1
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 PMCID: PMC11878027 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D. Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W. Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A. Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Engelhart MJ, Glowacki RWP, Till JM, Harding CV, Martens EC, Ahern PP. The NQR Complex Regulates the Immunomodulatory Function of Bacteroides thetaiotaomicron. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:767-781. [PMID: 37486212 PMCID: PMC10527448 DOI: 10.4049/jimmunol.2200892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The gut microbiome and intestinal immune system are engaged in a dynamic interplay that provides myriad benefits to host health. However, the microbiome can also elicit damaging inflammatory responses, and thus establishing harmonious immune-microbiome interactions is essential to maintain homeostasis. Gut microbes actively coordinate the induction of anti-inflammatory responses that establish these mutualistic interactions. Despite this, the microbial pathways that govern this dialogue remain poorly understood. We investigated the mechanisms through which the gut symbiont Bacteroides thetaiotaomicron exerts its immunomodulatory functions on murine- and human-derived cells. Our data reveal that B. thetaiotaomicron stimulates production of the cytokine IL-10 via secreted factors that are packaged into outer membrane vesicles, in a TLR2- and MyD88-dependent manner. Using a transposon mutagenesis-based screen, we identified a key role for the B. thetaiotaomicron-encoded NADH:ubiquinone oxidoreductase (NQR) complex, which regenerates NAD+ during respiration, in this process. Finally, we found that disruption of NQR reduces the capacity of B. thetaiotaomicron to induce IL-10 by impairing biogenesis of outer membrane vesicles. These data identify a microbial pathway with a previously unappreciated role in gut microbe-mediated immunomodulation that may be targeted to manipulate the capacity of the microbiome to shape host immunity.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
4
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein. Viruses 2022; 14:v14050890. [PMID: 35632632 PMCID: PMC9145290 DOI: 10.3390/v14050890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Porcine epidemic diarrhea (PED), characterized by diarrhea, vomiting, and dehydration, is an acute enteric infectious disease of pigs. The disease is caused by porcine epidemic diarrhea virus (PEDV), which infects the intestinal mucosal surface. Therefore, mucosal immunization through the oral route is an effective method of immunization. Lactic acid bacteria, which are acid resistant and bile-salt resistant and improve mucosal immunity, are ideal carriers for oral vaccines. The S1 glycoprotein of PEDV mediates binding of the virus with cell receptors and induces neutralizing antibodies against the virus. Therefore, we reversely screened the recombinant strain pPG-SD-S1/Δupp ATCC 393 expressing PEDV S1 glycoprotein by Lactobacillus casei deficient in upp genotype (Δupp ATCC 393). Mice were orally immunized three times with the recombinant bacteria that had been identified for expression, and the changes of anti-PEDV IgG and secreted immunoglobulin A levels were observed over 70 days. The results indicated that the antibody levels notably increased after oral administration of recombinant bacteria. The detection of extracellular cytokines on the 42nd day after immunization indicated high levels of humoral and cellular immune responses in mice. The above results demonstrate that pPG-SD-S1/Δupp ATCC 393 has great potential as an oral vaccine against PEDV.
Collapse
|
6
|
Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, De Celie MB, Putzel GG, Yantiss RK, Johncilla M, Colak D, Iliev ID. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022; 185:831-846.e14. [PMID: 35176228 PMCID: PMC8897247 DOI: 10.1016/j.cell.2022.01.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iris H. Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Xin V. Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - William D. Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Meghan Bialt De Celie
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G. Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Rhonda K. Yantiss
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Melanie Johncilla
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA.,Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Iliyan D. Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
7
|
Lim AI, McFadden T, Link VM, Han SJ, Karlsson RM, Stacy A, Farley TK, Lima-Junior DS, Harrison OJ, Desai JV, Lionakis MS, Shih HY, Cameron HA, Belkaid Y. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 2021; 373:373/6558/eabf3002. [PMID: 34446580 DOI: 10.1126/science.abf3002] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
The immune system has evolved in the face of microbial exposure. How maternal infection experienced at distinct developmental stages shapes the offspring immune system remains poorly understood. Here, we show that during pregnancy, maternally restricted infection can have permanent and tissue-specific impacts on offspring immunity. Mechanistically, maternal interleukin-6 produced in response to infection can directly impose epigenetic changes on fetal intestinal epithelial stem cells, leading to long-lasting impacts on intestinal immune homeostasis. As a result, offspring of previously infected dams develop enhanced protective immunity to gut infection and increased inflammation in the context of colitis. Thus, maternal infection can be coopted by the fetus to promote long-term, tissue-specific fitness, a phenomenon that may come at the cost of predisposition to inflammatory disorders.
Collapse
Affiliation(s)
- Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taryn McFadden
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rose-Marie Karlsson
- Section on Neuroplasticity, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD 20892, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Section on Neuroplasticity, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. .,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Saha P, Golonka RM, Abokor AA, Yeoh BS, Vijay-Kumar M. IL-10 Receptor Neutralization-Induced Colitis in Mice: A Comprehensive Guide. Curr Protoc 2021; 1:e227. [PMID: 34399038 DOI: 10.1002/cpz1.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-10 (IL-10) and its receptor (IL-10R) have been foremost targets to understand inflammatory bowel disease (IBD) pathogenesis. For the past several decades, IL-10-deficient (Il10-/- ) mice were considered one of the best models to study immune-mediated colitis. Several physiologic limitations with this model, e.g., delayed and varied disease onset, have hindered investigators in testing new clinical therapies for IBD. In this article, we provide comprehensive guidance for using anti-IL-10R monoclonal antibody (αIL-10R mAb) neutralization as a superior alternative model to study IBD. This article describes the feasibility of using αIL-10R mAb to induce chronic colitis (within 4 weeks), perform time-dependent mechanistic studies, and assess the efficacy of IBD therapeutics. This article also delineates protocols for in-house assays to critically assess colitis and associated inflammatory parameters. Overall, we underscore αIL-10R mAb neutralization as a relevant immune-mediated murine colitis model to study human Crohn's disease. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Induction of chronic colitis in mice via αIL-10R mAb neutralization Basic Protocol 2: Biochemical evaluation of αIL-10R mAb neutralization-induced chronic colitis Support Protocol 1: Stool analysis and scoring Support Protocol 2: Swiss roll method.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmed A Abokor
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
9
|
Sun M, Liu Y, Song Y, Gao Y, Zhao F, Luo Y, Qian F, Mu G, Tuo Y. The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis. Food Funct 2021; 11:5205-5222. [PMID: 32458908 DOI: 10.1039/d0fo00007h] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some strains of lactobacilli can exert beneficial effects on a host when ingested in an adequate dose, such as immunoregulation and anti-inflammatory activities. In this study, the survival abilities under simulated gastrointestinal conditions, adhesion abilities on HT-29 cell monolayers, and hemolytic activities of four Lactobacillus plantarum strains were assessed. Among the four strains, L. plantarum-12 showed the higher survival rate under simulated gastrointestinal conditions and adhesion index on the HT-29 cell monolayers, exhibited γ-haemolytic activity and had no biological amine producing ability. L. plantarum-12 was administered to dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) Balb/c mice by oral gavage for 10 days. It was observed that the UC Balb/c mice showed symptoms of colonic atrophy, intestinal histopathological change, gut microbial disturbance, and pro-inflammatory cytokine expression. L. plantarum-12 administration remarkably attenuated DSS-induced UC in mice. L. plantarum-12 administration could restore gut microbiota by increasing beneficial bacteria such as Lactobacillus and decreasing intestinal pathogenic bacteria like Proteobacteria. L. plantarum-12 administration could improve immunity via activating the janus kinase-signal transducer and the activator of the transcription (JAK-STAT) pathway and up-regulating adenosine deaminase (ADA) and interferon-induced protein with tetratricopeptide repeats 1 protein (IFIT1), and enforce the intestinal barrier function by up-regulating mucin 2 (MUC2) protein expression. In conclusion, L. plantarum-12 could attenuate DSS-induced UC in Balb/c mice by ameliorating intestinal inflammation, and restoring the disturbed gut microbiota. L. plantarum-12 could be used as promising probiotics to ameliorate colitis.
Collapse
Affiliation(s)
- Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yujun Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yuan Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Fujunzhu Zhao
- Food Science Department, Pennsylvania State University, Pennsylvania, USA
| | - Yanghe Luo
- Institute of Food Research, Hezhou University, Hezhou 542899, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
10
|
Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol 2020; 10:327-340. [PMID: 32304780 PMCID: PMC7326733 DOI: 10.1016/j.jcmgh.2020.04.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Defective epithelial barrier function is present in maladies including epidermal burn injury, environmental lung damage, renal tubular disease, and a range of immune-mediated and infectious intestinal disorders. When the epithelial surface is intact, the paracellular pathway between cells is sealed by the tight junction. However, permeability of tight junctions varies widely across tissues and can be markedly impacted by disease. For example, tight junctions within the skin and urinary bladder are largely impermeant and their permeability is not regulated. In contrast, tight junctions of the proximal renal tubule and intestine are selectively permeable to water and solutes on the basis of their biophysical characteristics and, in the gut, can be regulated by the immune system with remarkable specificity. Conversely, modulation of tight junction barrier conductance, especially within the gastrointestinal tract, can impact immune homeostasis and diverse pathologies. Thus, tight junctions are both effectors and targets of immune regulation. Using the gastrointestinal tract as an example, this review explores current understanding of this complex interplay between tight junctions and immunity.
Collapse
|
11
|
Hou G, Bishu S. Th17 Cells in Inflammatory Bowel Disease: An Update for the Clinician. Inflamm Bowel Dis 2020; 26:653-661. [PMID: 31970388 PMCID: PMC11491631 DOI: 10.1093/ibd/izz316] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Studies in humans strongly implicate Th17 cells in the pathogenesis of inflammatory bowel disease. Thus, Th17 cells are major targets of approved and emerging biologics. Herein, we review the role of Th17 in IBD with a clinical focus.
Collapse
Affiliation(s)
- Guoqing Hou
- Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| | - Shrinivas Bishu
- Crohn's and Colitis Center, Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| |
Collapse
|
12
|
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95:77-99. [PMID: 30174217 PMCID: PMC6289740 DOI: 10.1016/j.jaut.2018.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
The immune system ensures optimum T-effector (Teff) immune responses against invading microbes and tumor antigens while preventing inappropriate autoimmune responses against self-antigens with the help of T-regulatory (Treg) cells. Thus, Treg and Teff cells help maintain immune homeostasis through mutual regulation. While Tregs can contribute to tumor immune evasion by suppressing anti-tumor Teff response, loss of Treg function can result in Teff responses against self-antigens leading to autoimmune disease. Thus, loss of homeostatic balance between Teff/Treg cells is often associated with both cancer and autoimmunity. Co-stimulatory and co-inhibitory receptors, collectively known as co-signaling receptors, play an indispensable role in the regulation of Teff and Treg cell expansion and function and thus play critical roles in modulating autoimmune and anti-tumor immune responses. Over the past three decades, considerable efforts have been made to understand the biology of co-signaling receptors and their role in immune homeostasis. Mutations in co-inhibitory receptors such as CTLA4 and PD1 are associated with Treg dysfunction, and autoimmune diseases in mice and humans. On the other hand, growing tumors evade immune surveillance by exploiting co-inhibitory signaling through expression of CTLA4, PD1 and PDL-1. Immune checkpoint blockade (ICB) using anti-CTLA4 and anti-PD1 has drawn considerable attention towards co-signaling receptors in tumor immunology and created renewed interest in studying other co-signaling receptors, which until recently have not been as well studied. In addition to co-inhibitory receptors, co-stimulatory receptors like OX40, GITR and 4-1BB have also been widely implicated in immune homeostasis and T-cell stimulation, and use of agonistic antibodies against OX40, GITR and 4-1BB has been effective in causing tumor regression. Although ICB has seen unprecedented success in cancer treatment, autoimmune adverse events arising from ICB due to loss of Treg homeostasis poses a major obstacle. Herein, we comprehensively review the role of various co-stimulatory and co-inhibitory receptors in Treg biology and immune homeostasis, autoimmunity, and anti-tumor immunity. Furthermore, we discuss the autoimmune adverse events arising upon targeting these co-signaling receptors to augment anti-tumor immune responses.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA; Department of Ophthalmology, Associate Dean for Technological Innovation and Training, University of Illinois College of Medicine, Room E-705, (M/C 790), 835 S. Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Sorini C, Cardoso RF, Gagliani N, Villablanca EJ. Commensal Bacteria-Specific CD4 + T Cell Responses in Health and Disease. Front Immunol 2018; 9:2667. [PMID: 30524431 PMCID: PMC6256970 DOI: 10.3389/fimmu.2018.02667] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Over the course of evolution, mammalian body surfaces have adapted their complex immune system to allow a harmless coexistence with the commensal microbiota. The adaptive immune response, in particular CD4+ T cell-mediated, is crucial to maintain intestinal immune homeostasis by discriminating between harmless (e.g., dietary compounds and intestinal microbes) and harmful stimuli (e.g., pathogens). To tolerate food molecules and microbial components, CD4+ T cells establish a finely tuned crosstalk with the environment whereas breakdown of these mechanisms might lead to chronic disease associated with mucosal barriers and beyond. How commensal-specific immune responses are regulated and how these molecular and cellular mechanisms can be manipulated to treat chronic disorders is yet poorly understood. In this review, we discuss current knowledge of the regulation of commensal bacteria-specific CD4+ T cells. We place particular focus on the key role of commensal-specific CD4+ T cells in maintaining tolerance while efficiently eradicating local and systemic infections, with a focus on factors that trigger their aberrant activation.
Collapse
Affiliation(s)
- Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Rebeca F. Cardoso
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Nicola Gagliani
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J. Villablanca
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Rahman A, Tiwari A, Narula J, Hickling T. Importance of Feedback and Feedforward Loops to Adaptive Immune Response Modeling. CPT Pharmacometrics Syst Pharmacol 2018; 7:621-628. [PMID: 30198637 PMCID: PMC6202469 DOI: 10.1002/psp4.12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
The human adaptive immune system is a very complex network of different types of cells, cytokines, and signaling molecules. This complex network makes it difficult to understand the system level regulations. To properly explain the immune system, it is necessary to explicitly investigate the presence of different feedback and feedforward loops (FFLs) and their crosstalks. Considering that these loops increase the complexity of the system, the mathematical modeling has been proved to be an important tool to explain such complex biological systems. This review focuses on these regulatory loops and discusses their importance on systems modeling of the immune system.
Collapse
|
15
|
Kumar P, Saini S, Khan S, Surendra Lele S, Prabhakar BS. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol 2018; 339:41-49. [PMID: 30482489 DOI: 10.1016/j.cellimm.2018.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Self-tolerance, the state of unresponsiveness to self-tissues/antigens, is maintained through central and peripheral tolerance mechanisms, and a breach of these mechanisms leads to autoimmune diseases. Foxp3 + T-regulatory cells (Tregs) play an essential role in suppressing autoimmune response directed against self-antigens and thereby regulate self-tolerance. Natural Tregs are differentiated in the thymus on the basis of their higher TCR-affinity to self-antigens and migrate to the periphery where they maintain peripheral tolerance. In addition, extra-thymic differentiation of induced Tregs can occur in the periphery which can control abrupt immune responses under inflammatory conditions. A defect in Treg cell numbers and/or function is found to be associated with the development of autoimmune disease in several experimental models and human autoimmune diseases. Moreover, augmentation of Tregs has been shown to be beneficial in treating autoimmunity in preclinical models, and Treg based cellular therapy has shown initial promise in clinical trials. However, emerging studies have identified an unstable subpopulation of Tregs which expresses pro-inflammatory cytokines under both homeostatic and autoimmune conditions, as well as in ex vivo cultures. In addition, clinical translation of Treg cellular therapy is impeded by limitations such as lack of easier methods for selective expansion of Tregs and higher cost associated with GMP-facilities required for cell sorting, ex vivo expansion and infusion of ex vivo expanded Tregs. Here, we discuss the recent advances in molecular mechanisms regulating Treg differentiation, Foxp3 expression and lineage stability, the role of Tregs in the prevention of various autoimmune diseases, and critically review their clinical utility for treating human autoimmune diseases.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Shikha Saini
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Saad Khan
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Bakos E, Thaiss CA, Kramer MP, Cohen S, Radomir L, Orr I, Kaushansky N, Ben-Nun A, Becker-Herman S, Shachar I. CCR2 Regulates the Immune Response by Modulating the Interconversion and Function of Effector and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4659-4671. [PMID: 28507030 DOI: 10.4049/jimmunol.1601458] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
Chemokines and chemokine receptors establish a complex network modulating immune cell migration and localization. These molecules were also suggested to mediate the differentiation of leukocytes; however, their intrinsic, direct regulation of lymphocyte fate remained unclear. CCR2 is the main chemokine receptor inducing macrophage and monocyte recruitment to sites of inflammation, and it is also expressed on T cells. To assess whether CCR2 directly regulates T cell responses, we followed the fates of CCR2-/- T cells in T cell-specific inflammatory models. Our in vitro and in vivo results show that CCR2 intrinsically mediates the expression of inflammatory T cell cytokines, and its absence on T cells results in attenuated colitis progression. Moreover, CCR2 deficiency in T cells promoted a program inducing the accumulation of Foxp3+ regulatory T cells, while decreasing the levels of Th17 cells in vivo, indicating that CCR2 regulates the immune response by modulating the effector/regulatory T ratio.
Collapse
Affiliation(s)
- Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Irit Orr
- Life Sciences Core Facilities, Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Shirly Becker-Herman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| |
Collapse
|
17
|
Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S. PD-1 regulates KLRG1 + group 2 innate lymphoid cells. J Exp Med 2017; 214:1663-1678. [PMID: 28490441 PMCID: PMC5461001 DOI: 10.1084/jem.20161653] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 11/04/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC-2s) regulate immune responses to pathogens and maintain tissue homeostasis in response to cytokines. Positive regulation of ILC-2s through ICOS has been recently elucidated. We demonstrate here that PD-1 is an important negative regulator of KLRG1+ ILC-2 function in both mice and humans. Increase in KLRG1+ ILC-2 cell numbers was attributed to an intrinsic defect in PD-1 signaling, which resulted in enhanced STAT5 activation. During Nippostrongylus brasiliensis infection, a significant expansion of KLRG1+ ILC-2 subsets occurred in Pdcd1-/- mice and, upon adoptive transfer, Pdcd1-/- KLRG1+ ILC-2s significantly reduced worm burden. Furthermore, blocking PD-1 with an antibody increased KLRG1+ ILC-2 cell number and reduced disease burden. Therefore, PD-1 is required for maintaining the number, and hence function, of KLRG1+ ILC-2s.
Collapse
Affiliation(s)
- Samuel Taylor
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Grace Mallett
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Chaido Stathopoulou
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Tania C Felizardo
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ming-An Sun
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Evelyn L Martin
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Nathaniel Zhu
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emma L Woodward
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Martina S Elias
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Nick J Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, England, UK
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel H Fowler
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shoba Amarnath
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| |
Collapse
|
18
|
Zimmermann J, Kühl AA, Weber M, Grün JR, Löffler J, Haftmann C, Riedel R, Maschmeyer P, Lehmann K, Westendorf K, Mashreghi MF, Löhning M, Mack M, Radbruch A, Chang HD. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis. Mucosal Immunol 2016; 9:1487-1499. [PMID: 26883725 DOI: 10.1038/mi.2016.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
Collapse
Affiliation(s)
- J Zimmermann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - A A Kühl
- Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - M Weber
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J R Grün
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J Löffler
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - C Haftmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - R Riedel
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - P Maschmeyer
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Lehmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Westendorf
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M-F Mashreghi
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Löhning
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Mack
- Universitätsklinikum Regensburg, Regensburg, Germany
| | - A Radbruch
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - H D Chang
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
19
|
Aspects of T Cell-Mediated Immunity Induced in Mice by a DNA Vaccine Based on the Dengue-NS1 Antigen after Challenge by the Intracerebral Route. PLoS One 2016; 11:e0163240. [PMID: 27631083 PMCID: PMC5024998 DOI: 10.1371/journal.pone.0163240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Dengue disease has emerged as a major public health issue across tropical and subtropical countries. Infections caused by dengue virus (DENV) can evolve to life-threatening forms, resulting in about 20,000 deaths every year worldwide. Several animal models have been described concerning pre-clinical stages in vaccine development against dengue, each of them presenting limitations and advantages. Among these models, a traditional approach is the inoculation of a mouse-brain adapted DENV variant in immunocompetent animals by the intracerebral (i.c.) route. Despite the historical usage and relevance of this model for vaccine testing, little is known about the mechanisms by which the protection is developed upon vaccination. To cover this topic, a DNA vaccine based on the DENV non-structural protein 1 (pcTPANS1) was considered and investigations were focused on the induced T cell-mediated immunity against i.c.-DENV infection. Immunophenotyping assays by flow cytometry revealed that immunization with pcTPANS1 promotes a sustained T cell activation in spleen of i.c.-infected mice. Moreover, we found that the downregulation of CD45RB on T cells, as an indicator of cell activation, correlated with absence of morbidity upon virus challenge. Adoptive transfer procedures supported by CFSE-labeled cell tracking showed that NS1-specific T cells induced by vaccination, proliferate and migrate to peripheral organs of infected mice, such as the liver. Additionally, in late stages of infection (from the 7th day onwards), vaccinated mice also presented reduced levels of circulating IFN-γ and IL-12p70 in comparison to non-vaccinated animals. In conclusion, this work presented new aspects about the T cell-mediated immunity concerning DNA vaccination with pcTPANS1 and the i.c. infection model. These insights can be explored in further studies of anti-dengue vaccine efficacy.
Collapse
|
20
|
Krause P, Morris V, Greenbaum JA, Park Y, Bjoerheden U, Mikulski Z, Muffley T, Shui JW, Kim G, Cheroutre H, Liu YC, Peters B, Kronenberg M, Murai M. IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat Commun 2015; 6:7055. [PMID: 25959063 PMCID: PMC4428691 DOI: 10.1038/ncomms8055] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
Innate immune responses are regulated in the intestine to prevent excessive inflammation. Here we show that a subset of mouse colonic macrophages constitutively produce the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, a model for enteropathogenic Escherichia coli infection in humans, these macrophages are required to prevent intestinal pathology. IL-23 is significantly increased in infected mice with a myeloid cell-specific deletion of IL-10, and the addition of IL-10 reduces IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 leads to reduced mortality in the context of macrophage IL-10 deficiency. Transcriptome and other analyses indicate that IL-10-expressing macrophages receive an autocrine IL-10 signal. Interestingly, only transfer of the IL-10 positive macrophages could rescue IL-10 deficient infected mice. Therefore, these data indicate a pivotal role for intestinal macrophages that constitutively produce IL-10, in controlling excessive innate immune activation and preventing tissue damage after an acute bacterial infection.
Collapse
Affiliation(s)
- Petra Krause
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Venetia Morris
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Jason A Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Yoon Park
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Unni Bjoerheden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Tracy Muffley
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Masako Murai
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| |
Collapse
|
21
|
Li B, Gurung P, Malireddi RKS, Vogel P, Kanneganti TD, Geiger TL. IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nat Commun 2015; 6:6131. [PMID: 25607885 PMCID: PMC4302761 DOI: 10.1038/ncomms7131] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms attenuating IL-10 signalling confer genetic risk for inflammatory bowel disease. Yet, how IL-10 prevents mucosal autoinflammation is incompletely understood. We demonstrate using lineage-specific deletions of IL-10Rα that IL-10 acts primarily through macrophages to limit colitis. Colitis depends on IL-6 to support pathologic Th17 cell generation in wild-type mice. However, specific ablation of macrophage IL-10Rα provokes excessive IL-1β production that overrides Th17 IL-6 dependency, amplifying the colonic Th17 response and disease severity. IL-10 not only inhibits pro-IL-1β production transcriptionally in macrophages, but suppresses caspase-1 activation and caspase-1-dependent maturation of pro-IL-1β to IL-1β. Therefore, lineage-specific effects of IL-10 skew the cytokine dependency of Th17 cell development required for colitis pathogenesis. Coordinated interventions may be needed to fully suppress Th17-mediated immunopathology.
Collapse
Affiliation(s)
- Bofeng Li
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennesse 38105, USA
| | - Prajwal Gurung
- Department of Immunology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennessee 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennessee 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennesse 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennessee 38105, USA
| | - Terrence L Geiger
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennesse 38105, USA
| |
Collapse
|
22
|
Liu Z, Liu JQ, Shi Y, Zhu X, Liu Z, Li MS, Yu J, Wu LC, He Y, Zhang G, Bai XF. Epstein-Barr virus-induced gene 3-deficiency leads to impaired antitumor T-cell responses and accelerated tumor growth. Oncoimmunology 2015; 4:e989137. [PMID: 26140252 DOI: 10.4161/2162402x.2014.989137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) encoded protein can form heterodimers with IL-27P28, and IL-12P35 to form IL-27, and IL-35. However, IL-27 stimulates, whereas IL-35 inhibits antitumor T-cell responses. IL-27 also limits the Foxp3+ regulatory T cell (Treg) population, whereas IL-35 has been shown to expand Tregs and foster Treg suppressive functions. It remains unclear which group of forces are dominant during antitumor T-cell responses. In this study, we evaluated the tumor growth and antitumor T-cell responses in EBI3-deficient mice that lack both IL-27 and IL-35. We found that injecting B16 melanoma cells into EBI3-deficient C57BL/6 mice, or J558 plasmacytoma cells into EBI3-deficient BALB/c mice resulted in significantly increased tumor growth relative to those implanted in wild-type control mice. Tumors from EBI3-deficient mice contained significantly decreased proportions of CD8+ T cells and increased proportions of CD4+FoxP3+ Treg cells as compared to those from EBI3-intact mice. Tumor-infiltrating T cells from EBI3-deficient mice were impaired in their capacity to produce IFNγ. Phenotypically, Tregs from EBI3-deficient mice were highly suppressive and produced IL-10 in the tumor microenvironment. Depletion of Tregs or inactivation of the IL-10 pathway significantly abrogated tumor growth enhancement in Ebi3-/- mice. Finally, we showed that Ebi3-/- mice administered a melanoma vaccine failed to mount a CD8+ T-cell response and the vaccine failed to confer tumor rejection in EBI3-deficient mice. Taken together, these results suggest that Ebi3-/- mice show a phenotype of IL-27-deficiency rather than IL-35-deficiency during anti-tumor T-cell responses. Thus, our results suggest that endogenous IL-27 is critical for both spontaneous and vaccine-induced antitumor T-cell responses.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Yun Shi
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Xiaotong Zhu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Hepatobiliary Surgery; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Jianhua Yu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Lai-Chu Wu
- Davis Medical Center; Department of Molecular and Cellular Biochemistry; Ohio State University ; Columbus, OH USA
| | - Yukai He
- Cancer Immunology; Inflammation, and Tolerance Program; Georgia Regents University Cancer Center ; Augusta, GA USA
| | - Guoqiang Zhang
- Department of Thoracic Surgery; Xinqiao Hospital; Third Military Medical University ; Chongqing, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| |
Collapse
|
23
|
Boirivant M. Experimental Models of Gastrointestinal Inflammatory Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abstract
Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggest that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Teresa L Ai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
25
|
Members of the novel UBASH3/STS/TULA family of cellular regulators suppress T-cell-driven inflammatory responses in vivo. Immunol Cell Biol 2014; 92:837-50. [PMID: 25047644 DOI: 10.1038/icb.2014.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 01/03/2023]
Abstract
The UBASH3/STS/TULA family consists of two members sharing substantial homology and a similar multi-domain architecture, which includes a C-terminal histidine phosphatase domain capable of dephosphorylating phosphotyrosine-containing substrates. TULA-family proteins act as downregulators of receptor-induced activation in several cell types, including T cells and platelets. Deletion of both family members in mice has been shown to result in hyperresponsiveness of T cells to T-cell receptor (TCR)/CD3 complex engagement, but little is known about the biological consequences of double knockout (dKO) and especially of either single KO (sKO). We elucidated the biological consequences of the lack of TULA-family proteins in dKO and TULA and TULA-2 sKO animals. In order to do so, we examined immune responses in Trinitrobenzene sulfonic acid (TNBS)-induced colitis, a mouse model of human inflammatory bowel disease, which is characterized by the involvement of multiple cell types, of which T cells have a crucial role, in the development of a pathological inflammatory condition. Our data indicate that TNBS treatment upregulates T-cell responses in all KO mice studied to a significantly higher degree than in wild-type mice. Although the lack of either TULA-family member exacerbates inflammation and T-cell responses in a specific fashion, the lack of both TULA and TULA-2 in dKO exerts a higher effect than the lack of a single family member in TULA and TULA-2 sKO. Analysis of T-cell responses and TCR-mediated signaling argues that the proteins investigated affect T-cell signaling by regulating phosphorylation of Zap-70, a key protein tyrosine kinase.
Collapse
|
26
|
Chai JN, Zhou YW, Hsieh CS. T cells and intestinal commensal bacteria--ignorance, rejection, and acceptance. FEBS Lett 2014; 588:4167-75. [PMID: 24997344 DOI: 10.1016/j.febslet.2014.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 02/01/2023]
Abstract
Trillions of commensal bacteria cohabit our bodies to mutual benefit. In the past several years, it has become clear that the adaptive immune system is not ignorant of intestinal commensal bacteria, but is constantly interacting with them. For T cells, the response to commensal bacteria does not appear uniform, as certain commensal bacterial species appear to trigger effector T cells to reject and control them, whereas other species elicit Foxp3(+) regulatory T (Treg) cells to accept and be tolerant of them. Here, we review our current knowledge of T cell differentiation in response to commensal bacteria, and how this process leads to immune homeostasis in the intestine.
Collapse
Affiliation(s)
- Jiani N Chai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - You W Zhou
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - Chyi-Song Hsieh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States.
| |
Collapse
|
27
|
Koc A, Bargen I, Suwandi A, Roderfeld M, Tschuschner A, Rath T, Gerlach GF, Hornef M, Goethe R, Weiss S, Roeb E. Systemic and mucosal immune reactivity upon Mycobacterium avium ssp. paratuberculosis infection in mice. PLoS One 2014; 9:e94624. [PMID: 24728142 PMCID: PMC3984212 DOI: 10.1371/journal.pone.0094624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the cause of Johne's disease, an inflammatory bowel disorder of ruminants. Due to the similar pathology, MAP was also suggested to cause Crohn's disease (CD). Despite of intensive research, this question is still not settled, possibly due to the lack of versatile mouse models. The aim of this study was to identify basic immunologic mechanisms in response to MAP infection. Immune compromised C57BL/6 Rag2-/- mice were infected with MAP intraperitoneally. Such chronically infected mice were then reconstituted with CD4+ and CD8+ T cells 28 days after infection. A systemic inflammatory response, detected as enlargement of the spleen and granuloma formation in the liver, was observed in mice infected and reconstituted with CD4+ T cells. Whereby inflammation in infected and CD4+CD45RB(hi) T cell reconstituted animals was always higher than in the other groups. Reconstitution of infected animals with CD8+ T cells did not result in any inflammatory signs. Interestingly, various markers of inflammation were strongly up-regulated in the colon of infected mice reconstituted with CD4+CD45RB(lo/int) T cells. We propose, the usual non-colitogenic CD4+CD45RB(lo/int) T cells were converted into inflammatory T cells by the interaction with MAP. However, the power of such cells might be not sufficient for a fully established inflammatory response in the colon. Nevertheless, our model system appears to mirror aspects of an inflammatory bowel disease (IBD) like CD and Johne's diseases. Thus, it will provide an experimental platform on which further knowledge on IBD and the involvement of MAP in the induction of CD could be acquired.
Collapse
Affiliation(s)
- Arzu Koc
- Justus-Liebig-University Giessen, Department of Gastroenterology, Giessen, Germany
| | - Imke Bargen
- Helmholtz Centre for Infection Research, Molecular Immunology, Braunschweig, Germany
| | - Abdulhadi Suwandi
- Helmholtz Centre for Infection Research, Molecular Immunology, Braunschweig, Germany
| | - Martin Roderfeld
- Justus-Liebig-University Giessen, Department of Gastroenterology, Giessen, Germany
| | - Annette Tschuschner
- Justus-Liebig-University Giessen, Department of Gastroenterology, Giessen, Germany
| | - Timo Rath
- Justus-Liebig-University Giessen, Department of Gastroenterology, Giessen, Germany
- Medical Clinic 1, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | | | - Mathias Hornef
- Department of Microbiology, Hannover Medical School, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Siegfried Weiss
- Helmholtz Centre for Infection Research, Molecular Immunology, Braunschweig, Germany
| | - Elke Roeb
- Justus-Liebig-University Giessen, Department of Gastroenterology, Giessen, Germany
| |
Collapse
|
28
|
Marchiando AM, Ramanan D, Ding Y, Gomez LE, Hubbard-Lucey VM, Maurer K, Wang C, Ziel JW, van Rooijen N, Nuñez G, Finlay BB, Mysorekar IU, Cadwell K. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 2014; 14:216-24. [PMID: 23954160 DOI: 10.1016/j.chom.2013.07.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/12/2013] [Accepted: 07/10/2013] [Indexed: 01/16/2023]
Abstract
Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn's disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes, such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyperimmune phenotype and its protective effects are lost in Atg16L1/Nod2 double-mutant mice. These results reveal an immunosuppressive function of Atg16L1 and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections.
Collapse
Affiliation(s)
- Amanda M Marchiando
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maseda D, Candando KM, Smith SH, Kalampokis I, Weaver CT, Plevy SE, Poe JC, Tedder TF. Peritoneal cavity regulatory B cells (B10 cells) modulate IFN-γ+CD4+ T cell numbers during colitis development in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2780-2795. [PMID: 23918988 PMCID: PMC3770313 DOI: 10.4049/jimmunol.1300649] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spleen regulatory B cell subset with the functional capacity to express IL-10 (B10 cells) modulates both immune responses and autoimmune disease severity. However, the peritoneal cavity also contains relatively high frequencies of functionally defined IL-10-competent B10 cells. In this study, peritoneal cavity B10 cells shared similar cell surface phenotypes with their spleen counterparts. However, peritoneal cavity B10 cells were 10-fold more frequent among B cells than occurred within the spleen, intestinal tract, or mesenteric lymph nodes and were present at higher proportions among the phenotypically defined peritoneal B1a > B1b > B2 cell subpopulations. The development or localization of B10 cells within the peritoneal cavity was not dependent on the presence of commensal microbiota, T cells, IL-10 or B10 cell IL-10 production, or differences between their fetal liver or adult bone marrow progenitor cell origins. The BCR repertoire of peritoneal cavity B10 cells was diverse, as occurs in the spleen, and predominantly included germline-encoded VH and VL regions commonly found in either the conventional or B1 B cell compartments. Thereby, the capacity to produce IL-10 appears to be an intrinsic functional property acquired by clonally diverse B cells. Importantly, IL-10 production by peritoneal cavity B cells significantly reduced disease severity in spontaneous and induced models of colitis by regulating neutrophil infiltration, colitogenic CD4(+) T cell activation, and proinflammatory cytokine production during colitis onset. Thus, the numerically small B10 cell subset within the peritoneal cavity has regulatory function and is important for maintaining homeostasis within gastrointestinal tissues and the immune system.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - Susan H. Smith
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ioannis Kalampokis
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Casey T. Weaver
- Departments of Pathology and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott E. Plevy
- Center for Gastrointestinal Biology and Diseases, Departments of Medicine and Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559
| | - Jonathan C. Poe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
30
|
Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival. Food Chem Toxicol 2013; 60:488-96. [PMID: 23941772 DOI: 10.1016/j.fct.2013.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.
Collapse
|
31
|
Rabinowitz K, Mayer L. Working out mechanisms of controlled/physiologic inflammation in the GI tract. Immunol Res 2013; 54:14-24. [PMID: 22466933 DOI: 10.1007/s12026-012-8315-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mucosal immune system is distinct from its systemic counterpart by virtue of its enormous antigenic exposure (commensal flora, food antigen, pathogens). Despite this, the mucosal immune system maintains a response defined as controlled or physiologic inflammation. This is regulated by many different mechanisms, among which there are physical, cellular and soluble factors. Our laboratory has focused on unique Tregs in the gut controlled by, in one instance, intestinal epithelial cells that serve as non-professional antigen-presenting cells. We believe that intestinal epithelial cells, expressing classical and non-classical MHC molecules, serve to activate Tregs and thus maintain controlled or physiologic inflammation. In this review, we describe regulatory cytokines and T cells that are one part of the emphasis of our laboratory.
Collapse
Affiliation(s)
- Keren Rabinowitz
- Mount Sinai School of Medicine, Immunology Institute, 1425 Madison Avenue, Box 1089, New York, NY 10029, USA
| | | |
Collapse
|
32
|
Jamontt J, Petit S, Clark N, Parkinson SJ, Smith P. Nucleotide-binding oligomerization domain 2 signaling promotes hyperresponsive macrophages and colitis in IL-10-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:2948-58. [PMID: 23396949 DOI: 10.4049/jimmunol.1201332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IL-10 contributes to the maintenance of intestinal homeostasis via the regulation of inflammatory responses to enteric bacteria. Loss of IL-10 signaling results in spontaneous colitis in mice and early onset enterocolitis in humans. Nucleotide-binding oligomerization domain (NOD) 2 is an intracellular receptor of bacterial peptidoglycan products, and, although NOD2 mutations are associated with Crohn's disease, the precise role of NOD2 in the development of intestinal inflammation remains undefined. To determine the role of NOD2 in the development of colitis on the clinically relevant genetic background of IL-10-deficient signaling, we generated mice lacking IL-10 and NOD2 (IL-10(-/-)NOD2(-/-)). Loss of NOD2 in IL-10(-/-) mice resulted in significant amelioration of chronic colitis, indicating that NOD2 signaling promotes the development of intestinal inflammation in IL-10(-/-) mice. Contrary to previous reports investigating immune function in NOD2(-/-) mice, T cell proliferative capacity and IL-2 production were not impaired, and immune polarization toward type 1 immunity was not affected. However, loss of NOD2 in IL-10-deficient macrophages reduced IL-6, TNF-α, and IL-12p40 production in response to bacterial stimulation. Further analysis of the intrinsic macrophage response before the onset of inflammation revealed that, in the absence of IL-10, synergistic signaling between various TLRs and NOD2 resulted in hyperresponsive, proinflammatory macrophages, thus providing the appropriate immune environment for the development of colitis. Data presented in this study demonstrate that NOD2 signaling contributes to intestinal inflammation that arises through loss of IL-10 and provides mechanistic insight into the development of colitis in inflammatory bowel disease patients with impaired IL-10 signaling.
Collapse
Affiliation(s)
- Joanna Jamontt
- Cardiovascular and Metabolic Diseases, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
33
|
Monteleone I, Federici M, Sarra M, Franzè E, Casagrande V, Zorzi F, Cavalera M, Rizzo A, Lauro R, Pallone F, MacDonald TT, Monteleone G. Tissue inhibitor of metalloproteinase-3 regulates inflammation in human and mouse intestine. Gastroenterology 2012; 143:1277-1287.e4. [PMID: 22819866 DOI: 10.1053/j.gastro.2012.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/28/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Tissue inhibitor of metalloproteinases (TIMP)-3 is an inhibitor of matrix metalloproteinases, which regulates tissue inflammation, damage, and repair. We investigated the role of TIMP-3 in intestinal inflammation in human beings and mice. METHODS We used real-time polymerase chain reaction and flow cytometry to measure levels of TIMP-3 in intestine samples from patients with Crohn's disease (CD) and those without (controls). We also analyzed TIMP-3 levels in lamina propria mononuclear cells (LPMCs) collected from biopsy samples of individuals with or without CD (controls) and then stimulated with transforming growth factor (TGF)-β1, as well as in biopsy samples collected from patients with CD and then incubated with a Smad7 anti-sense oligonucleotide (knock down). LPMCs and biopsy samples from patients with CD were cultured with exogenous TIMP-3 and levels of inflammatory cytokines were measured. We evaluated the susceptibility of wild-type, TIMP-3-knockout (TIMP-3-KO), and transgenic (TIMP-3-Tg) mice to induction of colitis with 2, 4, 6-trinitrobenzene-sulfonic-acid (TNBS), and the course of colitis in recombinase-activating gene-1-null mice after transfer of wild-type or TIMP-3-KO T cells. RESULTS Levels of TIMP-3 were reduced in intestine samples from patients with CD compared with controls. Incubation of control LPMCs with TGF-β1 up-regulated TIMP-3; knockdown of Smad7, an inhibitor of TGF-β1, in biopsy samples from patients with CD increased levels of TIMP-3. Exogenous TIMP-3 reduced levels of inflammatory cytokines in CD LPMCs and biopsy samples. TIMP-3-KO mice developed severe colitis after administration of TNBS, whereas TIMP-3-Tg mice were resistant to TNBS-induced colitis. Reconstitution of recombinase-activating gene-1-null mice with T cells from TIMP-3-KO mice increased the severity of colitis, compared with reconstitution with wild-type T cells. CONCLUSIONS TIMP-3 is down-regulated in inflamed intestine of patients with CD. Its expression is regulated by TGF-β1, and knock-down of Smad7 in intestinal tissues from patient with CD up-regulates TIMP-3. Loss or reduction of TIMP-3 in mice promotes development of colitis.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Massimo Federici
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Massimiliano Sarra
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Viviana Casagrande
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesca Zorzi
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Michele Cavalera
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Angelamaria Rizzo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Renato Lauro
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesco Pallone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Thomas T MacDonald
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | | |
Collapse
|
34
|
Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 2012; 374:1-11. [PMID: 23271629 DOI: 10.1007/s11010-012-1488-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
VSL#3 probiotics can be effective on induction and maintenance of the remission of clinical ulcerative colitis. However, the mechanisms are not fully understood. The aim of this study was to examine the effects of VSL#3 probiotics on dextran sulfate sodium (DSS)-induced colitis in rats. Acute colitis was induced by administration of DSS 3.5 % for 7 days in rats. Rats in two groups were treated with either 15 mg VSL#3 or placebo via gastric tube once daily after induction of colitis; rats in other two groups were treated with either the wortmannin (1 mg/kg) via intraperitoneal injection or the wortmannin + VSL#3 after induction of colitis. Anti-inflammatory activity was assessed by myeloperoxidase (MPO) activity. Expression of inflammatory related mediators (iNOS, COX-2, NF-κB, Akt, and p-Akt) and cytokines (TNF-α, IL-6, and IL-10) in colonic tissue were assessed. TNF-α, IL-6, and IL-10 serum levels were also measured. Our results demonstrated that VSL#3 and wortmannin have anti-inflammatory properties by the reduced disease activity index and MPO activity. In addition, administration of VSL#3 and wortmannin for 7 days resulted in a decrease of iNOS, COX-2, NF-κB, TNF-α, IL-6, and p-Akt and an increase of IL-10 expression in colonic tissue. At the same time, administration of VSL#3 and wortmannin resulted in a decrease of TNF-α and IL-6 and an increase of IL-10 serum levels. VSL#3 probiotics therapy exerts the anti-inflammatory activity in rat model of DSS-induced colitis by inhibiting PI3K/Akt and NF-κB pathway.
Collapse
Affiliation(s)
- Cong Dai
- Department of Cadre Ward V, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
35
|
Cantorna MT. Vitamin D, multiple sclerosis and inflammatory bowel disease. Arch Biochem Biophys 2012; 523:103-6. [PMID: 22085500 PMCID: PMC3374859 DOI: 10.1016/j.abb.2011.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 02/06/2023]
Abstract
It has now been more than 20years since the vitamin D receptor was identified in cells of the immune system. The immune system has now been established as an important target of vitamin D. Vitamin D receptor knockout and vitamin D deficient mice have a surplus of effector T cells that have been implicated in the pathology of multiple sclerosis (MS) and inflammatory bowel disease (IBD). The active form of vitamin D directly and indirectly suppresses the function of these pathogenic T cells while inducing several regulatory T cells that suppress MS and IBD development. There is reason to believe that vitamin D could be an environmental factor that may play a role in the development of these immune mediated diseases in the clinic but at present there has not been a causal relationship established. Nonetheless, current evidence suggests that improving vitamin D status and/or using vitamin D receptor agonists may be useful in MS and IBD.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Science, The Center for Molecular Immunology and Infectious Disease, 115 Henning Bldg., The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
36
|
Ranatunga DC, Ramakrishnan A, Uprety P, Wang F, Zhang H, Margolick JB, Brayton C, Bream JH. A protective role for human IL-10-expressing CD4+ T cells in colitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1243-52. [PMID: 22753934 DOI: 10.4049/jimmunol.1103421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.
Collapse
Affiliation(s)
- Dilini C Ranatunga
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Buchwald ZS, Kiesel JR, DiPaolo R, Pagadala MS, Aurora R. Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro. PLoS One 2012; 7:e38199. [PMID: 22701612 PMCID: PMC3368916 DOI: 10.1371/journal.pone.0038199] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 05/03/2012] [Indexed: 12/17/2022] Open
Abstract
Background Osteoclasts are the body’s sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (TEFF) increase bone resorption by osteoclasts. Prolonged exposure to the TEFF produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naïve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (TcREG). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-γ. Individually, these cytokines can activate or suppress osteoclast resorption. Principal Findings To determine the net effect of TcREG on osteoclast activity we used a number of in vitro assays. We found that TcREG can potently and directly suppress bone resorption by osteoclasts. TcREG could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that TcREG suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of TcREG by osteoclasts is antigen-dependent, suppression of osteoclasts by TcREG does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-γ relieved suppression. The suppression did not require direct contact between the TcREG and osteoclasts. Significance We have determined that osteoclast-induced TcREG can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology.
Collapse
Affiliation(s)
- Zachary S. Buchwald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer R. Kiesel
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Meghana S. Pagadala
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3:51. [PMID: 22566933 PMCID: PMC3341960 DOI: 10.3389/fimmu.2012.00051] [Citation(s) in RCA: 524] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/01/2012] [Indexed: 12/22/2022] Open
Abstract
CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4(+)CD25(-) conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca(2+)), NFAT, and NF-κB signaling in Tcons by Tregs.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics, Tumorimmunology Program, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | | |
Collapse
|
39
|
Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10. Proc Natl Acad Sci U S A 2011; 108:18336-41. [PMID: 22025707 DOI: 10.1073/pnas.1110566108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD4(+)CD25(+)Forkhead box P3 (Foxp3)(+) regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10-dependent or -independent) subject to the target T-cell stage of activation and its tissue location.
Collapse
|
40
|
Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, MacDonald TT, Pallone F, Monteleone G. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011; 141:237-248.e1. [PMID: 21600206 DOI: 10.1053/j.gastro.2011.04.007] [Citation(s) in RCA: 494] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 03/24/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of inflammatory bowel disease (IBD) is believed to involve an altered balance between effector and regulatory T cells. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor that mediates the toxicity of dioxins, controls T-cell responses. We investigated the role of AhR in inflammation and pathogenesis of IBD in humans and mouse models. METHODS AhR expression was evaluated in intestinal tissue samples from patients with IBD and controls by real-time polymerase chain reaction (PCR) and flow cytometry. Intestinal lamina propria mononuclear cells (LPMCs) were activated in the presence or absence of the AhR agonist 6-formylindolo(3, 2-b)carbazole (Ficz). Colitis was induced in mice using trinitrobenzene sulfonic acid (TNBS), dextran sulfate sodium (DSS), or T-cell transfer. Mice were given injections of Ficz or the AhR antagonist 2-metyl-2H-pyrazole-3-carboxylic acid; some mice first received injections of a blocking antibody against interleukin (IL)-22. Cytokines were quantified by real-time PCR and flow cytometry. RESULTS Intestine tissue from patients with IBD expressed significantly less AhR than controls. In LPMCs from patients with IBD, incubation with Ficz reduced levels of interferon gamma (IFN)-γ and up-regulated IL-22. Mice injected with Ficz were protected against TNBS-, DSS-, and T-cell transfer-induced colitis; they had marked down-regulation of inflammatory cytokines and induction of IL-22. Mice given AhR antagonist produced more inflammatory cytokines and less IL-22 and developed a severe colitis. Neutralization of endogenous IL-22 disrupted the protective effect of Ficz on TNBS-induced colitis. CONCLUSIONS AhR is down-regulated in intestinal tissue of patients with IBD; AhR signaling, via IL-22, inhibits inflammation and colitis in the gastrointestinal tract of mice. AhR-related compounds might be developed to treat patients with IBDs.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Medicina Interna, Università Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL, Waldschmidt TJ. T regulatory cells participate in the control of germinal centre reactions. Immunology 2011; 133:452-68. [PMID: 21635248 DOI: 10.1111/j.1365-2567.2011.03456.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5(+) and CCR7(-) Treg cells were documented by flow cytometry and Foxp3(+) cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
42
|
Housley WJ, Adams CO, Nichols FC, Puddington L, Lingenheld EG, Zhu L, Rajan TV, Clark RB. Natural but Not Inducible Regulatory T Cells Require TNF-α Signaling for In Vivo Function. THE JOURNAL OF IMMUNOLOGY 2011; 186:6779-87. [DOI: 10.4049/jimmunol.1003868] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Kamanaka M, Huber S, Zenewicz LA, Gagliani N, Rathinam C, O'Connor W, Wan YY, Nakae S, Iwakura Y, Hao L, Flavell RA. Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology. J Exp Med 2011; 208:1027-40. [PMID: 21518800 PMCID: PMC3092344 DOI: 10.1084/jem.20102149] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/21/2011] [Indexed: 12/27/2022] Open
Abstract
The role of direct IL-10 signaling in different T cell subsets is not well understood. To address this, we generated transgenic mice expressing a dominant-negative IL-10 receptor specifically in T cells (CD4dnIL-10Rα). We found that Foxp3-depleted CD45RB(lo) (regulatory T cell [T(reg) cell]-depleted CD45RB(lo)) but not CD45RB(hi) CD4(+) T cells are controlled directly by IL-10 upon transfer into Rag1 knockout (KO) mice. Furthermore, the colitis induced by transfer of T(reg) cell-depleted CD45RB(lo) CD4(+) T cells into Rag1 KO mice was characterized by reduced Th1 and increased Th17 cytokine messenger RNA levels in the colon as compared with the colitis induced by transfer of CD45RB(hi) T cells. In contrast to the CD45RB(hi) transfer colitis model, in which IL-22 is protective, we found that T cell-derived IL-22 was pathogenic upon transfer of T(reg) cell-depleted CD45RB(lo) T cells into Rag1 KO mice. Our results highlight characteristic differences between colitis induced by naive (CD45RB(hi)) and memory/effector (T(reg) cell-depleted CD45RB(lo)) cells and different ways that IL-22 impacts inflammatory bowel disease.
Collapse
Affiliation(s)
- Masahito Kamanaka
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - Samuel Huber
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
- I. Medizinische Klinik, Universitätsklinik Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lauren A. Zenewicz
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - Nicola Gagliani
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - Chozhavendan Rathinam
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - William O'Connor
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - Yisong Y. Wan
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Susumu Nakae
- Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Liming Hao
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| | - Richard A. Flavell
- Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520
| |
Collapse
|
44
|
MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology 2011; 140:1768-75. [PMID: 21530743 DOI: 10.1053/j.gastro.2011.02.047] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 12/11/2022]
Abstract
The gastrointestinal tract is the largest immune interface with the environment. Exposure to large numbers of dietary and microbial antigens requires complex and highly regulated immune responses by different mucosal cell types, which result in the induction and maintenance of intestinal homeostasis. Defects in this equilibrium can disrupt the homeostatic mechanisms and lead to chronic intestinal inflammation. We review the cell populations and mechanisms involved in the control of intestinal homeostasis and inflammation, focusing on inflammatory bowel diseases. We describe some aspects of gut immunity that could alter the delicate balance between inflammatory and tolerogenic responses and result in chronic gastrointestinal tract inflammation in patients.
Collapse
Affiliation(s)
- Thomas T MacDonald
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | | | |
Collapse
|
45
|
Nuñez-Andrade N, Lamana A, Sancho D, Gisbert JP, Gonzalez-Amaro R, Sanchez-Madrid F, Urzainqui A. P-selectin glycoprotein ligand-1 modulates immune inflammatory responses in the enteric lamina propria. J Pathol 2011; 224:212-21. [PMID: 21432853 DOI: 10.1002/path.2850] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/30/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022]
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1), a leukocyte adhesion receptor that interacts with selectins, induces a tolerogenic programme in bone marrow-derived dendritic cells (DCs), which in turn promotes the generation of T regulatory (Treg) lymphocytes. In the present study, we have used a mouse model of dextran sulphate sodium (DSS)-induced colitis and studied the characteristics of the inflammatory cell infiltrate in the lamina propria (LP), mesenteric lymph nodes (mLNs) and Peyer's patches (PPs) to assess the possible role of PSGL-1 in the modulation of the enteric immune response. We have found that untreated PSGL-1-deficient mice showed an altered proportion of innate and adaptive immune cells in mLNs and PPs as well as an activated phenotype of macrophages and DCs in the colonic LP that mainly produced pro-inflammatory cytokines. Administration of an anti-PSGL-1 antibody also reduced the total numbers of macrophages, DCs and B cells in the colonic LP, and induced a lower expression of MHC-II by DCs and macrophages. After DSS treatment, PSGL-1(-/-) mice developed colitis earlier and with higher severity than wild-type (WT) mice. Accordingly, the colonic LP of these animals showed an enhanced number of Th1 and Th17 lymphocytes, with enhanced synthesis of IL-1α, IL-6 and IL-22, and increased activation of LP macrophages. Together, our data indicate that PSGL-1 has a relevant homeostatic role in the gut-associated lymphoid tissue under steady-state conditions, and that this adhesion receptor is able to down-regulate the inflammatory phenomenon in DSS-induced colitis.
Collapse
Affiliation(s)
- Norman Nuñez-Andrade
- Departamento de Biología Vascular e Inflamación, CNIC, C/Melchor Fernández Almagro, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The intestinal tract represents the largest mucosal surface and is a major site of multifaceted interactions between the host mucosal immune system and components of the intestinal microbiota. Host immune responses to the commensal microbiota are tightly controlled and, meanwhile, the microbiota actively shapes intestinal immune responses to itself. Appreciation of these interactions during health and disease may direct therapeutic approaches to a broad range of autoimmune and inflammatory disorders in humans. In this review, we will discuss findings on how the intestinal immune system, especially adaptive immune cells, helps accommodate the large number of resident bacteria, and in turn how the microbiota shapes intestinal immune responses to achieve mutualism.
Collapse
Affiliation(s)
- Ting Feng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charles O. Elson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Schmidt EGW, Kristensen NN, Claesson MH, Pedersen AE. Enteroantigen-presenting B cells efficiently stimulate CD4(+) T cells in vitro. Inflamm Bowel Dis 2011; 17:308-18. [PMID: 20722062 DOI: 10.1002/ibd.21429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/13/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Presentation of enterobacterial antigens by antigen-presenting cells and activation of enteroantigen-specific CD4(+) T cells are considered crucial steps in inflammatory bowel disease (IBD) pathology. The detrimental effects of such CD4(+) T cells have been thoroughly demonstrated in models of colitis. Also, we have previously established an in vitro assay where murine enteroantigen-specific colitogenic CD4(+) CD25(-) T cells are activated by splenocytes pulsed with an enterobacterial extract. METHODS CD4(+) CD25(-) T cells were stimulated in vitro with various kinds of enterobacterial extract-pulsed antigen-presenting cells. T-helper phenotypes were detected by flow cytometry. RESULTS We found that enteroantigen-pulsed splenic B cells possess a significantly higher and more sustained T cell stimulatory capacity than similarly pulsed splenic dendritic cells (DCs) measured by the level of enteroantigen-specific CD4(+) CD25(-) T cell proliferation. In support of this, we observed upregulation of classic maturation markers in B cells following incubation with enterobacterial antigens. Peritoneal and mesenteric lymph node-derived B cells were equally effective as enteroantigen-presenting stimulator cells. B cells greatly expanded the number of stimulated CD4(+) T cells, which acquired a T(H) 2 phenotype. Interestingly, regulatory T cells were primarily activated by enteroantigen-pulsed B cells but not by similarly pulsed DCs. CONCLUSIONS We conclude that B cells are superior stimulators of enteroantigen-specific CD4(+) T cells in vitro, favoring T(H) 2 polarization. Thus, enteroantigen-processing and -presentation by B cells instead of by DCs might have opposing consequences for IBD development.
Collapse
Affiliation(s)
- Esben Gjerløff Wedebye Schmidt
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
48
|
Endharti AT, Okuno Y, Shi Z, Misawa N, Toyokuni S, Ito M, Isobe KI, Suzuki H. CD8+CD122+ regulatory T cells (Tregs) and CD4+ Tregs cooperatively prevent and cure CD4+ cell-induced colitis. THE JOURNAL OF IMMUNOLOGY 2010; 186:41-52. [PMID: 21098236 DOI: 10.4049/jimmunol.1000800] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified CD8(+)CD122(+) regulatory T cells (Tregs) and demonstrated their importance in the maintenance of immune homeostasis and in the recovery from experimental autoimmune encephalomyelitis. In this paper, we show that CD8(+)CD122(+) Tregs effectively prevent and cure colitis in a mouse model. In our experiments, colitis was induced in lymphocyte-deficient RAG-2(-/-) mice by transferring CD4(+)CD45RB(high) cells that were excluded with CD4(+) Tregs. Cotransfer of CD8(+)CD122(+) cells clearly suppressed the development of colitis, and this suppressive effect was similar to that of CD4(+)CD45RB(low) cells that were mostly CD4(+) Tregs. CD8(+)CD122(+) cells obtained from IL-10(-/-) mice were unable to suppress colitis, indicating that IL-10 is an important effect-transmitting factor in the suppression of colitis. CD8(+)CD122(+) cells showed a suppressive effect when they were transferred 4 wk after CD4(+)CD45RB(high) cells, indicating the therapeutic potential of CD8(+)CD122(+) cells. A mixture of CD8(+)CD122(+) cells and CD4(+)CD45RB(low) cells was far more effective than single Tregs, indicating the synergistic effect of these Tregs. These overall findings demonstrate the potential role of CD8(+) Tregs, and possibly together with CD4(+) Tregs, in the medical care of inflammatory bowel disease patients.
Collapse
|
49
|
Albrecht I, Niesner U, Janke M, Menning A, Loddenkemper C, Kühl AA, Lepenies I, Lexberg MH, Westendorf K, Hradilkova K, Grün J, Hamann A, Epstein JA, Chang HD, Tokoyoda K, Radbruch A. Persistence of effector memory Th1 cells is regulated by Hopx. Eur J Immunol 2010; 40:2993-3006. [PMID: 21061432 DOI: 10.1002/eji.201040936] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/08/2022]
Abstract
Th1 cells are prominent in inflamed tissue, survive conventional immunosuppression, and are believed to play a pivotal role in driving chronic inflammation. Here, we identify homeobox only protein (Hopx) as a critical and selective regulator of the survival of Th1 effector/memory cells, both in vitro and in vivo. Expression of Hopx is induced by T-bet and increases upon repeated antigenic restimulation of Th1 cells. Accordingly, the expression of Hopx is low in peripheral, naïve Th cells, but highly up-regulated in terminally differentiated effector/memory Th1 cells of healthy human donors. In murine Th1 cells, Hopx regulates the expression of genes involved in regulation of apoptosis and survival and makes them refractory to Fas-induced apoptosis. In vivo, adoptively transferred Hopx-deficient murine Th1 cells do not persist. Consequently, they cannot induce chronic inflammation in murine models of transfer-induced colitis and arthritis, demonstrating a key role of Hopx for Th1-mediated immunopathology.
Collapse
Affiliation(s)
- Inka Albrecht
- German Rheumatism Research Center Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Narayanan S, Silva R, Peruzzi G, Alvarez Y, Simhadri VR, Debell K, Coligan JE, Borrego F. Human Th1 cells that express CD300a are polyfunctional and after stimulation up-regulate the T-box transcription factor eomesodermin. PLoS One 2010; 5:e10636. [PMID: 20498708 PMCID: PMC2869357 DOI: 10.1371/journal.pone.0010636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/25/2010] [Indexed: 11/24/2022] Open
Abstract
Human naïve CD4 T cells express low levels of the immunomodulatory receptor CD300a, whereas effector/memory CD4 cells can be either CD300a+ or CD300a−. This suggested that CD300a expression could define a specific subset within the effector/memory CD4 T cell subpopulations. In fact, ex vivo analysis of the IFN-γ producing CD4 T cells showed that they are enriched in the CD300a+ subset. Moreover, stimulated CD4 T cells producing TNF-α and IL-2 besides IFN-γ (polyfunctional) are predominantly CD300a+. In addition to producing markedly higher levels of Th1-associated cytokines, the stimulated CD300a+ CD4 T cells are distinguished by a striking up-regulation of the T-box transcription factor eomesodermin (Eomes), whereas T-bet is up-regulated in both CD300a+ and CD300a− activated CD4 T cells to similar levels. The pleiotropic cytokine TGF-β1 has a determinant role in dictating the development of this Th1 subset, as its presence inhibits the expression of CD300a and down-regulates the expression of Eomes and IFN-γ. We conclude that CD300a+ human Th1 cells tend to be polyfunctional and after stimulation up-regulate Eomes.
Collapse
Affiliation(s)
- Sriram Narayanan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rodolfo Silva
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Giovanna Peruzzi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yelina Alvarez
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Venkateswara R. Simhadri
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Karen Debell
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - John E. Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Francisco Borrego
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|