1
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
2
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
3
|
Liu W, Liu L, Li H, Xie Y, Bai J, Guan J, Qi H, Sun J. Targeted pathophysiological treatment of ischemic stroke using nanoparticle-based drug delivery system. J Nanobiotechnology 2024; 22:499. [PMID: 39164747 PMCID: PMC11337765 DOI: 10.1186/s12951-024-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke. This review provides a concise overview of the pathophysiological mechanisms implicated in ischemic stroke, encompassing oxidative stress, glutamate excitotoxicity, neuroinflammation, and cell death, to elucidate potential targets for nanoparticle-based drug delivery systems. Furthermore, the review outlines the classification of nanoparticle-based drug delivery systems according to these distinct physiological processes. This categorization aids in identifying the attributes and commonalities of nanoparticles that target specific pathophysiological pathways in ischemic stroke, thereby facilitating the advancement of nanomedicine development. The review discusses the potential benefits and existing challenges associated with employing nanoparticles in the treatment of ischemic stroke, offering new perspectives on designing efficacious nanoparticles to enhance ischemic stroke treatment outcomes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ju Bai
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jialiang Guan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
4
|
Zhai Y, Yao Q, The E, Ao L, Fullerton DA, Meng X. Aging exacerbates cardiac dysfunction and mortality in sepsis through enhancing TLR2 activity. Front Cardiovasc Med 2023; 10:1293866. [PMID: 38094127 PMCID: PMC10716470 DOI: 10.3389/fcvm.2023.1293866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Sepsis is prevalent in the elderly population with increased incidence and mortality. Currently, the mechanism by which aging increases the susceptibility to sepsis and worsens outcome is unclear. We tested the hypothesis that aging exacerbates cardiac dysfunction in sepsis through a Toll-like receptor 2 (TLR2)-dependent mechanism. Methods Male young adult (4-6 months) and old (18-20 months) wild type (WT) and TLR2 knockout (KO) mice were subject to moderate sepsis by cecal ligation and puncture. Additional groups of young adult and old WT mice were treated with TLR2 agonist Pam3CSK4. Left ventricle (LV) performance was evaluated with a pressure-volume microcatheter. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in the myocardium and plasma were assessed using enzyme-linked immunosorbent assay. Results Sepsis reduced LV ejection fraction and cardiac output in both young adult and old WT mice. However, identical CLP caused more severe cardiac dysfunction and high mortality in old WT mice that were accompanied by greater levels of TNF-α, IL-1β, IL-6 and MCP-1 in the myocardium and plasma. TLR2 KO diminished aging-related difference in myocardial and systemic inflammatory response, resulting in improved cardiac function and decreased mortality in old septic mice. In addition, higher myocardial TLR2 levels in old WT mice resulted in greater myocardial inflammatory response and worse cardiac dysfunction following administration of TLR2 agonist. Conclusion Moderate sepsis results in greater cardiac dysfunction and significant mortality in old mice. Aging elevates TLR2 level/activity to exacerbate the inflammatory response to sepsis, leading to worse cardiac dysfunction and mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
5
|
Li SJ, Ruan DD, Wu WZ, Wu M, Wu QY, Wang HL, Ji YY, Zhang YP, Lin XF, Fang ZT, Liao LS, Luo JW, Gao MZ, Wu JB. Potential regulatory role of the Nrf2/HMGB1/TLR4/NF-κB signaling pathway in lupus nephritis. Pediatr Rheumatol Online J 2023; 21:130. [PMID: 37872565 PMCID: PMC10594751 DOI: 10.1186/s12969-023-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVES Systemic lupus erythematosus is an autoimmune disease that involves multiple organ systems. One of its major complications, lupus nephritis (LN), is associated with a high mortality rate, and children-onset LN have a more severe course and worse prognosis than adults. Oxidative stress and inflammatory responses are involved in LN development and pathogenesis. Thus, this study aimed to explore the role of signaling regulation of the Nrf2/HMGB1/TLR/NF-κB pathway in LN pathogenesis and unravel the expression of TLR4+CXCR4+ plasma cells subset (PCs) in LN. METHODS C57BL/6 and MRL/lpr mice were divided into four groups: control, model, vector control, and Nrf2 overexpression groups. The vector control and Nrf2 overexpression groups were injected with adenoviral vectors into the kidney in situ. Pathological changes in kidney tissues were observed by hematoxylin-eosin staining. The expression of Nrf2, HMGB1, TLR4, NF-κB, and downstream inflammatory factors in kidney samples was analyzed by quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The ratios of TLR4+CXCR4+ PC subsets in the blood and kidneys of mice were determined by flow cytometry. RESULTS In MRL/lpr mice, Nrf2 was downregulated while HMGB1/TLR4/NF-κB pathway proteins were upregulated. Nrf2 overexpression decreased the expression of HMGB1, TLR4, NF-κB, and its downstream inflammatory cytokines (IL-1β and TNFα). These cytokines were negatively correlated with an increase in Nrf2 content. PC and TLR4 + CXCR4 + PCs in the blood and kidney samples were significantly increased in MRL/lpr mice; however, they were decreased upon Nrf2 overexpression. CONCLUSION This study showed severe kidney injury in an LN mouse model and an increased ratio of TLR4 + CXCR4 + PCs. Furthermore, we observed that Nrf2 regulates LN immune response through the Nrf2/HMGB1/TLR4/NF-κB pathway, which can be considered an important target for LN treatment. The clinical value of the findings of our study requires further investigation.
Collapse
Affiliation(s)
- Shi-Jie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Dan-Dan Ruan
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Wei-Zhen Wu
- Xiyuan Clinical Medical College of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qiu-Yan Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Han-Lu Wang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yuan-Yuan Ji
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xin-Fu Lin
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Zhu-Ting Fang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Li-Sheng Liao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jie-Wei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Mei-Zhu Gao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jia-Bin Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- School of Medicine, Fuzhou Second Hospital, Xiamen University, Fuzhou, 350007, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China.
| |
Collapse
|
6
|
Yadav H, Shirumalla RK. Emerging trends in IRAK-4 kinase research. Mol Biol Rep 2023; 50:7825-7837. [PMID: 37490192 DOI: 10.1007/s11033-023-08438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/06/2023] [Indexed: 07/26/2023]
Abstract
The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/β receptor (IFNα/β). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the "scaffolding effect" because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.
Collapse
Affiliation(s)
- Himanshu Yadav
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India
| | - Raj Kumar Shirumalla
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India.
| |
Collapse
|
7
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|
8
|
Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023; 12:659. [PMID: 36766186 PMCID: PMC9914031 DOI: 10.3390/foods12030659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fungi-derived β-glucan, a type of glucopolysaccharide, has been shown to possess immune-modulatory properties in clinical settings. Studies have indicated that β-glucan derived from Ganoderma lucidum (commonly known as Reishi) holds particular promise in this regard, both in laboratory and in vivo settings. To further investigate the efficacy and safety of Reishi β-glucan in human subjects, a randomized, double-blinded, placebo-controlled clinical trial was conducted among healthy adult volunteers aged 18 to 55. Participants were instructed to self-administer the interventions or placebos on a daily basis for 84 days, with bloodwork assessments conducted at the beginning and end of the study. The results of the trial showed that subjects in the intervention group, who received Reishi β-glucan, exhibited a significant enhancement in various immune cell populations, including CD3+, CD4+, CD8+ T-lymphocytes, as well as an improvement in the CD4/CD8 ratio and natural killer cell counts when compared to the placebo group. Additionally, a statistically significant difference was observed in serum immunoglobulin A levels and natural killer cell cytotoxicity between the intervention and placebo groups. Notably, the intervention was found to be safe and well tolerated, with no statistically significant changes observed in markers of kidney or liver function in either group. Overall, the study provides evidence for the ability of Reishi β-glucan to modulate immune responses in healthy adults, thereby potentially bolstering their defense against opportunistic infections.
Collapse
Affiliation(s)
- Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Wei Liu
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242062, Taiwan
| | - Min-Feng Yang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chih Chang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Hernández-Jiménez M, Martín-Vílchez S, Ochoa D, Mejía-Abril G, Román M, Camargo-Mamani P, Luquero-Bueno S, Jilma B, Moro MA, Fernández G, Piñeiro D, Ribó M, González VM, Lizasoain I, Abad-Santos F. First-in-human phase I clinical trial of a TLR4-binding DNA aptamer, ApTOLL: Safety and pharmacokinetics in healthy volunteers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:124-135. [PMID: 35402075 PMCID: PMC8938885 DOI: 10.1016/j.omtn.2022.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
ApTOLL is an aptamer that antagonizes Toll-like receptor 4 and improves functional outcomes in models of ischemic stroke and myocardial infarction. The aim of this study was to characterize the safety and pharmacokinetics of ApTOLL in healthy volunteers. A first-in-human dose-ascending, randomized, placebo-controlled phase I clinical trial to assess safety and pharmacokinetics of ApTOLL (30-min infusion intravenously) was performed in 46 healthy adult male volunteers. The study was divided into two parts: part A included seven single ascending dose levels, and part B had one multiple dose cohort. Safety and pharmacokinetic parameters were evaluated. No serious adverse events or biochemistry alterations were detected at any dose nor at any administration pattern studied. Maximum concentration was detected at the end of the infusion and mean half-life was 9.3 h. Interestingly, exposure increased in the first four levels receiving doses from 0.7 mg to 14 mg (AUC of 2,441.26 h∗ng/mL to 23,371.11 h∗ng/mL) but remained stable thereafter (mean of 23,184.61 h∗ng/mL after 70 mg). Consequently, the multiple dose study did not show any accumulation of ApTOLL. These results show an excellent safety and adequate pharmacokinetic profile that, together with the efficacy demonstrated in nonclinical studies, provide the basis to start clinical trials in patients.
Collapse
Affiliation(s)
| | - Samuel Martín-Vílchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Paola Camargo-Mamani
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - María A. Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.), 28029 Madrid, Spain
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech S.L., Avda. Cardenal Herrera Oria 298, 28034 Madrid, Spain
| | - David Piñeiro
- AptaTargets S.L., Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Marc Ribó
- AptaTargets S.L., Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Víctor M. González
- Aptus Biotech S.L., Avda. Cardenal Herrera Oria 298, 28034 Madrid, Spain
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
The transmembrane adapter SCIMP recruits tyrosine kinase Syk to phosphorylate Toll-like receptors to mediate selective inflammatory outputs. J Biol Chem 2022; 298:101857. [PMID: 35337798 PMCID: PMC9052152 DOI: 10.1016/j.jbc.2022.101857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.
Collapse
|
11
|
Zhai Y, Ao L, Yao Q, The E, Fullerton DA, Meng X. Elevated Expression of TLR2 in Aging Hearts Exacerbates Cardiac Inflammatory Response and Adverse Remodeling Following Ischemia and Reperfusion Injury. Front Immunol 2022; 13:891570. [PMID: 35493479 PMCID: PMC9046986 DOI: 10.3389/fimmu.2022.891570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
This study tested the hypothesis that Toll-like receptor 2 (TLR2) augments the inflammatory responses and adverse remodeling in aging hearts to exacerbate myocardial injury and cardiac dysfunction.MethodsOld (20-22 months old) and adult (4-6 months old) mice of C57BL/6 wild-type and TLR2 knockout (KO) were subjected to coronary artery ligation (30 minutes) and reperfusion (3 or 14 days). Left ventricle function was assessed using a pressure-volume microcatheter. Cardiac infarct size was determined by histology. Levels of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase 9 (MMP 9), and collagen I in non-ischemic myocardium were assessed by immunoblotting. Monocyte chemoattractant protein-1 (MCP-1), keratinocyte chemoattractant (KC), and interleukin-6 (IL-6) levels in ischemic and non-ischemic myocardium were measured by enzyme-linked immunosorbent assay (ELISA). TLR2 expression in the myocardium of untreated wild type mice was also measured by immunoblotting.ResultsHigher levels of MCP-1, KC, IL-6 were induced in both ischemic and non-ischemic myocardium of old wild type mice at day 3 and 14 following ischemia/reperfusion (I/R) than those of adult wild type mice. The hyper-inflammatory responses to I/R in aging hearts were associated with elevated levels of myocardial TLR2. TLR2 KO markedly down-regulated the expression of MCP-1, KC, IL-6, ICAM-1 and VCAM-1 in aging hearts at day 3 and 14 following I/R. The down-regulated inflammatory activity in aging TLR2 KO hearts was associated with attenuated production of MMP 9 and collagen I at day 14 and resulted in reduced infarct size and improved cardiac function.ConclusionElevated expression of myocardial TLR2 contributes to the mechanism by which aging exacerbates the inflammatory responses, adverse remodeling and cardiac dysfunction following myocardial I/R in aging.
Collapse
|
12
|
Michels M, Jesus GFA, Voytena APL, Rossetto M, Ramlov F, Córneo E, Feuser P, Gelain D, Dal-Pizzol F. Immunomodulatory Effect of Bifidobacterium, Lactobacillus, and Streptococcus Strains of Paraprobiotics in Lipopolysaccharide-Stimulated Inflammatory Responses in RAW-264.7 Macrophages. Curr Microbiol 2021; 79:9. [PMID: 34905100 DOI: 10.1007/s00284-021-02708-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
The discovery of the potential of paraprobiotics to exert different immunological benefits suggests that further studies should be carried out to determine their potential and mechanisms of action in modulating the immune system. The objective of this study was to investigate the immune response of several microbial-associated molecular patterns (MAMPS) used at different doses in macrophage cell lines RAW-264.7 stimulated with lipopolysaccharide (LPS). Two experiments were conducted. The first was performed to determine a dose response curve for each paraprobiotic (Bifidobacterium lactis, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus paracasei, and Streptococcus thermophilus). Further experiments were carried using only two doses (0.01 g/ml and 0.1 g/ml). RAW-264.7 cells were cultivated in Dubelcco's Modified Eagle's medium supplemented with fetal bovine serum and penicillin/streptomycin. Cells were incubated with LPS (1 μg/ml) and six concentrations of MAMPs were added. RAW-264.7 viability, myeloperoxidase activity, nitrite/nitrate concentration, reactive oxygen species production, oxidative damage, and inflammatory parameters were measured. In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.
Collapse
Affiliation(s)
- Monique Michels
- Gabbia Biotechnology, Barra Velha, SC, Brazil. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105 - Bairro Universitário, Criciúma, SC, CEP: 888006-000, Brazil.
| | | | | | | | | | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Daniel Gelain
- Departament of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
13
|
Chen L, Lu Q, Chen J, Feng R, Yang C. Upregulating miR-27a-3p inhibits cell proliferation and inflammation of rheumatoid arthritis synovial fibroblasts through targeting toll-like receptor 5. Exp Ther Med 2021; 22:1227. [PMID: 34539823 PMCID: PMC8438689 DOI: 10.3892/etm.2021.10661] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a serious chronic inflammatory disease and synovial fibroblasts (SFs) serve a vital role in the pathogenesis and progression of RA. Current studies have demonstrated that dysregulation of microRNAs is involved in RA etiopathogenesis. The present study aimed to investigate the role of microRNA (miR)-27a-3p in RASFs, as well as its molecular mechanism. RASFs were isolated from synovial tissues from patients with RA. Expression of miR-27a-3p and toll-like receptor 5 (TLR5) was detected using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation, apoptosis and inflammatory response were measured with MTT assay, flow cytometry and ELISA kits, respectively. The target binding between miR-27a-3p and TLR5 was predicted on DIANA TOOLS software, and confirmed by dual-luciferase reporter assay and Biotin-coupled miRNA pull-down assay. Expression of miR-27a-3p was downregulated and TLR5 was upregulated in synovial tissues and RASFs isolated from patients with RA. Functionally, upregulating miR-27a-3p may promote the apoptosis rate of RASFs and suppress cell proliferation and secretions of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. TLR5 was validated as a downstream target for miR-27a-3p in RASFs, and its expression was negatively regulated by miR-27a-3p. Silencing TLR5 in RASFs may exert similar effects to miR-27a-3p-overexpression; whereas, restoring TLR5 counteracted the suppression of miR-27a-3p-overexpression on RASF proliferation and inflammation, as well as the promotion on apoptosis. miR-27a-3p upregulation may suppress RA progression by inhibiting RASFs proliferation and inflammation through targeting TLR5.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jianhua Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Ruibing Feng
- Department of Orthopedics, Central People's Liberation Army Central Theater, Wuhan, Hubei 430070, P.R. China
| | - Chenxi Yang
- Department of Orthopedics, Graduate School of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
14
|
Khodabandehloo F, Aflatoonian R, Zandieh Z, Rajaei F, Sayahpour FA, Nassiri-Asl M, Baghaban Eslaminejad M. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J Cell Mol Med 2021; 25:5138-5149. [PMID: 33939261 PMCID: PMC8178267 DOI: 10.1111/jcmm.16506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Forugh-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Abstract
An unfortunate emergence of a new virus SARS-CoV-2, causing a disease known as COVID-19, has spread all around the globe and has caused a pandemic. It primarily affects the respiratory tract and lungs in some cases causing severe organ damage and pneumonia due to overwhelming immune responses. Clinical reports show that the most commons symptoms are fever, dry cough, and shortness of breath, along with several other symptoms. It is thought that an immense cytokine dysregulation in COVID-19 patients is caused following the virus infection. Notably, if patients present with pre-existing specific comorbidities like diabetes or high blood pressure, rates of COVID-19 induced complications and deaths are escalated. Mesenchymal stem cell (MSC) therapy has been shown to alleviate pneumonia and acute respiratory syndrome (ARDS) symptoms, through their immunomodulatory activities in COVID-19 patients. Although more research studies and clinical trial results are needed to elucidate the exact mechanism by which MSCs provide relief to COVID-19 infected patients. Results from clinical trials are encouraging as patients treated with MSCs, regain lung functions and have restored levels of cytokines and trophic factors underscoring the fact that stem cell therapy can be, at least, a complementary therapy to alleviate sufferings in COVID-19 patients. This review discusses the possible therapeutic uses of MSCs for treating COVID-19. Graphical Abstract.
Collapse
|
16
|
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91:740-755. [PMID: 33039660 PMCID: PMC7543714 DOI: 10.1016/j.bbi.2020.10.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.
Collapse
Affiliation(s)
- Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F. Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
17
|
Pu R, Pu M, Huang H, Cui Y. MicroRNA 144 inhibits cell migration and invasion and regulates inflammatory cytokine secretion through targeting toll like receptor 2 in non-small cell lung cancer. Arch Med Sci 2021; 17:1028-1037. [PMID: 34336030 PMCID: PMC8314413 DOI: 10.5114/aoms.2020.93084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules involved in modulation of cancer progression. Here, we investigated the possible role of miR-144 in non-small cell lung cancer (NSCLC) development. MATERIAL AND METHODS The expression of miR-144 and TLR2 in NSCLC tissue and cell lines was determined by quantitative real-time PCR (qPCR). The TargetScan database was used to predict potential target genes of miR-144. Luciferase assay was used to verify the interaction between TLR2 and miR-144. TLR2 protein expression was measured by western blot. The secretion of interleukin (IL)-1β, IL-6 and IL-8 in A549 cells was detected by an ELISA kit. Cell migration and invasion were evaluated by wound healing assay and transwell assay, respectively. RESULTS Our results showed that miR-144 was downregulated in NSCLC tissue and cell lines when compared with the normal tissues and cell line (p < 0.05). The protein level of TLR2 in NSCLC tissue and cell lines was significantly higher than that in normal lung tissues. Dual luciferase reporter gene assay showed that miR-144 could bind to the 3'UTR of TLR2 specifically. Up-regulation of miR-144 significantly decreased the expression of TLR2. Up-regulation of miR-144 or down-regulation of TLR2 could decrease cell migration, invasion and secretion of IL-1β, IL-6 and IL-8 in A549 cells. Moreover, overexpression of TLR2 rescued the inhibitory effects of miR-144 on migration, invasion and inflammatory factor secretion of A549 cells. CONCLUSIONS miR-144 could inhibit the migration, invasion and secretion of IL-1β, IL-6 and IL-8 through downregulation of TLR2 expression in A549 cells.
Collapse
Affiliation(s)
- Rong Pu
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Meicen Pu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Haohai Huang
- Department of Education and Science, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| |
Collapse
|
18
|
Yang J, Chen Y, Jiang K, Zhao G, Guo S, Liu J, Yang Y, Deng G. MicroRNA-182 supplies negative feedback regulation to ameliorate lipopolysaccharide-induced ALI in mice by targeting TLR4. J Cell Physiol 2020; 235:5925-5937. [PMID: 32003008 DOI: 10.1002/jcp.29504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI), characterized by increased excessive pulmonary inflammation, is a pervasive inflammatory disease with clinically high incidence. MicroRNA (miRNAs) have been associated with the progression of multiple diseases and are regarded as novel regulators of inflammation. However, it remains largely unknown whether the miRNAs-mediated regulatory mechanism has an effect on lipopolysaccharide (LPS)-induced inflammation in ALI. We discovered that miR-182 distinctly lessened expression in the lung tissue of mice with ALI and macrophages stimulated by LPS. We also found that overexpression of miR-182 significantly cut down the secretion of inflammatory cytokines, while this change was reversed by inhibition of miR-182. In addition, miR-182 suppressed the activation of NF-κB by targeting TLR4 expression. And it was confirmed that miR-182 directly regulated TLR4 expression at the posttranscriptional level by binding to the 3'-UTR of TLR4. Together, these data suggested that inhibition of TLR4 expression assuaged LPS-stimulated inflammation through negative feedback regulation of miR-182.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
19
|
Jayasimhan A, Mariño E. Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut-Neuro-Immune Network in Type 1 Diabetes. Front Immunol 2019; 10:2429. [PMID: 31736937 PMCID: PMC6828936 DOI: 10.3389/fimmu.2019.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 01/13/2023] Open
Abstract
Microbial metabolites have a profound effect on the development of type 1 diabetes (T1D). The cross-talk between the gut microbiota, the nervous system, and immune system is necessary to establish and maintain immune and gut tolerance. As quoted by Hippocrates, "All disease begins in the gut." Although this has been recognized for 2,000 years, the connection between the gut and autoimmune T1D is not yet well-understood. Here, we outline new advances supported by our research and others that have contributed to elucidate the impact of microbial metabolites on the physiology of the pancreas and the gut through their remarkable effect on the immune and nervous system. Among many of the mechanisms involved in the gut-beta-cell-immune cross-talk, glial fibrillary acidic protein (GFAP)-expressing cells are critical players in the development of invasive insulitis. Besides, this review reveals a novel mechanism for microbial metabolites by stimulating IL-22, an essential cytokine for gut homeostasis and beta-cell survival. The close connections between the gut and the pancreas are highlighted through our review as microbial metabolites recirculate through the whole body and intimately react with the nervous system, which controls essential disorders associated with diabetes. As such, we discuss the mechanisms of action of microbial metabolites or short-chain fatty acids (SCFAs), IL-22, and GFAP on beta-cells, gut epithelial cells, neurons, and glial cells via metabolite sensing receptors or through epigenetic effects. The fine-tuned gut-neuro-immune network may be profoundly affected by SCFA deficiency related to dysbiosis and diet alterations at very early stages of the initiation of the disease. Thus, dampening the initial immune response or preventing the perpetuation of the immune response by maintaining the integrity of the gut is among the alternative approaches to prevent T1D.
Collapse
Affiliation(s)
- Abhirup Jayasimhan
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Kesici GG, Kargın Kaytez S, Özdaş T, Özdaş S. Association of Toll-Like Receptor Polymorphisms With Nasal Polyposis. EAR, NOSE & THROAT JOURNAL 2019; 100:NP26-NP32. [PMID: 31304782 DOI: 10.1177/0145561319859305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nasal polyposis is a disease characterized with chronic inflammation of the nasal mucosa. Toll-like receptors (TLRs) are defined as essential receptors of the innate immune system and may play in the development of nasal polyposis. A total of 71 patients with nasal polyposis and 74 healthy controls were included in this study. Three single-nucleotide polymorphisms (SNPs); TLR2 (2258 A>G), TLR4 (896 A>G), and TLR4 (1196 C>T) were analyzed in all patients. The degree of pair-wise linkage disequilibrium and the genotype and haplotype analyses were conducted using regression in this logistic model and the Multifactor Dimensionality Reduction (MDR) software package was used to construct all possible interactions among different genotype variants belonging to the TLR gene. There was significant difference in genotype and allele frequencies of the TLR4 (1196 C>T) polymorphism between the nasal polyposis and control groups (0.017). Also, it was observed that the probability of nasal polyposis was 62.7% in the presence of TLR4 (1196 C>T) polymorphism with asthma (P = .007). As a conclusion, this study showed that TLR4 and TLR2 polymorphisms were predisposing factors for nasal polyposis. Further functional studies investigating the consequences of loss of TLR function are needed.
Collapse
Affiliation(s)
- Gülin Gökçen Kesici
- Department of ENT, 64082Ankara Atatürk Education and Research Hospital, Ankara, Turkey
| | - Selda Kargın Kaytez
- Department of ENT, 64082Ankara Education and Research Hospital, Ankara, Turkey
| | - Talih Özdaş
- Department of ENT, 64130Adana City Education and Research Hospital, Adana, Turkey
| | - Sibel Özdaş
- Department of Bioengineering, Engineering Faculty, 365074Adana Science and Technology University, Adana, Turkey
| |
Collapse
|
21
|
Qiu Y, Zheng J, Yang J, Li F, Zhou X, Song X. The predictive role of toll-like receptor-4 genetic polymorphisms in susceptibility to and prognosis of prostatic hyperplasia. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:86-92. [PMID: 30944713 PMCID: PMC6437452 DOI: 10.22038/ijbms.2018.33173.7922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective(s): This study was aimed to evaluate whether single nucleotide polymorphisms (SNPs) of TLR4 and common living habits of prostate hyperplasia (BPH) patients would affect the subjects’ risk and prognosis. Materials and Methods: We totally recruited 501 BPH patients and 964 healthy controls. The patients’ international prostate symptom score (IPSS) and quality of life assessment (QoL) were designated as the prognostic indexes for BPH patients. Altogether 7 SNPs within TLR4 were selected, and the interactions among SNPs and living habits were explained with multi-factor dimensionality reduction (MDR) modeling. Results: The mutant alleles of rs10983755 (G>A) and rs1927907 (G>A) tended to put on risk of BPH, yet the wide alleles of rs4986791 (C>T) and rs115336889 (G>C) were associated with incremental susceptibility to BPH (P<0.05). The rs10983755 (GA) and rs1927907 (GA) were suggested as the marker of non-aggressive BPH, whereas rs4986791 (TT) could symbolize aggressive BPH (P<0.05). The homozygotes of rs4986791 (TT) and rs115336889 (CC) could improve the IPSS change, and rs115336889 (CC) was also correlated with more obviously ameliorated Qol change (P<0.05). Finally, MDR modeling suggested that rs4986791 (TT) and rs115336889 (GG) shaped the genotyping combination featured by the lowest risk of BPH when smoking or drinking history was also evaluated. Conclusion: The SNPs situated within TLR4 were potent candidates for predicting risk and prognosis of BPH patients, and their interactions within environmental parameters also helped to develop effective strategies for preventing and treating BPH.
Collapse
Affiliation(s)
- Yunhua Qiu
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Jinzhou Zheng
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Jianfeng Yang
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Feng Li
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiaoyun Song
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Balasubramanian PK, Kim J, Son K, Durai P, Kim Y. 3,6-Dihydroxyflavone: A Potent Inhibitor with Anti-Inflammatory Activity Targeting Toll-like Receptor 2. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jieun Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | | | - Yangmee Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| |
Collapse
|
23
|
Fu D, Xiao C, Xie Y, Gao J, Ye S. MiR-3926 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting toll like receptor 5. Gene 2018; 687:200-206. [PMID: 30412746 DOI: 10.1016/j.gene.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 11/04/2018] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) play a key role in the pathogenesis of rheumatoid arthritis (RA). This study was aimed to investigate the effects of miR-3926 on the biological activities of RASFs. The results showed that miR-3926 was significantly down-regulated in RASFs and RA synovial tissue. Overexpression of miR-3926 significantly inhibited RASFs proliferation and decreased the secretion of inflammatory cytokines including TNF-α, IL-1β and IL-6 in RASFs. TLR5 was identified to be a direct target of miR-3926. TLR5 showed an opposite expression trends with miR-3926 in RASFs and RA synovial tissue. Overexpression of miR-3926 led to a reduction of endogenous TLR5 in RASFs, whereas down-regulation of miR-3926 increased TLR5 expression. Knocking down of TLR5 significantly inhibited RASFs proliferation and inflammatory cytokines secretion. Rescue experiments with a miR-3926-resistant variant of TLR5 showed that overexpression of TLR5 restored RASFs proliferation and inflammatory cytokines secretion in miR-3926-overexpressing RASFs. In conclusion, miR-3926 is downregulated in RA synovial tissues and its overexpression caused the inhibitory effects on RASF proliferation and inflammatory cytokines secretion by targeting TLR5. The miR-3926/TLR5 pathway may represent a novel target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Di Fu
- Department of Rheumatology, First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiangxi Road, Guangzhou, Guangdong 510120, PR China
| | - Chuyin Xiao
- Department of Rheumatology, First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiangxi Road, Guangzhou, Guangdong 510120, PR China
| | - Yingying Xie
- Department of Rheumatology, First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiangxi Road, Guangzhou, Guangdong 510120, PR China
| | - Jianquan Gao
- Department of Rheumatology, First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiangxi Road, Guangzhou, Guangdong 510120, PR China
| | - Shanhui Ye
- Department of Rheumatology, First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiangxi Road, Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
24
|
Genetic risk factors in thrombotic primary antiphospholipid syndrome: A systematic review with bioinformatic analyses. Autoimmun Rev 2018; 17:226-243. [PMID: 29355608 DOI: 10.1016/j.autrev.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Antiphospholipid Syndrome (APS) is an autoimmune multifactorial disorder. Genetics is believed to play a contributory role in the pathogenesis of APS, especially in thrombosis development and pregnancy morbidity. In the last 20 years, extensive research on genetic contribution on APS indicates that APS is a polygenic disorder, where a number of genes are involved in the development of its clinical manifestations. AIMS The aim of this systematic review is to evaluate the genetic risk factors in thrombotic primary APS. Additionally, to assess the common molecular functions, biological processes, pathways, interrelations with the gene encoded proteins and RNA-Seq-derived expression patterns over different organs of the associated genes via bioinformatic analyses. METHODS Without restricting the year, a systematic search of English articles was conducted (up to 4th September 2017) using Web of Science, PubMed, Scopus, ScienceDirect and Google Scholar databases. Eligible studies were selected based on the inclusion criteria. Two researchers independently extracted the data from the included studies. Quality assessment of the included studies was carried out using a modified New-Castle Ottawa scale (NOS). RESULTS From an initial search result of 2673 articles, 22 studies were included (1268 primary APS patients and 1649 healthy controls). Twenty-two genes were identified in which 16 were significantly associated with thrombosis in primary APS whereas six genes showed no significant association with thrombosis. Based on the NOS, 14 studies were of high quality while 6 were low quality studies. From the bioinformatic analyses, thrombin-activated receptor activity (q = 6.77 × 10-7), blood coagulation (q = 2.63 × 10-15), formation of fibrin clot (q = 9.76 × 10-10) were the top hit for molecular function, biological process and pathway categories, respectively. With the highest confidence interaction score of 0.900, all of the thrombosis-associated gene encoded proteins of APS were found to be interconnected except for two. Based on the pathway analysis, cumulatively all the genes affect haemostasis [false discovery rate (FDR) = 1.01 × 10-8] and the immune system [FDR = 9.93 × 10-2]. Gene expression analysis from RNA-Seq data revealed that almost all the genes were expressed in 32 different tissues in the human body. CONCLUSION According to our systematic review, 16 genes contribute significantly in patients with thrombotic primary APS when compared with controls. Bioinformatic analyses of these genes revealed their molecular interconnectivity in protein levels largely by affecting blood coagulation and immune system. These genes are expressed in 32 different organs and may pose higher risk of developing thrombosis anywhere in the body of primary APS patients.
Collapse
|
25
|
Targeting Intramembrane Protein-Protein Interactions: Novel Therapeutic Strategy of Millions Years Old. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:61-99. [PMID: 29459036 PMCID: PMC7102818 DOI: 10.1016/bs.apcsb.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.
Collapse
|
26
|
Li H, Guan SB, Lu Y, Wang F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed Pharmacother 2017; 96:208-214. [DOI: 10.1016/j.biopha.2017.09.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
|
27
|
Mukherjee S, Mukherjee S, Bhattacharya S, Sinha Babu SP. Surface proteins of Setaria cervi induce inflammation in macrophage through Toll-like receptor 4 (TLR4)-mediated signalling pathway. Parasite Immunol 2017; 39. [PMID: 27659561 DOI: 10.1111/pim.12389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
Lymphatic filariasis is a vectorborne parasitic disease that results in morbidities, disabilities and socio-economic loss each year globally. Inflammatory consequences associated with any form of filariasis have drawn special attention. However, the molecular insight behind the inflammation of host macrophage (MФ) is considered as one of the shaded areas in filarial research. Herein, major emphasis was given to study the signalling pathway of MФ inflammation induced by surface proteins (SPs) of filarial parasite through in vitro and in vivo approaches. Twenty-four hours of in vitro stimulation of Raw MФs with endotoxin-free SPs of Setaria cervi resulted in the secretion of pro-inflammatory cytokines (TNF-α and IL-1β) that revealed induction of inflammation, which was found to be elicited from classical NF-кB activation. Moreover, this NF-кB activation was found to be signalled from TLR4 and mediated by the downstream signalling intermediates, viz. MyD88, pTAK1 and NEMO. In vivo studies in adult Wistar rats, experimentally injected with SPs, clearly supported the outcomes of in vitro experiments by showing higher degree of inflammation rather classical activation of the peritoneal MФs. Therefore, SPs from S. cervi cuticle could be responsible for the induction of pro-inflammatory response in MФ, which appears to be propagated through TLR4-NF-кB route.
Collapse
Affiliation(s)
- Su Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Sa Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S Bhattacharya
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S P Sinha Babu
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
28
|
Ratheesh M, Svenia JP, Asha S, Sandya S, Girishkumar B, Krishnakumar IM. Anti-inflammatory effect of a novel formulation of coconut inflorescence sap against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells by modulating TLR-NF-κB signaling pathway. Toxicol Mech Methods 2017. [DOI: 10.1080/15376516.2017.1344339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M. Ratheesh
- Department of Biochemistry, St. Thomas College, Pala, India
| | - Jose P. Svenia
- Department of Biochemistry, St. Thomas College, Pala, India
| | - S. Asha
- Department of Biochemistry, St. Thomas College, Pala, India
| | - S. Sandya
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
29
|
Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection. Mol Immunol 2017; 87:284-292. [PMID: 28531812 DOI: 10.1016/j.molimm.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 12/11/2022]
Abstract
It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway.
Collapse
|
30
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Lehenkari P, Saarnio J, Karttunen TJ. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch 2017; 470:401-410. [PMID: 28191612 DOI: 10.1007/s00428-017-2087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer remains one of the deadliest malignancies in the world. Inflammatory response and tumor environment are thought to play a major role in its pathogenesis. Knowledge on TLR expression and impact on patient survival in pancreatic cancer is limited. The study's aim was to clarify the role of different TLRs in pancreatic cancer. TLR2, TLR4, and TLR9 expression was investigated in 65 surgically resected pancreatic ductal adenocarcinoma specimens by immunohistochemistry. The association between TLR expression, clinical parameters, and local inflammatory response to the tumor was assessed using chi-square test. Relation between patient survival and TLR expression was calculated with multivariable Cox regression, adjusted for age, sex, and tumor stage. We found TLR2, TLR4, and TLR9 to be expressed in pancreatic cancer. There was no association between TLR expression and tumor stage, tumor size, lymph node metastasis, or tumor necrosis. Contrary to our initial hypothesis, high cytoplasmic TLR9 expression was associated with longer patient survival, and multivariate analysis identified low TLR9 expression as an independent risk factor for cancer-specific death (HR 3.090, 95% CI 1.673-5.706). The results suggest that high TLR9 expression in pancreatic ductal adenocarcinoma indicates improved prognosis. The prognostic effect of TLR9 might be associated with bacterial exposure, but this needs further evidence.
Collapse
Affiliation(s)
- Joni Leppänen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland.
| | - Olli Helminen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Joel Isohookana
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Petri Lehenkari
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Juha Saarnio
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| |
Collapse
|
31
|
Genung NE, Guckian KM. Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:117-163. [PMID: 28314411 DOI: 10.1016/bs.pmch.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, interleukin-1 receptor-associated kinase 4, IRAK4, has become an attractive target for many medicinal chemistry programmes. Target inhibition is of potential therapeutic value in areas including autoimmune disorders, cancer, inflammatory diseases, and possibly neurodegenerative diseases. Results from high-throughput screening efforts have led, in conjunction with structure-based drug design, to the identification of highly potent and selective small molecule IRAK4 inhibitors from many diverse chemical series. In vitro and in vivo studies with entities from distinct structural classes have helped elucidate the downstream pharmacological responses associated with IRAK4 inhibition as a proof of concept in disease models, leading to the recent initiation of human clinical trials. Within this review, we will highlight the considerable effort by numerous groups dedicated to the development of small molecule IRAK4 inhibitors for the treatment of human disease.
Collapse
|
32
|
Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem 2016; 423:53-65. [PMID: 27665434 DOI: 10.1007/s11010-016-2824-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that have a unique and essential function in innate immunity. The effect of quercetin on TLR-mediated downstream signaling mechanism and its effect on TLR-mediated MAP kinase and Akt pathways were studied in oxLDL-stimulated hPBMCs using specific inhibitors. The pretreatment of hPBMCs with specific TLR inhibitor, CLI-095, decreased the NF-κB nuclear translocation and TNF-α release by oxLDL. When the cells treated with inhibitor and quercetin together, the inhibition was more effective. The specific inhibitor for p38 MAPK, SB203580, reduced the phosphorylated p38 level and decreased the NF-κB activation and TNF-α release by oxLDL-challenged hPBMCs. This inhibitor showed enhanced inhibition when treated with quercetin together. The inhibitors for ERK1/2, PD98059, and for JNK, SP606125, also showed inhibitory effect on NF-κB activation and TNF-α release by oxLDL-simulated hPBMCs. Quercetin supplementation enhanced the inhibition of nuclear translocation of NF-κB and the release of cytokines. TLR4 inhibition study confirmed the downstream signaling mechanism mediated by NF-κB which is involved in the oxLDL-induced inflammatory response, and quercetin suppresses the cytokine, TNF-α release by modulating TLR-NF-κB signaling pathway. In addition to NF-κB signaling pathway, inflammation induced by oxLDL was also related to the activation of p38MAPK, ERK1/2 and JNK, and Akt pathways, and the protective effect of quercetin may be also related to the inhibition of activation of these pathways. Quercetin significantly downregulated the elevated mRNA expression of TLRs and cytokine TNF-α in HCD-fed atherosclerotic rats in vivo. As quercetin possesses inhibition on both TLR-NF-κB signaling pathway and TLR-mediated MAPK pathway, it is evident that it can be used as a therapeutic agent to ameliorate atherosclerotic inflammation. Since quercetin is the major flavonoid and forms the backbone of many other flavonoids and this study provides strong evidence that it has potent anti-inflammatory effect, quercetin may be a promising agent for the prevention and treatment of atherosclerosis and promote health by reducing harmful vascular inflammation.
Collapse
Affiliation(s)
- Shobha Bhaskar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - A Helen
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
33
|
Vogel SN, Awomoyi AA, Rallabhandi P, Medvedev AE. Mutations in TLR4 signaling that lead to increased susceptibility to infection in humans: an overview. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110060801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this overview, we will present current information on known mutations in the TLR4 signaling pathway that have been associated with increased susceptibility to disease. To date, mutations in the extracellular domain of TLR4 itself, IRAK-4, NEMO (IKKγ), and IκBα have been identified and profoundly affect the host response to infection.
Collapse
Affiliation(s)
- Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland, USA,
| | - Agnes A. Awomoyi
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Prasad Rallabhandi
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Andrei E. Medvedev
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Acioglu C, Mirabelli E, Baykal AT, Ni L, Ratnayake A, Heary RF, Elkabes S. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms. Brain Behav Immun 2016; 56:310-24. [PMID: 27044334 DOI: 10.1016/j.bbi.2016.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes. Neuronal TLR9 antagonism confers protection against excitotoxic death. It is likely that this neuroprotection is partly due to the attenuation of the ER stress response provoked by excitotoxicity. Although CpG ODN 2088 limits the supportive effects of astrocytes on neurons, it could potentially exert beneficial effects by decreasing the release of pro-inflammatory cytokines and chemokines by astroglia. These findings highlight the multiple roles of TLR9 in the SC and have implications for pathological conditions including SCI where excitotoxicity and neuroinflammation play a prominent role in neuronal degeneration.
Collapse
Affiliation(s)
- Cigdem Acioglu
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kilis 7 Aralik University, 79000 Kilis, Turkey
| | - Ersilia Mirabelli
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, 34752 Istanbul, Turkey
| | - Li Ni
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Ayomi Ratnayake
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F Heary
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Stella Elkabes
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
35
|
Anaya JM, Ramirez-Santana C, Alzate MA, Molano-Gonzalez N, Rojas-Villarraga A. The Autoimmune Ecology. Front Immunol 2016; 7:139. [PMID: 27199979 PMCID: PMC4844615 DOI: 10.3389/fimmu.2016.00139] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.
Collapse
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , Colombia
| | - Carolina Ramirez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , Colombia
| | - Maria A Alzate
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , Colombia
| | - Nicolas Molano-Gonzalez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , Colombia
| | - Adriana Rojas-Villarraga
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , Colombia
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Microbiota secrete a multitude of factors that either confer virulence or promote colonization because they are continuously challenged by host immune responses. The dynamic interplay between the host's immune response and microbiota eventually determines the outcome for the host: health or disease. Toll-like receptors (TLRs) play a key role in this interplay as they can recognize both microbial and host-derived ligands on the basis of the context in which recognition occurs. RECENT FINDINGS Evidence is accumulating that conventional cancer therapies alter interactions and cross talks between the host and microbiota. This has been shown for intestinal mucositis, a common side-effect of various cancer therapies. Advances have been made in the development of new and less toxic cancer strategies. One promising field is immunotherapy on the basis of TLR activation through recognition of microbial-associated molecular patterns. SUMMARY Evidence is emerging, indicating that existing cancer therapies have implications on the composition and functionality of the host-microbiota environment. This may favor the colonization of pathogens and build up the overall toxicity of the drug. Exploitation of the host-microbiota cross talks mediated by TLRs is an emerging and promising field in the search for new, less toxic anticancer strategies.
Collapse
|
37
|
Mu Q, Zhang H, Luo XM. SLE: Another Autoimmune Disorder Influenced by Microbes and Diet? Front Immunol 2015; 6:608. [PMID: 26648937 PMCID: PMC4663251 DOI: 10.3389/fimmu.2015.00608] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease. Despite years of study, the etiology of SLE is still unclear. Both genetic and environmental factors have been implicated in the disease mechanisms. In the past decade, a growing body of evidence has indicated an important role of gut microbes in the development of autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. However, such knowledge on SLE is little, though we have already known that environmental factors can trigger the development of lupus. Several recent studies have suggested that alterations of the gut microbial composition may be correlated with SLE disease manifestations, while the exact roles of either symbiotic or pathogenic microbes in this disease remain to be explored. Elucidation of the roles of gut microbes - as well as the roles of diet that can modulate the composition of gut microbes - in SLE will shed light on how this autoimmune disorder develops, and provide opportunities for improved biomarkers of the disease and the potential to probe new therapies. In this review, we aim to compile the available evidence on the contributions of diet and gut microbes to SLE occurrence and pathogenesis.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA , USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
38
|
Innate immunity gene expression changes in critically ill patients with sepsis and disease-related malnutrition. Cent Eur J Immunol 2015; 40:311-24. [PMID: 26648775 PMCID: PMC4655381 DOI: 10.5114/ceji.2015.54593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was an attempt to determine whether the expression of genes involved in innate antibacterial response (TL R2, NOD 1, TRAF6, HMGB 1 and Hsp70) in peripheral blood leukocytes in critically ill patients, may undergo significant changes depending on the severity of the infection and the degree of malnutrition. The study was performed in a group of 128 patients with infections treated in the intensive care and surgical ward. In 103/80.5% of patients, infections had a severe course (sepsis, severe sepsis, septic shock, mechanical ventilation of the lungs). Clinical monitoring included diagnosis of severe infection (according to the criteria of the ACC P/SCC M), assessment of severity of the patient condition and risk of death (APACHE II and SAPS II), nutritional assessment (NRS 2002 and SGA scales) and the observation of the early results of treatment. Gene expression at the mRNA level was analyzed by real-time PCR. The results of the present study indicate that in critically ill patients treated in the IC U there are significant disturbances in the expression of genes associated with innate antimicrobial immunity, which may have a significant impact on the clinical outcome. The expression of these genes varies depending on the severity of the patient condition, severity of infection and nutritional status. Expression disorders of genes belonging to innate antimicrobial immunity should be diagnosed as early as possible, monitored during the treatment and taken into account during early therapeutic treatment (including early nutrition to support the functions of immune cells).
Collapse
|
39
|
Feng YF, Guo H, Yuan F, Shen MQ. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell. PLoS One 2015; 10:e0136175. [PMID: 26288180 PMCID: PMC4545586 DOI: 10.1371/journal.pone.0136175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) has been confirmed to participate in the formation of choroidal neovascularization (CNV) via its two receptors: CXC chemokine receptors 4 (CXCR4) and CXCR7. Previous studies have indicated that the activation of Toll-like receptors (TLRs) by lipopolysaccharide (LPS) might elevate CXCR4 and/or CXCR7 expression in tumor cells, enhancing the response to SDF-1 to promote invasion and cell dissemination. However, the impact of LPS on the CXCR4 and CXCR7 expression in endothelial cells and subsequent pathological angiogenesis formation remains to be elucidated. The present study shows that LPS enhanced the CXCR4 and CXCR7 expression via activation of the TLR4 pathway in choroid-retinal endothelial (RF/6A) cells. In addition, the transcriptional regulation of CXCR4 and CXCR7 by LPS was found to be mediated by phosphorylation of the extracellular signal-related kinase (ERK) 1/2 and activation of nuclear factor kappa B (NF-κB) signaling pathways, which were blocked by ERK- or NF-κB-specific inhibitors. Furthermore, the increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cells proliferation, migration and tube formation. In vivo, LPS-treated rat had significantly higher mRNA levels of CXCR4 and CXCR7 expression and lager laser-induced CNV area than vehicle-treated rat. SDF-1 blockade with a neutralizing antibody attenuated the progression of CNV in LPS-treated rat after a single intravitreal injection. Altogether, these results demonstrated that LPS might influence CNV formation by enhancing CXCR7 and CXCR7 expression in endothelial cells, possibly providing a new perspective for the treatment of CNV-associated diseases.
Collapse
Affiliation(s)
- Yi-fan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hua Guo
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- * E-mail:
| | - Min-qian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Mastalerz-Migas A, Pokorski M, Kiliś-Pstrusińska K, Doskocz K, Sapilak BJ, Brydak LB. Cytokines and toll-like receptors in the immune response to influenza vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 836:35-40. [PMID: 25248345 DOI: 10.1007/5584_2014_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Toll-like receptors (TLRs) are involved in immunogenicity. However, little information is available on the role of TLRs in the immune response to vaccination against influenza virus. The aim of the study was to analyze the relationship between the immunogenic response to influenza vaccine and the presence of soluble forms of TLRs and selected cytokines in the serum. There were two groups of subjects participating in the main protocol of the study: 55 chronically hemodialyzed patients (Group A) and 55 healthy volunteers (Group B) participated in the study. Both groups were vaccinated against influenza using a subunit Agrippal vaccine. The concentrations of human TNF-α, IL-1β/IL-1F2, IL-6, and IL-10 were measured by a high sensitivity enzyme-linked immunosorbent assay. The soluble forms of TLR-2, TLR-4, and TLR-7 were determined in serum samples by ELISA as well. The findings were that vaccination did not appreciably influence the level soluble TRL-2, TRL-4, and TRL-7 or the cytokines investigated either in patients on hemodialysis or in healthy volunteers. Nor were there any relevant correlations between Toll-like receptors or pro-inflammatory cytokines and the immune response to influenza vaccination. On the other hand, the study showed that Toll-like receptors are increased in hemodialyzed patients, which may enhance the anti-inflammatory IL-10 and counter the downgrade of the immune response to influenza vaccine.
Collapse
Affiliation(s)
- A Mastalerz-Migas
- Department of Family Medicine, Medical University of Wrocław, 1 Syrokomli St., Wrocław, 51-141, Poland,
| | | | | | | | | | | |
Collapse
|
41
|
KIM YOUNGIL, PARK SEUNGWON, KANG INJUNG, SHIN MINKYUNG, LEE MUHYOUNG. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation. Int J Mol Med 2015; 36:1165-72. [DOI: 10.3892/ijmm.2015.2308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
|
42
|
Wang Y, Cui Y, Cao F, Qin Y, Li W, Zhang J. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4. Int Immunopharmacol 2015; 28:136-45. [PMID: 26054879 DOI: 10.1016/j.intimp.2015.05.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Abstract
Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway.
Collapse
Affiliation(s)
- Yiren Wang
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yuting Cui
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fayang Cao
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yiyang Qin
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Wenjing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, 117004 Benxi, PR China.
| |
Collapse
|
43
|
Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2015; 47:136-47. [PMID: 24352680 DOI: 10.1007/s12016-013-8402-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are immune disorders characterized by T cell hyperactivity and B cell overstimulation leading to overproduction of autoantibodies. Although the pathogenesis of various autoimmune diseases remains to be elucidated, environmental factors have been thought to contribute to the initiation and maintenance of auto-respond inflammation. Toll-like receptors (TLRs) are pattern recognition receptors belonging to innate immunity that recognize and defend invading microorganisms. Besides these exogenous pathogen-associated molecular patterns, TLRs can also bind with damage-associated molecular patterns produced under strike or by tissue damage or cells apoptosis. It is believed that TLRs build a bridge between innate immunity and autoimmunity. There are five adaptors to TLRs including MyD88, TRIF, TIRAP/MAL, TRAM, and SARM. Upon activation, TLRs recruit specific adaptors to initiate the downstream signaling pathways leading to the production of inflammatory cytokines and chemokines. Under certain circumstances, ligation of TLRs drives to aberrant activation and unrestricted inflammatory responses, thereby contributing to the perpetuation of inflammation in autoimmune diseases. In the past, most studies focused on the intracellular TLRs, such as TLR3, TLR7, and TLR9, but recent studies reveal that cell surface TLRs, especially TLR2 and TLR4, also play an essential role in the development of autoimmune diseases and afford multiple therapeutic targets. In this review, we summarized the biological characteristics, signaling mechanisms of TLR2/4, the negative regulators of TLR2/4 pathway, and the pivotal function of TLR2/4 in the pathogenesis of autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, Sjogren's syndrome, psoriasis, multiple sclerosis, and autoimmune diabetes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan, 410011, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Ranjan S, Bhushan B, Panigrahi M, Kumar A, Deb R, Kumar P, Sharma D. Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. Anim Biotechnol 2015; 26:98-104. [PMID: 25380461 DOI: 10.1080/10495398.2014.929582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A total of 129 crossbred cows were selected to explore the genotypic and expression profiling of partial TNF-α gene and its association with mastitis susceptibility. Two exon spanning region of TNF-α gene (221 bp and 239 bp) were amplified by Polymerase Chain Reaction (PCR). The different genotypic analysis by SSCP revealed that 221 bp fragment was monomorphic, whereas 239 bp was polymorphic. Association studies revealed that AA genotypes of 239 bp were more prevalent in mastitis group and the mRNA expression of TNF-α was significantly (P < 0.05) higher in AA genotypic animals compare to AB and BB. This suggested that genotypes AB and BB may be used as candidate markers for mastitis resistance selection in dairy cattle.
Collapse
Affiliation(s)
- Sanjeev Ranjan
- a Division of Animal Genetics , Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| | | | | | | | | | | | | |
Collapse
|
45
|
Orostachys japonicus Inhibits Expression of the TLR4, NOD2, iNOS, and COX-2 Genes in LPS-Stimulated Human PMA-Differentiated THP-1 Cells by Inhibiting NF-κB and MAPK Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:682019. [PMID: 25810745 PMCID: PMC4355124 DOI: 10.1155/2015/682019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022]
Abstract
Orostachys japonicus is traditionally used as an inflammatory agent. In this report, we investigated the effects of O. japonicus extract on the expression of genes encoding pathogen-recognition receptors (TLR2, TLR4, NOD1, and NOD2) and proinflammatory factors (iNOS, COX-2, and cytokines) in LPS-stimulated PMA-differentiated THP-1 cells and the NF-κB and MAPK pathways. O. japonicus induced toxicity at high concentrations but had no effect at concentrations lower than 25 μg/mL. O. japonicus inhibited LPS-induced TLR4 and NOD2 mRNA levels, suppressed LPS-induced iNOS and COX-2 transcription and translocation, and downregulated LPS-induced proinflammatory cytokine (IL-1β, IL-6, IL-8, and TNF-α) mRNA levels. In addition, O. japonicus inhibited LPS-induced NF-κB activation and IκBα degradation and suppressed LPS-induced JNK, p38 MAPK, and ERK phosphorylation. Overall, our results demonstrate that the anti-inflammatory effects of O. japonicus are mediated by suppression of NF-κB and MAPK signaling, resulting in reduced TLR4, NOD2, iNOS, and COX-2 expression and inhibition of inflammatory cytokine expression.
Collapse
|
46
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
47
|
Pneumolysin activates macrophage lysosomal membrane permeabilization and executes apoptosis by distinct mechanisms without membrane pore formation. mBio 2014; 5:e01710-14. [PMID: 25293758 PMCID: PMC4196231 DOI: 10.1128/mbio.01710-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY's ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. Importance: Streptococcus pneumoniae, the commonest cause of bacterial pneumonia, expresses the toxin pneumolysin, which can make holes in cell surfaces, causing tissue damage. Macrophages, resident immune cells essential for responses to bacteria in tissues, activate a program of cell suicide called apoptosis, maximizing bacterial clearance and limiting harmful inflammation. We examined pneumolysin's role in activating this response. We demonstrate that pneumolysin did not directly form holes in cells to trigger apoptosis and show that pneumolysin has two distinct roles which require only part of the molecule. Pneumolysin and other bacterial factors released by bacteria that have not been eaten by macrophages activate macrophages to release inflammatory factors but also make the cell compartment containing ingested bacteria leaky. Once inside the cell, pneumolysin ensures that the bacteria activate macrophage apoptosis, rather than necrosis, enhancing bacterial killing and limiting inflammation. This dual response to pneumolysin is critical for an effective immune response to S. pneumoniae.
Collapse
|
48
|
Protective role of 5-lipoxigenase during Leishmania infantum infection is associated with Th17 subset. BIOMED RESEARCH INTERNATIONAL 2014; 2014:264270. [PMID: 25309905 PMCID: PMC4189762 DOI: 10.1155/2014/264270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022]
Abstract
Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Leucotriens are lipid mediators synthesized by 5-lipoxygenase (5-LO) and they display a protective role against protozoan parasites by inducing several functions in leucocytes. We determined the role of 5-LO activity in parasite control, focusing on the inflammatory immune response against Leishmania infantum infection. LTB4 is released during in vitro infection. The genetic ablation of 5-LO promoted susceptibility in highly resistant mice strains, harboring more parasites into target organs. The susceptibility was related to the failure of neutrophil migration to the infectious foci. Investigating the neutrophil failure, there was a reduction of proinflammatory cytokines involved in the related Th17 axis released into the organs. Genetic ablation of 5-LO reduced the CD4(+)T cells producing IL-17, without interfering in Th1 subset. L. infantum failed to activate DC from 5-LO(-/-), showing reduced surface costimulatory molecule expression and proinflammatory cytokines involved in Th17 differentiation. BLT1 blockage with selective antagonist interferes with DC maturation and proinflammatory cytokines release. Thus, 5-LO activation coordinates the inflammatory immune response involved in the control of VL.
Collapse
|
49
|
Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol Lett 2014; 158:14-24. [DOI: 10.1016/j.imlet.2013.11.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
|
50
|
Buchta CM, Bishop GA. TRAF5 negatively regulates TLR signaling in B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 192:145-50. [PMID: 24259503 DOI: 10.4049/jimmunol.1301901] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytoplasmic adaptor proteins TNFR-associated factor (TRAF)3 and TRAF6 are important mediators of TLR signaling. To our knowledge, we show in this study for the first time that another TRAF family member, TRAF5, is a negative regulator of TLR signaling. B lymphocytes from TRAF5(-/-) mice produced more IL-6, IL-12p40, IL-10, TNF-α, and IgM than did wild-type B cells after TLR stimulation. Consistent with these data, exogenous overexpression of TRAF5 in B cells inhibited TLR-mediated cytokine and Ab production. TLR stimulation of TRAF5-deficient B cells did not affect cell survival, proliferation, or NF-κB activation but resulted in markedly enhanced phosphorylation of the MAPKs ERK1/2 and JNK. TRAF5 negatively regulated TLR signaling in a cell-specific manner, because TRAF5(-/-) macrophages and dendritic cells showed less dramatic differences in TLR-mediated cytokine production than B cells. Following TLR stimulation, TRAF5 associated in a complex with the TLR adaptor protein MyD88 and the B cell-specific positive regulator of TLR signaling TAB2. Furthermore, TRAF5 negatively regulated the association of TAB2 with its signaling partner TRAF6 after TLR ligation in B cells. To our knowledge, these data provide the first evidence that TRAF5 acts as a negative regulator of TLR signaling.
Collapse
Affiliation(s)
- Claire M Buchta
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|