs), and 45 non-HCC patients with various liver diseases. Additionally, immunohistochemical staining was conducted on paraffin-embedded tissue samples obtained from 30 HCC patients to examine the expression of CD4+ T cells, CD8+ T cells, Foxp3+ Treg cells, Ki-67, and interferon-gamma (IFN-γ) in the tissue specimens. Results sGP73 and sAFP were markedly higher in HCC patients than in HCs and non-HCC patients. However, sGP73 showed significantly higher sensitivity as a diagnostic marker for HCC than sAFP. The combination of sGP73 and sAFP further improved the accuracy (AUROC: 0.830). Besides, in the immunohistochemical staining analyses, sGP73-positive patients had lower expression of CD4+ and CD8+ T cells, higher expression of Foxp3+ Treg cells, higher expression of nuclear Ki67, and lower expression of IFN-γ than GP73-negative patients. In addition, sGP73-positive patients tended to have higher mortality rate, higher rate of metastasis, higher AFP levels, and more pronounced liver inflammation and damage than GP73-negative patients. Conclusions sGP73 could be utilized as a marker for the diagnosis of HCC, and may be implicated in the development of HCC through its interactions with the tumor microenvironment.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Cui
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaping Zhu
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Yichun Zhu
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
7
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
8
|
Khalil RG, Mohammed DA, Hamdalla HM, Ahmed OM. The possible anti-tumor effects of regulatory T cells plasticity / IL-35 in the tumor microenvironment of the major three cancer types. Cytokine 2025; 186:156834. [PMID: 39693872 DOI: 10.1016/j.cyto.2024.156834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
T lymphocytes are among the immunological cells that make up the tumor microenvironment (TME), and they are essential in the growth of tumors and anti-tumor reactions. Regulatory T cells (Treg cells) are a subset of CD4+ T cells in the immune system that suppress the immune system. They are distinguished by their expression of the master transcription factor forkhead box protein P3 (FOXP3). Furthermore, Treg cells are essential for maintaining immunological homeostasis, inhibiting inflammation, and maintaining self-tolerance. In a variety of malignancies within the TME, Treg cells demonstrate notable flexibility and functional diversity. Highly plastic Treg cells can change into Th-like Treg cells in specific circumstances, which allow them to secrete particular pro-inflammatory cytokines. Interleukin 35 (IL-35) is a part of the immunosuppressive cytokines that belong to the IL-12 family. Treg cells release IL-35, which was elevated in the peripheral blood and TME of numerous cancer patients, implying that IL-35 in the TME may be an intriguing target for cancer therapy. In cancer, IL-35 is a two-edged sword; it promotes tumorigenicity in cancer cells while shielding them from apoptosis. Nonetheless, other investigations have mentioned its conflicting effects on cancer prevention. Herein, we provide an updated understanding of the critical mechanisms behind the anticancer immunity mediated by Treg cells plasticity, the role of IL-35, and tactics to strengthen the immune response against malignancies, outlining major clinical trials that used Treg cells/IL-35 therapies in the three main cancer types (lung, breast, and colorectal cancers).
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Dina A Mohammed
- Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hadeer M Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
9
|
Slusny B, Zimmer V, Nasiri E, Lutz V, Huber M, Buchholz M, Gress TM, Roth K, Bauer C. Optimized Spheroid Model of Pancreatic Cancer Demonstrates Influence of Macrophage-T Cell Interaction for Intratumoral T Cell Motility. Cancers (Basel) 2024; 17:51. [PMID: 39796680 PMCID: PMC11718817 DOI: 10.3390/cancers17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids. METHODS Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment. In particular, T cell migration analysis represents the final step of effector function, as T cells engage with targets cells upon cytotoxic interaction, which is represented by an arrest within the spheroid volume. Therefore, T cell arrest is a novel readout parameter of T cell effector function in spheroids. RESULTS Here, we demonstrate that incubation of macrophages with nigericin for NLRP3 activation increases T cell velocity, but results in decreased T cellular arrest. This is paralleled by reduced rejection kinetics of pancreatic cancer spheroids in the presence of antigen-dependent T cells and nigericin-treated macrophages. Our model demonstrates consistent changes in T cell motility upon coculturing of T cells and tumors cells with macrophages, including influences of molecular interventions such as NLRP3 activation. CONCLUSIONS Motility analysis using a spheroid model of pancreatic cancer is a more sophisticated alternative to in vitro cytotoxicity assays measuring spheroid size. Ultimately, an optimized spheroid model might replace at least some aspects of animal experiments investigating T cell effector function.
Collapse
Affiliation(s)
- Benedikt Slusny
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Vanessa Zimmer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Elena Nasiri
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Veronika Lutz
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Katrin Roth
- Core Facility Cellular Imaging, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
- Department of Gastroenterology, DonauIsar Klinikum Deggendorf, MedizinCampus Niederbayern, 94469 Deggendorf, Germany
| |
Collapse
|
10
|
Yang C, Qu J, Wu J, Cai S, Liu W, Deng Y, Meng Y, Zheng L, Zhang L, Wang L, Guo X. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clin Transl Med 2024; 14:e70091. [PMID: 39601163 PMCID: PMC11600049 DOI: 10.1002/ctm2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The increasing prevalence of multiple primarylung cancers (MPLCs) presents challenges to current diagnostic and clinicalmanagement approaches. However, the molecular mechanisms driving MPLCdevelopment and distinguishing it from solitary primary lung cancers (SPLCs)remain largely unexplored. METHODS We performed a comparative single-cell RNAsequencing (scRNA-seq) analysis on tumour and adjacent para-tumour tissues fromMPLC and SPLC patients to comparatively evaluate their immunological landscapes.Additionally, multiplex immunofluorescence (mIF) staining and independentvalidation datasets were used to confirm findings. RESULTS MPLCs and SPLCs share significant similarities in genetic, transcriptomic and immune profiles, suggesting common therapeutic strategies such as EGFR-TKIs andICIs. Notably, an immunosuppressive macrophage subtype, F13A1+ Macrophage (Mϕ), is specifically enriched in MPLCs. This subtype overexpresses M2 macrophagemarkers and exhibits up-regulation of SPP1-CD44/CCL13-ACKR1 interactions, indicatingits role in shaping the immunosuppressive tumour microenvironment and promotingtumour growth in MPLCs. CONCLUSIONS This study unveils shared molecular mechanismsbetween MPLCs and SPLCs, while identifying MPLC-specific cellular and molecularfeatures, such as the role of F13A1+ macrophages. The findings provide novelinsights into MPLC pathogenesis, supporting the development of targetedtherapeutic strategies. KEY POINTS Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs. Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression. SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chenglin Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Jiahao Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
- Southern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Jingting Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Wenyi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Youjun Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yiran Meng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Liuqing Zheng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Lishen Zhang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Li Wang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Xiaotong Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
11
|
Wu Z, Zhang Y, Gong Y, Hu J. Knowledge landscape of Treg research in breast cancer: a bibliometric and visual analysis. Front Oncol 2024; 14:1448714. [PMID: 39664195 PMCID: PMC11631855 DOI: 10.3389/fonc.2024.1448714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Background Regulatory T (Treg) cells play a strategic role in maintaining immune homeostasis and their functions are closely linked to the development of different diseases, including cancer. This study aims to investigate the evolution patterns and popular research topics of Treg cells through bibliometric analysis. Method The Web of Science Core Collection database was used to extract publications related to Treg cells, which were then subjected to bibliometric analysis and visualization through VOSviewer, CiteSpace, and R software. Results Between 2003 and 2023, a total of 666 articles were published. China and the United States had the highest citation counts, with Fudan University, Shanghai Jiao Tong University, and Tarbiat Modares University being the leading research institutions. Beckhove Philipp from the German Cancer Research Center and the National Center for Tumor Diseases in Heidelberg, and Christophe from the Cancer Research Center of Lyon, were the most prolific authors. Sakaguchi Shimon from the Immunology Frontier Research Center at Osaka University was the most cited author. "Frontiers in Immunology" published the most articles, while "Journal of Immunology" received the highest co-citations. Key terms in Treg research include immunotherapy, tumor microenvironment, prognosis, immunosuppression, and PD-L1. Among these, immunotherapy, prognosis, PD-L1, and immunosuppression have emerged as focal points of research in recent years. Conclusion With active collaboration worldwide, research on Treg cells is rapidly advancing. Focusing on Treg cells as a potential target for cancer treatment shows great promise for future research, especially in terms of practical applications. This could offer valuable direction and fresh perspectives for further exploration of Treg cells in the medical field.
Collapse
Affiliation(s)
- Zankai Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanting Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Gong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Derakhshandeh R, Zhu Y, Li J, Hester D, Younis R, Koka R, Jones LP, Sun W, Goloubeva O, Tkaczuk K, Bates J, Reader J, Webb TJ. Identification of Functional Immune Biomarkers in Breast Cancer Patients. Int J Mol Sci 2024; 25:12309. [PMID: 39596374 PMCID: PMC11595306 DOI: 10.3390/ijms252212309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has emerged as an effective, personalized treatment for certain patients, particularly for those with hematological malignancies. However, its efficacy in breast cancer has been marginal-perhaps due to cold, immune-excluded, or immune-desert tumors. Natural killer T (NKT) cells play a critical role in cancer immune surveillance and are reduced in cancer patients. Thus, we hypothesized that NKT cells could serve as a surrogate marker for immune function. In order to assess which breast cancer patients would likely benefit from immune cell-based therapies, we have developed a quantitative method to rapidly assess NKT function using stimulation with artificial antigen presenting cells followed by quantitative real-time PCR for IFN-γ. We observed a significant reduction in the percentage of circulating NKT cells in breast cancer patients, compared to healthy donors; however, the majority of patients had functional NKT cells. When we compared BC patients with highly functional NKT cells, as indicated by high IFN-γ induction, to those with little to no induction, following stimulation of NKT cells, there was no significant difference in NKT cell number between the groups, suggesting functional loss has more impact than physical loss of this subpopulation of T cells. In addition, we assessed the percentage of tumor-infiltrating lymphocytes and PD-L1 expression within the tumor microenvironment in the low and high responders. Further characterization of immune gene signatures in these groups identified a concomitant decrease in the induction of TNFα, LAG3, and LIGHT in the low responders. We next investigated the mechanisms by which breast cancers suppress NKT-mediated anti-tumor immune responses. We found that breast cancers secrete immunosuppressive lipids, and treatment with commonly prescribed medications that modulate lipid metabolism, can reduce tumor growth and restore NKT cell responses.
Collapse
Affiliation(s)
- Roshanak Derakhshandeh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Yuyi Zhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Junxin Li
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Danubia Hester
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Rania Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Rima Koka
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laundette P. Jones
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Olga Goloubeva
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Joshua Bates
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| |
Collapse
|
13
|
Wang Z, Xie Z, Mou Y, Geng R, Chen C, Ke N. TIM-4 increases the proportion of CD4 +CD25 +FOXP3 + regulatory T cells in the pancreatic ductal adenocarcinoma microenvironment by inhibiting IL-6 secretion. Cancer Med 2024; 13:e70110. [PMID: 39235042 PMCID: PMC11375529 DOI: 10.1002/cam4.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Currently, creating more effector T cells and augmenting their functions is a focal point in pancreatic ductal adenocarcinoma (PDAC) treatment research. T cell immunoglobulin domain and mucin domain molecule 4 (TIM-4), known for promoting cancer progression in various malignancies, is implicated in the suppressive immune microenvironment of tumors. Analyzing of the role of TIM-4 in the immune regulation of PDAC can offer novel insights for immune therapy. METHODS We analyzed the TIM-4 expression in tumor specimens from PDAC patients. Meanwhile, multiple fluorescent immunohistochemical staining was used to study the distribution characteristics of TIM-4, and through tissue microarrays, we explored its correlation with patient prognosis. The influence of TIM-4 overexpression on cell function was analyzed using RNA-seq. Flow cytometry and ELISA were used for verification. Finally, the relationship between TIM-4 and T lymphocytes was analyzed by tissue microarray, and the impacts of TIM-4 on T cell subsets were observed by cell coculture technology and a mouse pancreatic cancer in situ model. RESULTS In PDAC, TIM-4 is mainly expressed in tumor cells and negatively correlated with patient prognosis. TIM-4 influences the differentiation of Treg by inhibiting IL-6 secretion in pancreatic cancer cells and facilitates the proliferation of pancreatic cancer in mice. Additionally, the mechanism may be through the CD8+ effector T cells (CD8+Tc). CONCLUSION TIM-4 has the potential to be an immunotherapeutic target or to improve the efficacy of chemotherapy for PDAC.
Collapse
Affiliation(s)
- Ziyao Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zerong Xie
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yu Mou
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Radiology, The First People's Hospital of Chengdu, Chengdu, China
| | - Nengwen Ke
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Schwarz S, Su Z, Krohn M, Löffler MW, Schlosser A, Linnebacher M. Peptide-stimulated T cells bypass immune checkpoint inhibitor resistance and eliminate autologous microsatellite instable colorectal cancer cells. NPJ Precis Oncol 2024; 8:163. [PMID: 39075115 PMCID: PMC11286882 DOI: 10.1038/s41698-024-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Two hypermutated colon cancer cases with patient-derived cell lines, peripheral and tumor-infiltrating T cells available were selected for detailed investigation of immunological response.T cells co-cultured with autologous tumor cells showed only low levels of pro-inflammatory cytokines and failed at tumor recognition. Similarly, treatment of co-cultures with immune checkpoint inhibitors (ICI) did not boost antitumor immune responses. Since proteinase inhibitor 9 (PI-9) was detected in tumor cells, a specific inhibitor (PI-9i) was used in addition to ICI in T cell cytotoxicity testing. However, only pre-stimulation with tumor-specific peptides (cryptic and neoantigenic) significantly increased recognition and elimination of tumor cells by T cells independently of ICI or PI-9i.We showed, that ICI resistant tumor cells can be targeted by tumor-primed T cells and also demonstrated the superiority of tumor-naïve peripheral blood T cells compared to highly exhausted tumor-infiltrating T cells. Future precision immunotherapeutic approaches should include multimodal strategies to successfully induce durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra Schwarz
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Zhaoran Su
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Markus W Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf-Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
15
|
Xu J, Gao Y, Ding Y, Feng Y, Chen J, Zhang S, Song X, Qiao S. Correlation between Tregs and ICOS-induced M2 macrophages polarization in colorectal cancer progression. Front Oncol 2024; 14:1373820. [PMID: 39104717 PMCID: PMC11298335 DOI: 10.3389/fonc.2024.1373820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Objective To explore the mechanism by which Tregs promote the progression of colorectal cancer by inducing tumor-associated macrophages to polarize into M2 type via ICOS. Methods Postoperative pathological tissues and clinical pathological data of 268 colorectal cancer patients who underwent initial surgery were collected. Immunohistochemistry (IHC) was used to detect the expression levels of ICOS, CD163 (a marker for M2 macrophages), and Foxp3 (a marker for Tregs) in cancerous, adjacent non-tumorous, and normal tissues. The relationship of ICOS, M2 macrophages, and Tregs in CRC with clinical pathological characteristics and pre-surgical tumor markers (such as CEA and CA199) was explored. Results The expression levels of M2 macrophages and Tregs increased with tumor progression, while ICOS expression showed a decreasing trend. Compared to adjacent and normal tissues, the expression levels of ICOS, M2 macrophages, and Tregs were higher in CRC tissues. The expression levels of M2 macrophages and Tregs were significantly positively correlated with tumor markers, while ICOS expression was significantly negatively correlated. Conclusion Tumor-associated m2 macrophages induced by Tregs and ICOS participate in the dynamic balance of the colorectal cancer tumor microenvironment, and their interaction affects colorectal carcinogenesis and progression. High levels of ICOS are associated with better long-term survival rates.
Collapse
Affiliation(s)
- Jiaxin Xu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Gao
- Computer Teaching and Research Section, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuting Ding
- Department of Ultrasound, Anshan Central Hospital, Anshan, Liaoning, China
| | - Yunpeng Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shenshen Zhang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoyu Song
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
16
|
Macchia I, Iacobone F, Urbani F. Optimization and intra-assay validation of a multiparametric flow cytometric test for monitoring circulating TREGs. Methods Cell Biol 2024; 189:169-188. [PMID: 39393882 DOI: 10.1016/bs.mcb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Multiparametric flow cytometry (MFC) represents an essential tool for immune monitoring, and validation of MFC panels is a fundamental prerequisite in routine laboratory settings as well as for translational and clinical research purposes. Regulatory T cells (TREGs) constitute a subset of CD4+ effector T cells that modulate the immune response in numerous settings, including autoimmune disease, allergy, microbial infection, tumor immunity, transplantation, and more. These cells comprise a small fraction of total CD4+ T cells in human peripheral blood and mouse spleen. In oncology, TREG cells are highly relevant, as they are involved in the suppression of the anti-tumor response in many types of cancer, to the extent that the first immune checkpoint inhibitor approved for clinical use in humans was a monoclonal antibody directed against CTLA-4, a molecule functionally associated with TREGs. Due to all these factors, robust assays are mandatory to accurately determine TREG cell frequency and function. Here, we describe the validation of an 8-color flow-cytometry protocol for TREG detection and analysis in a real-world laboratory scenario. The entire process includes the workflow plan and the standard operating procedure resembling each phase, from the panel design to the staining, acquisition, and analysis steps. Validation is planned to be performed in replicates on fresh whole blood samples derived from multiple healthy subjects. The analytical validity of the TREG cell assay is ensured by testing the intra-assay accuracy. The detailed procedure for the entire process is accompanied by important troubleshooting suggestions and other useful tips.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy.
| | - Floriana Iacobone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
17
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Michaels E, Chen N, Nanda R. The Role of Immunotherapy in Triple-Negative Breast Cancer (TNBC). Clin Breast Cancer 2024; 24:263-270. [PMID: 38582617 DOI: 10.1016/j.clbc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 04/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, generally associated with a high risk of recurrence and poor prognosis. Our understanding of the heterogeneity of TNBC has increased over the past decade, and with it a recognition that some TNBCs are immunogenically active. This finding has led to the investigation of immunotherapy-based approaches for treatment of both early and advanced-stage TNBC. In this review, we provide an overview of the biologic rationale for immunotherapy use in TNBC, and review data from seminal trials which have culminated in the approval of immunotherapy for both early and advanced TNBC. Identification of predictive biomarkers to aid in treatment selection, development of novel treatment combinations to combat resistance, and refinement of therapeutic targets enables continued improvement in outcomes with immunotherapy for TNBC.
Collapse
Affiliation(s)
- Elena Michaels
- Department of Medicine, The University of Chicago Medicine, Chicago, IL
| | - Nan Chen
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Rita Nanda
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL.
| |
Collapse
|
19
|
Hashimoto M, Kojima Y, Sakamoto T, Ozato Y, Nakano Y, Abe T, Hosoda K, Saito H, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Hata T, Nagayama S, Kagawa K, Goto Y, Utou M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Takahashi K, Niida A, Hirose H, Hayashi S, Koseki J, Fukuchi S, Murakami K, Yoshizumi T, Kadomatsu K, Tobo T, Oda Y, Uemura M, Eguchi H, Doki Y, Mori M, Oshima M, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell colocalisation analysis reveals MDK-mediated immunosuppressive environment with regulatory T cells in colorectal carcinogenesis. EBioMedicine 2024; 103:105102. [PMID: 38614865 PMCID: PMC11121171 DOI: 10.1016/j.ebiom.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Computational Bioscience, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan.
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of General Surgical Science, Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Satoshi Nagayama
- Department of Surgery, Uji-Tokushukai Medical Center, Uji, 611-0041, Japan
| | - Koichi Kagawa
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Oita Oka Hospital, Oita, 870-0192, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kazuki Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita, 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu, 879-5593, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Computational and Systems Biology, Medical Research Insitute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.
| |
Collapse
|
20
|
Zou X, Shen J, Yong X, Diao Y, Zhang L. The causal effects of immune cells on pancreatic cancer: A 2‑sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37797. [PMID: 38640310 PMCID: PMC11029941 DOI: 10.1097/md.0000000000037797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/24/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024] Open
Abstract
Leveraging publicly available genetic datasets, we conducted a comprehensive 2-sample Mendelian randomization (MR) analysis to explore the causal links between 731 immunophenotypes and the risk of pancreatic cancer (PC). To ensure the robustness of our findings, extensive sensitivity analyses were performed, evaluating stability, heterogeneity, and potential horizontal pleiotropy. Our analysis pinpointed 24 immunophenotypes significantly associated with the risk of PC. Notably, phenotypes such as CD4+ CD8dim %leukocyte (OR = 0.852, 95% CI = 0.729-0.995, P = .0430) and HLA DR+ CD4+ AC (OR = 0.933, 95% CI = 0.883-0.986) in TBNK were inversely correlated with PC risk. Conversely, phenotypes like CD28 on CD45RA- CD4 non-Treg (OR = 1.155, 95% CI = 1.028-1.297, P = .016) and CD25 on activated Treg (OR = 1.180, 95% CI = 1.014-1.374, P = .032) in Treg cells, among others, exhibited a positive correlation. These insights offer a valuable genetic perspective that could guide future clinical research in this area.
Collapse
Affiliation(s)
- Xinyun Zou
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Jinlan Shen
- Department of Medical Laboratory, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomei Yong
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Yong Diao
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Ling Zhang
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
21
|
Musher BL, Rowinsky EK, Smaglo BG, Abidi W, Othman M, Patel K, Jawaid S, Jing J, Brisco A, Leen AM, Wu M, Sandin LC, Wenthe J, Eriksson E, Ullenhag GJ, Grilley B, Leja-Jarblad J, Hilsenbeck SG, Brenner MK, Loskog ASI. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol 2024; 25:488-500. [PMID: 38547893 DOI: 10.1016/s1470-2045(24)00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 μL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.
Collapse
Affiliation(s)
- Benjamin L Musher
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | - Wasif Abidi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mohamed Othman
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kalpesh Patel
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Salmaan Jawaid
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - James Jing
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Amanda Brisco
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Ann M Leen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Jessica Wenthe
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gustav J Ullenhag
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Oncology, Uppsala University Hospital, Akademiska Sjukhuset, Uppsala, Sweden
| | - Bambi Grilley
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Susan G Hilsenbeck
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Angelica S I Loskog
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
23
|
Mokni Baizig N, Ben ElHadj M, Hsairi M, Fourati A, Kamoun S, Houcine Y, Gritli S, Driss M. Circulating levels of FoxP3, M2 (sCD163) and IGF-1 as potential biomarkers associated with Laryngeal Squamous Cell Carcinoma in Tunisian patients. J Immunoassay Immunochem 2024; 45:79-92. [PMID: 37936281 DOI: 10.1080/15321819.2023.2275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We aim to assess the clinical impact of circulating levels of sCD163, FoxP3, IGF-1 in LSCC patients (Laryngeal Squamous Cell Carcinoma). The concentrations of sCD163, FoxP3, and IGF-1 were measured using ELISA test in the serum samples collected from 70 pretreatment LSCC patients and 70 age and sex-matched healthy controls. Statistical analysis was performed using ANOVA to compare the two groups, and the correlation between markers and clinical parameters. Receiver-Operator Characteristic (ROC) curve analysis was conducted to determine the optimal cutoff values and evaluate the diagnostic impact of these markers. Significant differences in the levels of sCD163, FoxP3, and IGF-1 were observed between LSCC patients and the control group, with respective p-values of 0.01, 0.022, <0.0001. The determined cutoff values for sCD163, FoxP3, IGF-1 concentrations were 314.55 ng/mL, 1.69 ng/mL, and 1.69 ng/mL, respectively. The corresponding area under the curve (AUC) values were 0.67 (95% CI: 0.57-0.76), 0.70 (95% CI: 0.61-0.80), 0.84 (95% CI: 0.76-0.92), respectively. Furthermore, it was found that IGF-1 concentrations exceeding 125.20 ng/mL were positively correlated with lymph node metastasis. Elevated serum levels of sCD163, FoxP3 and IGF-1 are associated with the diagnosis of LSCC. IGF-1 appears to be the most promising indicator for the LSCC progression.
Collapse
Affiliation(s)
- Nehla Mokni Baizig
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Ben ElHadj
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Hsairi
- Department of Epidemiology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Asma Fourati
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Salma Kamoun
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Yoldz Houcine
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Said Gritli
- Department of ORL, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Maha Driss
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| |
Collapse
|
24
|
Tassinari S, D'Angelo E, Caicci F, Grange C, Burrello J, Fassan M, Brossa A, Bao RQ, Spolverato G, Agostini M, Collino F, Bussolati B. Profile of matrix-entrapped extracellular vesicles of microenvironmental and infiltrating cell origin in decellularized colorectal cancer and adjacent mucosa. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e144. [PMID: 38939413 PMCID: PMC11080771 DOI: 10.1002/jex2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 06/29/2024]
Abstract
Cellular elements that infiltrate and surround tumours and pre-metastatic tissues have a prominent role in tumour invasion and growth. The extracellular vesicles specifically entrapped and stored within the extracellular matrix (ECM-EVs) may reflect the different populations of the tumour microenvironment and their change during tumour progression. However, their profile is at present unknown. To elucidate this aspect, we isolated and characterized EVs from decellularized surgical specimens of colorectal cancer and adjacent colon mucosa and analyzed their surface marker profile. ECM-EVs in tumours and surrounding mucosa mainly expressed markers of lymphocytes, natural killer cells, antigen-presenting cells, and platelets, as well as epithelial cells, representing a multicellular microenvironment. No difference in surface marker expression was observed between tumour and mucosa ECM-EVs in stage II-III tumours. At variance, in the colon mucosa adjacent to stage IV carcinomas, ECM-EV profile showed a significantly increased level of immune, epithelial and platelet markers in comparison to the matrix of the corresponding tumour. The increase of EVs from immune cells and platelets was not observed in the mucosa adjacent to low-stage tumours. In addition, CD25, a T-lymphocyte marker, resulted specifically overexpressed by ECM-EVs from stage IV carcinomas, possibly correlated with the pro-tolerogenic environment found in the corresponding tumour tissue. These results outline the tissue microenvironmental profile of EVs in colorectal carcinoma-derived ECM and unveil a profound change in the healthy mucosa adjacent to high-stage tumours.
Collapse
Affiliation(s)
- Sarah Tassinari
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Edoardo D'Angelo
- General Surgery 3, Department of SurgeryOncology and Gastroenterology, University of PadovaPaduaItaly
- NanoInspired biomedicine lab, Fondazione Istituto di Ricerca Pediatrica Città della SperanzaPaduaItaly
| | | | - Cristina Grange
- Department of Medical ScienceUniversity of TorinoTorinoItaly
| | - Jacopo Burrello
- Department of Medical ScienceUniversity of TorinoTorinoItaly
| | - Matteo Fassan
- Department of Medicine (DIMED)University of PaduaPaduaItaly
- Veneto Institute of Oncology IOV ‐ IRCCSPaduaItaly
| | - Alessia Brossa
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Riccardo Quoc Bao
- General Surgery 3, Department of SurgeryOncology and Gastroenterology, University of PadovaPaduaItaly
| | - Gaya Spolverato
- General Surgery 3, Department of SurgeryOncology and Gastroenterology, University of PadovaPaduaItaly
| | - Marco Agostini
- General Surgery 3, Department of SurgeryOncology and Gastroenterology, University of PadovaPaduaItaly
- NanoInspired biomedicine lab, Fondazione Istituto di Ricerca Pediatrica Città della SperanzaPaduaItaly
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro‐UrologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
- Pediatric Nephrology, Dialysis and Transplant UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
- Department of Clinical Sciences and Community HealthUniversity of MilanoMilanItaly
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| |
Collapse
|
25
|
Tan J, Egelston CA, Guo W, Stark JM, Lee PP. STING signalling compensates for low tumour mutation burden to drive anti-tumour immunity. EBioMedicine 2024; 101:105035. [PMID: 38401418 PMCID: PMC10904200 DOI: 10.1016/j.ebiom.2024.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND While mutation-derived neoantigens are well recognized in generating anti-tumour T cell response, increasing evidences highlight the complex association between tumour mutation burden (TMB) and tumour infiltrating lymphocytes (TILs). The exploration of non-TMB determinants of active immune response could improve the prognosis prediction and provide guidance for current immunotherapy. METHODS The transcriptomic and whole exome sequence data in The Cancer Genome Atlas were used to examine the relationship between TMB and exhausted CD8+ T cells (Tex), as an indicator of tumour antigen-specific T cells across nine major cancer types. Computational clustering analysis was performed on 4510 tumours to identify different immune profiles. NanoString gene expression analysis and single cell RNA-seq analysis using fresh human breast cancer were performed for finding validation. FINDINGS TMB was found to be poorly correlated with active immune response in various cancer types. Patient clustering analysis revealed a group of tumours with abundant Tex but low TMB. In those tumours, we observed significantly higher expression of the stimulator of interferon genes (STING) signalling. Dendritic cells, particularly those of BATF3+ lineage, were also found to be essential for accumulation of Tex within tumours. Mechanistically, loss of genomic and cellular integrity, marked by decreased DNA damage repair, defective replication stress response, and increased apoptosis were shown to drive STING activation. INTERPRETATION These results highlight that TMB alone does not fully predict tumour immune profiles, with STING signalling compensating for low TMB in non-hypermutated tumours to enhance anti-tumour immunity. Translating these results, STING agonists may benefit patients with non-hypermutated tumours. STING activation may serve as an additional biomarker to predict response to immune checkpoint blockades alongside TMB. Our research also unravelled the interplay between genomic instability and STING activation, informing potential combined chemotherapy targeting the axis of genomic integrity and immunotherapy. FUNDING City of Hope Christopher Family Endowed Innovation Fund for Alzheimer's Disease and Breast Cancer Research in honor of Vineta Christopher; Breast Cancer Alliance Early Career Investigator Award; National Cancer Institute of the National Institutes of Health under award number R01CA256989 and R01CA240392.
Collapse
Affiliation(s)
- Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
26
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
28
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
29
|
Fan KQ, Li YY, Jin J. Ubiquitination in the T Cell Metabolism-Based Immunotherapy in Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:19-34. [PMID: 39546133 DOI: 10.1007/978-981-97-7288-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Metabolism refers to the exchange of matter and energy between the organism and the environment and the self-renewal process of matter and energy in the organism. Metabolic activities in cells provide them with energy and various substrates required for development. Naive T cells differentiate into effector T cells and memory T cells after activation, and this process is accompanied by reprogramming of metabolism-related gene expression. These metabolic changes reflect physiological changes in different stages of T cell activation and differentiation. An increasing number of studies have shown that many autoimmune diseases and organ transplantation are accompanied by disorders and imbalances in T cell metabolism. To treat these diseases, related drugs can be used to regulate T cell activation, differentiation, and function. Therefore, T cell metabolism can serve as a new potential target for regulating immune responses.
Collapse
Affiliation(s)
- Ke-Qi Fan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
| | - Jin Jin
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Center for Neuroimmunology and Health Longevity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
31
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
32
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
33
|
Cao J, He X, Li X, Sun Y, Zhang W, Li Y, Zhu X. The potential association of peripheral inflammatory biomarkers in patients with papillary thyroid cancer before radioiodine therapy to clinical outcomes. Front Endocrinol (Lausanne) 2023; 14:1253394. [PMID: 38161980 PMCID: PMC10757839 DOI: 10.3389/fendo.2023.1253394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Neutrophil-lymphocyte ratio (NLR), markers-lymphocyte-to-monocyte ratio (LMR), and platelet to-lymphocyte ratio (PLR) have potential roles as prognostic biomarkers in various cancers. The study was evaluated to investigate the predictive value of the peripheral inflammatory biomarkers in patients with papillary thyroid carcinoma (PTC) before radioiodine therapy to the response of clinical outcomes. Methods We retrospectively analyzed the patients diagnosed with PTC at the Second Hospital of Shandong University between September 2018 and January 2020. Patients were divided into low and high inflammatory biomarker groups based on median values. The area under the receiver operating characteristic curves (ROC) and logistic regression were used to explore the potential risk factors. Results A total of 692 patients were enrolled, which included 197 (28.4%) males and 495 (71.6%) females. The median values of NLR, LMR and PLR of these patients were 1.7 (range 0.3-5.7), 7.1 (range 1.1-23.4) and 137.6 (range 27.6-497.5), respectively, and the mean values were 1.95 ± 0.82, 7.4 ± 2.5 and 148.7 ± 54.8, respectively. Compared to the lower PLR group, the higher group was significantly associated with gender, tumor size, N stage and thyroglobulin level (P<0.05). At the end of follow-up, 75.5% (523/692), 13.3% (91/692), 4.5% (31/692), and 6.7% (47/692) of patients were evaluated as excellent response (ER), indeterminate response (IDR), structural incomplete response (SIR), and biochemical incomplete response (BIR) respectively. In term of clinical outcomes, the NLR, LMR and PLR showed relatively low discriminative power (P≥0.05). Conclusion We found that higher PLR values was associated with poor clinicopathological features in PTC. However, the peripheral inflammatory indicators (NLR, LMR and PLR) may be insufficient to predict short-term clinical outcomes of patients with radioiodine therapy.
Collapse
Affiliation(s)
- Jingjia Cao
- Department of Nuclear Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Xiaoxi He
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Li
- Department of Nuclear Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Yaru Sun
- Department of Nuclear Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Wei Zhang
- Department of Nuclear Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Yuyang Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolu Zhu
- Department of Nuclear Medicine, the Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
34
|
Wang G, Ma Y, Liu Y, Fan Y, Miao X, Zhang Y, Zhu H. Predictive value of systemic inflammatory markers for recurrence of papillary thyroid cancer. J Surg Oncol 2023; 128:743-748. [PMID: 37243870 DOI: 10.1002/jso.27363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common type of differentiated thyroid cancer. Early identification of patients at higher risk of recurrence may allow to improve relevant follow-up strategies and plan tailored treatment. Inflammation play an important role in the prognosis of cancer. We aimed to explore the predictive value of systemic inflammatory markers in PTC recurrence. METHODS We retrospectively enrolled 200 consecutive patients who were diagnosed with PTC and underwent curative resection at Lianyungang Oriental Hospital between January 2006 and December 2018. Clinicopathological characteristics, preoperative hematologic results were analyzed. The optimal cutoff values were calculated using x-tile software. The multivariate logistic regression and univariable survival analysis were performed by SPSS. RESULTS Multivariable analysis showed that lymph node metastases (odds ratio [OR] = 2.506, 95% confidence interval [CI]: 1.226-5.119, p = 0.012) and higher monocyte-to-lymphocyte ratio (MLR) (OR = 2.100, 95% CI: 1.042-4.233, p = 0.038) were independent prognostic factors for tumor recurrence. The cutoff value 0.22 of MLR significantly predicted recurrence at 53.3% sensitivity and 67.9% specificity. Patients with MLR ≥ 0.22 exhibited significantly poor long-term prognosis (46.8%) compared to the counterpart (76.8%, p = 0.0004). CONCLUSIONS Preoperative MLR significantly predicted PTC recurrence after curative resection, which may provide clues for early identification of patients at higher risk of PTC recurrence.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Yahui Ma
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Yixiang Liu
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Yuzhu Fan
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Xiang Miao
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Yiqi Zhang
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Hongbo Zhu
- Department of General Surgery, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
35
|
Wang S, Ge C. High risk of non-cancer mortality in bladder cancer patients: evidence from SEER-Medicaid. J Cancer Res Clin Oncol 2023; 149:10203-10215. [PMID: 37270459 PMCID: PMC10423154 DOI: 10.1007/s00432-023-04867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE The objective of this study was to investigate non-cancer causes of death and associated risk factors after bladder cancer (BC) diagnosis. METHODS Eligible BC patients were obtained from the SEER database. SEER*Stat software 8.3.9.2 was used to calculate the standardized mortality ratios (SMRs). The proportions of different non-cancer cause of death were calculated and analyzed in different follow-up periods. Multivariate competing risk model was used to analyze the risk factors for death of BC and non-cancer diseases. RESULTS In total, 240,954 BC patients were included and 106,092 patients experienced death, with 37,205 (35.07%), 13,208 (12.45%) and 55,679 (52.48%) patients experienced BC, other cancer and non-cancer disease-related deaths, respectively. Overall SMR for BC patients who died from non-cancer diseases was 2.42 (95% CI [2.40-2.44]). Cardiovascular diseases were the most common non-cancer cause of death, followed by respiratory diseases, diabetes mellitus, and infectious diseases. Multivariate competing risk analysis identified the following high-risk factors for non-cancer mortality: age > 60 years, male, whites, in situ stage, pathological type of transitional cell carcinoma, not receiving treatment (including surgery, chemotherapy, or radiation), and widowed. CONCLUSIONS Cardiovascular diseases are the leading non-cancer cause of death in BC patients, followed by respiratory disease, diabetes mellitus and infectious diseases. Physicians should pay attention to the risk of death from these non-cancer diseases. Also, physicians should encourage patients to engage in more proactive self-surveillance and follow up.
Collapse
Affiliation(s)
- Shunde Wang
- Department of Urology, The ChenJiaqiao Hospital of ShaPingba District of Chongqing City, Chongqing, 401331 People’s Republic of China
| | - Chengguo Ge
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
36
|
Xia Y, Lu S, Huo C, Fan L, Lin M, Huang J. Non cancer causes of death after gallbladder cancer diagnosis: a population-based analysis. Sci Rep 2023; 13:13746. [PMID: 37612302 PMCID: PMC10447554 DOI: 10.1038/s41598-023-40134-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023] Open
Abstract
Mortality from non cancer causes in patients with gallbladder cancer (GBC) still unclear. This study evaluated the causes and risk factors of non cancer death during different follow-up periods after GBC diagnosis. Non cancer causes of death for GBC patients diagnosed between 2000 and 2017 in Surveillance, Epidemiology and End Results database were analyzed and standardized mortality rates (SMR) for each non cancer death were calculated. Predictors for non cancer death were identified through multivariate competing risk analysis. A total 11,927 GBC patients were identified for further analysis, 9393 died during follow up. The largest proportion of non cancer deaths occurred > 3 years after diagnosis (39.4%). Most common non cancer cause were cardiovascular disease (43.3%), followed by other cause of death (34.4%) and infectious diseases (8.6%). Compared with US general population, GBC patients has higher risk of death from disease of heart (SMR, 1.58; 95%CI, 1.41-1.75), septicemia (SMR,3.21; 95%CI, 2.27-4.40), diabetes mellitus (SMR,1.97; 95%CI, 1.43-2.63), alone with other causes. Non cancer causes accounted for a significant proportion of deaths during the follow-up period after GBC diagnosis. The risk of non cancer death is higher in GBC patients than in the general population. Our study provides comprehensive assessment of death from non cancer cause in GBC patients, which has important implications for health management in GBC patients.
Collapse
Affiliation(s)
- Yang Xia
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shuangshuang Lu
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chunyan Huo
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Fan
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Min Lin
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Jin Huang
- Department of Gastroenterology, The Affliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
37
|
de Homdedeu M, Sanchez-Moral L, Violán C, Ràfols N, Ouchi D, Martín B, Peinado MA, Rodríguez-Cortés A, Arch-Sisquella M, Perez-Zsolt D, Muñoz-Basagoiti J, Izquierdo-Useros N, Salvador B, Matllo J, López-Serrano S, Segalés J, Vilaplana C, Torán-Monserrat P, Morros R, Monfà R, Sarrias MR, Cardona PJ. Mycobacterium manresensis induces trained immunity in vitro. iScience 2023; 26:106873. [PMID: 37250788 PMCID: PMC10182650 DOI: 10.1016/j.isci.2023.106873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.
Collapse
Affiliation(s)
- Miquel de Homdedeu
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lidia Sanchez-Moral
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Concepció Violán
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Neus Ràfols
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Dan Ouchi
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Alhelí Rodríguez-Cortés
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Marta Arch-Sisquella
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Centre for Biomedical Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Betlem Salvador
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Joan Matllo
- Department of Prevention and Risks, Germans Trias i Pujol University Hospital, Northern Metropolitan Territorial Management, Catalan Health Institute, 08916 Badalona, Spain
| | - Sergi López-Serrano
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Institute of Agrifood Research and Technology, Animal Health Program, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, Barcelona, Spain
| | - Pere Torán-Monserrat
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Rosa Morros
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Ramon Monfà
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Pere-Joan Cardona
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| |
Collapse
|
38
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
39
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
40
|
He G, Wang X, Liu W, Li Y, Shao Y, Liu W, Liang X, Bao X. Chemical constituents, pharmacological effects, toxicology, processing and compatibility of Fuzi (lateral root of Aconitum carmichaelii Debx): A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116160. [PMID: 36773791 DOI: 10.1016/j.jep.2023.116160] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lateral root of Aconitum carmichaelii Debx is known as Fuzi in Chinese. It is traditionally valued and used for dispelling cold, relieving pain effects, restoring 'Yang,' and treating shock despite its high toxicity. This review aims to provide comprehensive information on the chemical composition, pharmacological research, preparation, and compatibility of Fuzi to help reduce its toxicity and increase its efficiency, based on the scientific literature. In addition, this review will establish a new foundation for further studies on Fuzi. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS Fuzi extracts contain diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloids types, and have various pharmacological activities, such as strong heart effect, effect on blood vessels, and antidepressant, anti-diabetes, anti-inflammatory, pain-relieving, antitumor, immunomodulatory, and other therapeutic effects. However, these extracts can also lead to various toxicities such as cardiotoxicity, neurotoxicity, reproductive toxicity, hepatotoxicity, and embryonic toxicity. In vivo and in vitro experiments have demonstrated that different processing methods and suitable compatibility with other herbs can effectively reduce the toxicities and increase the efficiency of Fuzi. CONCLUSION The therapeutic potential of Fuzi has been demonstrated in conditions, such as heart failure, various pains, inflammation, and tumors, which is attributed to the diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloid types. In contrast, they are also toxic components. Proper processing and suitable compatibility can effectively reduce toxicity and increase the efficiency of Fuzi. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Li Y, Huang Z, Zhang Z, Wang Q, Li F, Wang S, Ji X, Shu S, Fang X, Jiang L. FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5'-end single-cell RNA sequencing. Genome Biol 2023; 24:70. [PMID: 37024957 PMCID: PMC10078054 DOI: 10.1186/s13059-023-02893-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Single-cell RNA sequencing methods focusing on the 5'-end of transcripts can reveal promoter and enhancer activity and efficiently profile immune receptor repertoire. However, ultra-high-throughput 5'-end single-cell RNA sequencing methods have not been described. We introduce FIPRESCI, 5'-end single-cell combinatorial indexing RNA-Seq, enabling massive sample multiplexing and increasing the throughput of the droplet microfluidics system by over tenfold. We demonstrate FIPRESCI enables the generation of approximately 100,000 single-cell transcriptomes from E10.5 whole mouse embryos in a single-channel experiment, and simultaneous identification of subpopulation differences and T cell receptor signatures of peripheral blood T cells from 12 cancer patients.
Collapse
Affiliation(s)
- Yun Li
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Huang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojun Zhang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifei Wang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxian Li
- The Blood Transfusion Department, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Shufang Wang
- The Blood Transfusion Department, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Shaokun Shu
- Peking University International Cancer Institute & Peking University Cancer Hospital & Institute, Beijing, 100191, China
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
- College of Future Technology College, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
43
|
Arifianto MR, Meizikri R, Haq IBI, Susilo RI, Wahyuhadi J, Hermanto Y, Faried A. Emerging hallmark of gliomas microenvironment in evading immunity: a basic concept. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
Over the last decade, since clinical trials examining targeted therapeutics for gliomas have failed to demonstrate a meaningful increase in survival, the emphasis has recently been switched toward innovative techniques for modulating the immune response against tumors and their microenvironments (TME). Cancerous cells have eleven hallmarks which make it distinct from normal ones, among which is immune evasion. Immune evasion in glioblastoma helps it evade various treatment modalities.
Summary
Glioblastoma’s TME is composed of various array of cellular actors, ranging from peripherally derived immune cells to a variety of organ-resident specialized cell types. For example, the blood–brain barrier (BBB) serves as a selective barrier between the systemic circulation and the brain, which effectively separates it from other tissues. It is capable of blocking around 98% of molecules that transport different medications to the target tumor.
Objectives
The purpose of this paper is to offer a concise overview of fundamental immunology and how ‘clever’ gliomas avoid the immune system despite the discovery of immunotherapy for glioma.
Conclusions
Herein, we highlight the complex interplay of the tumor, the TME, and the nearby normal structures makes it difficult to grasp how to approach the tumor itself. Numerous researchers have found that the brain TME is a critical regulator of glioma growth and treatment efficacy.
Collapse
|
44
|
Amaro A, Reggiani F, Fenoglio D, Gangemi R, Tosi A, Parodi A, Banelli B, Rigo V, Mastracci L, Grillo F, Cereghetti A, Tastanova A, Ghosh A, Sallustio F, Emionite L, Daga A, Altosole T, Filaci G, Rosato A, Levesque M, Maio M, Pfeffer U, Croce M. Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells. J Exp Clin Cancer Res 2023; 42:67. [PMID: 36934257 PMCID: PMC10024396 DOI: 10.1186/s13046-023-02628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND The combination of Programmed Cell Death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade has dramatically improved the overall survival rate for malignant melanoma. Immune checkpoint blockers (ICBs) limit the tumor's immune escape yet only for approximately a third of all tumors and, in most cases, for a limited amount of time. Several approaches to overcome resistance to ICBs are being investigated among which the addition of epigenetic drugs that are expected to act on both immune and tumor cells. Guadecitabine, a dinucleotide prodrug of a decitabine linked via phosphodiester bond to a guanosine, showed promising results in the phase-1 clinical trial, NIBIT-M4 (NCT02608437). METHODS We used the syngeneic B16F10 murine melanoma model to study the effects of immune checkpoint blocking antibodies against CTLA-4 and PD-1 in combination, with and without the addition of Guadecitabine. We comprehensively characterized the tumor's and the host's responses under different treatments by flow cytometry, multiplex immunofluorescence and methylation analysis. RESULTS In combination with ICBs, Guadecitabine significantly reduced subcutaneous tumor growth as well as metastases formation compared to ICBs and Guadecitabine treatment. In particular, Guadecitabine greatly enhanced the efficacy of combined ICBs by increasing effector memory CD8+ T cells, inducing effector NK cells in the spleen and reducing tumor infiltrating regulatory T cells and myeloid derived suppressor cells (MDSC), in the tumor microenvironment (TME). Guadecitabine in association with ICBs increased serum levels of IFN-γ and IFN-γ-induced chemokines with anti-angiogenic activity. Guadecitabine led to a general DNA-demethylation, in particular of sites of intermediate methylation levels. CONCLUSIONS These results indicate Guadecitabine as a promising epigenetic drug to be added to ICBs therapy.
Collapse
Affiliation(s)
- Adriana Amaro
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Francesco Reggiani
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Daniela Fenoglio
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Rosaria Gangemi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Alessia Parodi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Barbara Banelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Valentina Rigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Adhideb Ghosh
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Emionite
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Antonio Daga
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Tiziana Altosole
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| | - Gilberto Filaci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Mitchell Levesque
- Department of Dermatology, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy.
| | - Michela Croce
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova, Italy
| |
Collapse
|
45
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
46
|
Čelešnik H, Potočnik U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers (Basel) 2023; 15:1087. [PMID: 36831426 PMCID: PMC9954278 DOI: 10.3390/cancers15041087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Molecular diagnostic tests help clinicians understand the underlying biological mechanisms of their patients' breast cancer (BC) and facilitate clinical management. Several tissue-based mRNA tests are used routinely in clinical practice, particularly for assessing the BC recurrence risk, which can guide treatment decisions. However, blood-based mRNA assays have only recently started to emerge. This review explores the commercially available blood mRNA diagnostic assays for BC. These tests enable differentiation of BC from non-BC subjects (Syantra DX, BCtect), detection of small tumours <10 mm (early BC detection) (Syantra DX), detection of different cancers (including BC) from a single blood sample (multi-cancer blood test Aristotle), detection of BC in premenopausal and postmenopausal women and those with high breast density (Syantra DX), and improvement of diagnostic outcomes of DNA testing (variant interpretation) (+RNAinsight). The review also evaluates ongoing transcriptomic research on exciting possibilities for future assays, including blood transcriptome analyses aimed at differentiating lymph node positive and negative BC, distinguishing BC and benign breast disease, detecting ductal carcinoma in situ, and improving early detection further (expression changes can be detected in blood up to eight years before diagnosing BC using conventional approaches, while future metastatic and non-metastatic BC can be distinguished two years before BC diagnosis).
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
47
|
Positron emission tomography molecular imaging to monitor anti-tumor systemic response for immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging 2023; 50:1671-1688. [PMID: 36622406 PMCID: PMC10119238 DOI: 10.1007/s00259-022-06084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors (ICIs) achieve a milestone in cancer treatment. Despite the great success of ICI, ICI therapy still faces a big challenge due to heterogeneity of tumor, and therapeutic response is complicated by possible immune-related adverse events (irAEs). Therefore, it is critical to assess the systemic immune response elicited by ICI therapy to guide subsequent treatment regimens. Positron emission tomography (PET) molecular imaging is an optimal approach in cancer diagnosis, treatment effect evaluation, follow-up, and prognosis prediction. PET imaging can monitor metabolic changes of immunocytes and specifically identify immuno-biomarkers to reflect systemic immune responses. Here, we briefly review the application of PET molecular imaging to date of systemic immune responses following ICI therapy and the associated rationale.
Collapse
|
48
|
Presence of regulatory T-cells in endometrial cancer predicts poorer overall survival and promotes progression of tumor cells. Cell Oncol 2022; 45:1171-1185. [PMID: 36098901 DOI: 10.1007/s13402-022-00708-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Endometrial cancer (EC) is one of the most common gynaecologic malignancies. Tumor infiltrating regulatory T-cells (Treg) have been reported to have a prognostic impact in many malignancies. Immunotherapeutic strategies are gaining interest for advanced and recurrent EC cases, where treatment options are rare. Our study was aimed at determining the value of Treg in EC progression. METHODS EC specimens from 275 patients and 28 controls were screened immunohistochemically for the presence of Treg represented by FoxP3. Correlations with clinicopathological and survival parameters were performed. Functional assays were performed using EC cell lines Ishikawa + and RL95-2 after co-culturing with isolated CD4 + CD25 + CD127dim Treg. To assess the influence of EC on the composition of peripheral blood mononuclear cells (PBMC), flow cytometric analyses were performed. RESULTS We found that an increased infiltration of Treg was associated with high grades and a reduced overall survival. Treg were almost absent in endometrium tissues from healthy control patients. Co-culture of tumor cells with CD4 + CD25 + CD127dim Treg led to functional changes: enhanced invasion, migration and viability indicated that increased levels of Treg in the tumor microenvironment may promote tumor growth. Furthermore, we found that the presence of EC cells led to phenotypic changes in PBMC, showing significantly increased levels of CD25 and FoxP3. CONCLUSION Our results indicate that the presence of Treg in the EC tumor environment is associated with a poorer outcome. A remarkable impact of Treg on tumor cell behaviour and vice versa of tumor cells on PBMC subpopulations support this notion mechanistically. Our findings provide a basis for focusing on Treg as potential future therapeutic targets in EC.
Collapse
|
49
|
Luong T, Golivi Y, Nagaraju GP, El-Rayes BF. Fibroblast heterogeneity in pancreatic ductal adenocarcinoma: Perspectives in immunotherapy. Cytokine Growth Factor Rev 2022; 68:107-115. [PMID: 36096869 DOI: 10.1016/j.cytogfr.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023]
Abstract
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.
Collapse
Affiliation(s)
- Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Yuvasri Golivi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
50
|
Johnson A, Townsend M, O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells 2022; 11:cells11223626. [PMID: 36429054 PMCID: PMC9688327 DOI: 10.3390/cells11223626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting advancement in cancer immunotherapy, with striking success in hematological cancers. However, in solid tumors, the unique immunosuppressive elements of the tumor microenvironment (TME) contribute to the failure of CAR T cells. This review discusses the cell populations, cytokine/chemokine profile, and metabolic immunosuppressive elements of the TME. This immunosuppressive TME causes CAR T-cell exhaustion and influences failure of CAR T cells to successfully infiltrate solid tumors. Recent advances in CAR T-cell development, which seek to overcome aspects of the TME immunosuppression, are also reviewed. Novel discoveries overcoming immunosuppressive limitations of the TME may lead to the success of CAR T cells in solid tumors.
Collapse
|