1
|
Cai G, Liu S, Zhong F, Gu J, Yuan Y, Zhu J, Zhu G, Liu Z, Zou H, Bian J. Zearalenone and deoxynivalenol inhibited IL-4 receptor-mediated Th2 cell differentiation and aggravated bacterial infection in mice. Toxicol Appl Pharmacol 2021; 415:115441. [PMID: 33556388 DOI: 10.1016/j.taap.2021.115441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
The immunotoxicity of zearalenone (ZEA) and deoxynivalenol (DON), two of the most common environmental mycotoxins, has been well investigated. However, due to the complexity of the immune system, especially during bacterial infection, many types of immune cells are involved in invasion resistance and bacterial clearance. Of these, T helper 2 (Th2) cells, which are members of the helper T cell family, assist B cells to activate and differentiate into antibody-secreting cells, participate in humoral immune response, and, ultimately, eliminate pathogens. Thus, it is important to identify the stage at which these toxins affect the immune function, and to clarity the underlying mechanisms. In this study, mice infected with Listeria monocytogenes (Listeria) were used to study the effects of ZEA, DON, and ZEA + DON on Th2 differentiation, Interleukin-4 Receptor (IL-4R) expression, costimulatory molecules expression and cytokine secretion after Listeria infection. Naive CD4+ T cells, isolated from mice, were used to verify the in vivo effects and the associated mechanisms. In vivo experiments showed that these toxins aggravated spleen damage after Listeria infection and reduced the differentiation of Th2 cells by affecting the synthesis of IL-4R of CD4+ T cells. In addition, the level of the costimulatory molecule CD154 decreased. Consistent with this, in vitro studies showed that these toxins inhibited the differentiation of mouse naive CD4+ T cell into Th2 subtype and decreased IL-4R levels. In addition, the levels of costimulatory molecules CD154, CD278 and the Th2 cells secrete cytokines IL-4, IL-6, and IL-10 decreased. Based on our in vivo and in vitro experiments, we suggest that ZEA, DON, and ZEA + DON inhibit the expression of costimulatory molecules on CD4+ T cell, and inhibit the IL-4R-mediated Th2 cell differentiation. This may indicate that the body cannot normally resist or clear the pathogen after mycotoxin poisoning.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shuangshuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - JiaQiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
2
|
Yang HY, Wu CY, Chen JJ, Lee TH. Treatment Strategies and Metabolic Pathway Regulation in Urothelial Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2020; 21:E8993. [PMID: 33256165 PMCID: PMC7730311 DOI: 10.3390/ijms21238993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
For a long time, cisplatin-based chemotherapy had been viewed as first-line chemotherapy for advanced and metastatic urothelial carcinoma (UC). However, many patients with UC had been classified as cisplatin-ineligible who can only receive alternative chemotherapy with poor treatment response, and the vast majority of the cisplatin-eligible patients eventually progressed, even those with objective response with cisplatin-based chemotherapy initially. By understanding tumor immunology in UC, immune checkpoint inhibitors, targeting on programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) pathways, had been proven as first-line treatment for cisplatin-ineligible metastatic UC and as second-line treatment for patients with platinum-refractory metastatic UC by the U.S Food and Drug Administration (FDA). In 2020, JAVEIN bladder 100 further reported that PD-L1 inhibitors showed benefits on prolonged survival and progression-free survival as maintenance therapy. Besides targeting on immune checkpoint, manipulation of the tumor microenvironment by metabolic pathways intervention, including inhibition on tumor glycolysis, lactate accumulation and exogenous glutamine uptake, had been investigated in the past few years. In this comprehensive review, we start by introducing traditional chemotherapy of UC, and then we summarize current evidences supporting the use of immune checkpoint inhibitors and highlight ongoing clinical trials. Lastly, we reviewed the tumor metabolic characteristic and the anti-tumor treatments targeting on metabolic pathways.
Collapse
Affiliation(s)
- Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Tao-Han Lee
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| |
Collapse
|
3
|
Jerez MJ, Jerez M, González-García C, Ballester S, Castro A. Combined use of pharmacophoric models together with drug metabolism and genotoxicity "in silico" studies in the hit finding process. J Comput Aided Mol Des 2013; 27:79-90. [PMID: 23296989 DOI: 10.1007/s10822-012-9627-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/15/2012] [Indexed: 01/23/2023]
Abstract
In this study we propose a virtual screening strategy based on the generation of a pharmacophore hypothesis, followed by an in silico evaluation of some ADME-TOX properties with the aim to apply it to the hit finding process and, specifically, to characterize new chemical entities with potential to control inflammatory processes mediated by T lymphocytes such as multiple sclerosis, systemic lupus erithematosus or rheumatoid arthritis. As a result, three compounds with completely novel scaffolds were selected as final hits for future hit-to-lead optimization due to their anti-inflammatory profile. The biological results showed that the selected compounds increased the intracellular cAMP levels and inhibited cell proliferation in T lymphocytes. Moreover, two of these compounds were able to increase the production of IL-4, an immunoregulatory cytokine involved in the selective deviation of T helper (Th) immune response Th type 2 (Th2), which has been proved to have anti-inflammatory properties in several animal models for autoimmune pathologies as multiple sclerosis or rheumatoid arthritis. Thus our pharmacological strategy has shown to be useful to find molecules with biological activity to control immune responses involved in many inflammatory disorders. Such promising data suggested that this in silico strategy might be useful as hit finding process for future drug development.
Collapse
Affiliation(s)
- Ma José Jerez
- Instituto de Química Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
4
|
Williams M, Georas S. Gene expression patterns and susceptibility to allergic responses. Expert Rev Clin Immunol 2010; 2:59-73. [PMID: 20477088 DOI: 10.1586/14787210.2.1.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergic diseases are due to hypersensitive immune responses against otherwise innocuous allergens, and involve the dysregulated expression of numerous genes in cells from both the innate and adaptive immune systems. Allergic diseases are characterized by the enhanced production of type 2 T helper (Th2) cytokines, including interleukin-4, -5 and -13. These cytokines induce many of the pathophysiologic hallmarks of allergy, and their expression is tightly regulated at the level of gene transcription by both positively and negatively-acting transcription factors. In this review, the authors summarize data indicating that some of these factors represent checkpoints in the development of allergic diseases. Th2 gene expression is also controlled at the level of chromatin remodeling, and the implications of chromatin-based Th2 gene regulation in allergic disorders is also discussed. The differentiation of Th2 cells from naive precursors is critically dependent upon instruction received from dendritic cells, although the precise signals involved in this process are not well understood. Current thinking regarding some of the environmental cues interpreted by dendritic cells during allergen encounter, and how they promote Th2 responses will be reviewed. Understanding the cross-talk between dendritic cells and T cells holds great promise for deciphering the dysregulated immune response in allergy.
Collapse
Affiliation(s)
- Marc Williams
- Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview CircleBaltimore, MD 21224, USA.
| | | |
Collapse
|
5
|
Yin-Yang 1 regulates effector cytokine gene expression and T(H)2 immune responses. J Allergy Clin Immunol 2008; 122:195-201, 201.e1-5. [PMID: 18423564 DOI: 10.1016/j.jaci.2008.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND The transcription factor Yin-Yang 1 (YY-1) binds to the promoter regions of several T-cell cytokine genes, but the expression and contribution of this factor to cytokine gene expression and T-cell activation in vivo is not clear. OBJECTIVE We sought to better define the role of YY-1 in T-cell gene regulation and allergic immune responses. METHODS We studied cytokine gene expression in T lymphocytes isolated from wild-type mice and heterozygous littermates bearing 1 targeted yy-1 allele (yy-1(+/-) mice). T cells were stimulated with anti-T-cell receptor (anti-TCR) plus CD28 antibodies or with peptide antigen plus antigen-presenting cells by using newly generated yy-1(+/-) TCR transgenic mice. We also studied ovalbumin-driven allergic immune responses in a mouse model of asthma and YY-1 expression in lung tissue from human asthmatic subjects. RESULTS CD4(+) T cells from yy-1(+/-) mice secreted significantly less IL-4 and IFN-gamma compared with wild-type littermates after TCR-dependent activation, whereas IL-2 production was not significantly affected. Both airway inflammation and recall splenocyte IL-4 production were inhibited in yy-1(+/-) mice, as was antigen-driven T-cell proliferation. YY-1 expression was higher in airway biopsy specimens from asthmatic compared with control subjects. CONCLUSION These data indicate that YY-1 regulates T-cell cytokine gene expression and allergic immune responses in a gene dose-dependent manner.
Collapse
|
6
|
A STAT6 gene polymorphism is associated with high infection levels in urinary schistosomiasis. Genes Immun 2008; 9:195-206. [PMID: 18273035 DOI: 10.1038/gene.2008.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Th2-mediated immunity is critical for human defence against schistosome, and susceptibility to infection is controlled by a major genetic locus, mapped on the 5q31-q33 region comprising the genes IL4, IL5 and IL13. We have reported an association between the rs1800925 polymorphism in the IL13 promoter and infection levels in a Dogon population (693 subjects in Ségué and 148 in Boul), where Schistosoma haematobium is endemic. In the same population, we investigated whether other polymorphisms in genes involved in type 2 cytokine immune response could affect susceptibility to schistosome infection. By logistic regression analysis, we found an association between a single-nucleotide polymorphism (SNP) in the STAT6 gene (rs324013) and infection levels (P=0.04). We confirmed this association in analyses restricted to subjects under 20 years age and living in Boul, the village with the highest levels of infection (P=0.005). We detected an additive effect of the rs324013 and rs1800925 polymorphisms (P=0.011). These SNPs were not strongly correlated with any other tested markers surrounding the two genes. Furthermore, electrophoretic mobility shift assay has shown that both polymorphisms affect transcription factor binding. These results are consistent with the Th2 cytokine pathway enhancing resistance to schistosome infection in humans.
Collapse
|
7
|
Martín-Saavedra FM, Flores N, Dorado B, Eguiluz C, Bravo B, García-Merino A, Ballester S. Beta-interferon unbalances the peripheral T cell proinflammatory response in experimental autoimmune encephalomyelitis. Mol Immunol 2007; 44:3597-607. [PMID: 17420051 DOI: 10.1016/j.molimm.2007.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/15/2022]
Abstract
Interferon beta (IFNbeta) is a widespread therapy for multiple sclerosis (MS). We have analyzed some critical features of the T cell activation process in lymph nodes after IFNbeta treatment of experimental autoimmune encephalomyelitis (EAE) in SJL mice. Prevention of clinical signs and drastic reduction of perivascular infiltrates in the central nervous system (CNS) were accompanied by alterations in nuclear DNA binding activity levels of NFkappaB and Stat6 transcription factors in lymph node cells (LNC). A decrease of active NFkappaB subunits in treated animals correlated with lower levels of the cytoplasmic phosphorylated form of IkappaBalpha. Results also showed that nuclear DNA binding activity of Stat6 was increased by IFNbeta treatment, as were the cytoplasmic levels of phosphorilated Stat6 (P-Stat6). These high levels of P-Stat6 in IFNbeta-treated animals were accompanied by an increase of IL-4 expression levels measured by real time PCR. In vitro experiments with the IL-4 producing clone D10.G4.1 indicates that the IFNbeta-mediated IL-4 induction is not an effect exclusive to MBP-reactive cells, and suggest that it could be mediated by mRNA stability enlargement. On the other hand, IFNbeta treatment of EAE produced no significant changes in peripheral IFNgamma expression and a striking decrease of IL-17. These findings suggest that the inhibition of NFkappaB activity, the increase of IL-4 expression and its signaling transduction, and the decrease of IL-17 may cooperate to some of the antiinflammatory effects of IFNbeta on EAE.
Collapse
Affiliation(s)
- Francisco M Martín-Saavedra
- Unidad de Regulación Génica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km 2, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Cameron L, Webster RB, Strempel JM, Kiesler P, Kabesch M, Ramachandran H, Yu L, Stern DA, Graves PE, Lohman IC, Wright AL, Halonen M, Klimecki WT, Vercelli D. Th2 cell-selective enhancement of human IL13 transcription by IL13-1112C>T, a polymorphism associated with allergic inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8633-42. [PMID: 17142763 PMCID: PMC11507172 DOI: 10.4049/jimmunol.177.12.8633] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-13 is a central mediator of allergic inflammation. The single nucleotide polymorphism IL13-1112C>T (rs1800925) is associated with allergic phenotypes in ethnically distinct populations, but the underlying mechanism(s) remain unknown. Using in vivo, in vitro, and in silico analysis, we show that the IL13-1112T allele enhanced IL13 promoter activity in primary human and murine CD4(+) Th2 lymphocytes. Increased expression of IL13-1112T in Th2 cells was associated with the creation of a Yin-Yang 1 binding site that overlapped a STAT motif involved in negative regulation of IL13 expression and attenuated STAT6-mediated transcriptional repression. Because IL-13 secretion was increased in IL13-1112TT homozygotes, we propose that increased expression of IL13-1112T in vivo may underlie its association with susceptibility to allergic inflammation. Interestingly, IL13-1112T had opposite transcriptional effects in nonpolarized CD4(+) T cells, paralleled by distinct patterns of DNA-protein interactions at the IL13 promoter. Our findings suggest the nuclear milieu dictates the functional outcome of genetic variation.
Collapse
Affiliation(s)
- Lisa Cameron
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Robin B. Webster
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Jannine M. Strempel
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Patricia Kiesler
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Michael Kabesch
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | | | - Lizhi Yu
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Debra A. Stern
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | | | - I. Carla Lohman
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
| | - Anne L. Wright
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724
| | - Marilyn Halonen
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Walter T. Klimecki
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Donata Vercelli
- Functional Genomics Laboratory, University of Arizona, Tucson, AZ 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ 85724
- Departments of Cell Biology, College of Medicine, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
9
|
Lan Q, Zheng T, Rothman N, Zhang Y, Wang SS, Shen M, Berndt SI, Zahm SH, Holford TR, Leaderer B, Yeager M, Welch R, Boyle P, Zhang B, Zou K, Zhu Y, Chanock S. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood 2006; 107:4101-8. [PMID: 16449530 PMCID: PMC1895277 DOI: 10.1182/blood-2005-10-4160] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies have demonstrated that common polymorphisms in Th1 and Th2 cytokine genes can alter gene expression, modulate the balance between Th1/Th2 responsiveness, and influence susceptibility for autoimmune disorders, infectious diseases, and cancer. We analyzed one or more single nucleotide polymorphisms (SNPs) in 20 candidate Th1/Th2 genes in a population-based case-control study of non-Hodgkin lymphoma (NHL; n = 518 cases, 597 controls) among women in Connecticut. SNPs in critical genes, IL4, IL5, IL6, and IL10, were associated with risk for NHL and in some instances with a specific histologic subtype. Analysis of 4 SNPs in the IL10 promoter (-3575T>A, -1082A>G, -819C>T, and -592C>A) revealed that both the AGCC haplotype (odds ratio [OR] = 1.54, 95% confidence interval [CI] = 1.21-1.96, P < .001) and the TATA haplotype (OR = 1.37, 95% CI = 1.05-1.79, P = .02) were associated with increased risk for B-cell lymphomas. In contrast, the IL4-1098G allele was associated with increased risk of T-cell lymphomas (OR = 3.84; 95% CI = 1.79-8.22; P < .001). Further, the IL10 and IL4 SNP associations remained significant after adjusting for multiple comparisons. These results suggest that SNPs in Th2 cytokine genes may be associated with risk of NHL.
Collapse
Affiliation(s)
- Qing Lan
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH/DHHS, MSC 7240, 6120 Executive Blvd, EPS 8109, Bethesda, MD 20892-7240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|