1
|
Nateghi-Rostami M, Lipoldová M, Sohrabi Y. Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis. Front Immunol 2025; 16:1559907. [PMID: 40330482 PMCID: PMC12052738 DOI: 10.3389/fimmu.2025.1559907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Collapse
Affiliation(s)
| | - Marie Lipoldová
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Onwah SS, Mou Z, Gupta G, Obi P, Ikeogu N, Jia P, Zhang WW, Ghavami S, Saleem A, Uzonna J. Leishmania major Dihydrolipoyl dehydrogenase (DLD) is a key metabolic enzyme that drives parasite proliferation, pathology and host immune response. PLoS Pathog 2025; 21:e1012978. [PMID: 40096189 PMCID: PMC11949353 DOI: 10.1371/journal.ppat.1012978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/27/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Identifying antigens that elicit protective immunity is pivotal for developing effective vaccines and therapeutics against cutaneous leishmaniasis. Dihydrolipoyl dehydrogenase (DLD), a mitochondrial enzyme involved in oxidizing lipoamides to facilitate electron transfer for energy production and metabolism, plays a critical role in virulence of fungi and bacteria. However, its function in Leishmania virulence and pathogenesis remains unexplored. Using a CRISPR-Cas9-based approach, we generated DLD-deficient Leishmania (L.) major parasites and a complementary add-back strain by episomally reintroducing DLD gene into the knockout parasites. Loss of DLD significantly impaired parasite proliferation in axenic cultures and infected macrophages compared to wild-type (WT) and add-back control parasites. These defects were linked to reduced ROS production, impaired mitochondrial permeability, an enhanced oxygen consumption rate, and alterations in mitochondrial ultrastructure. In murine models, DLD-deficient parasites failed to cause observable lesions and exhibited significantly reduced parasite burdens compared to WT and add-back control strains. Notably, mice infected with DLD-deficient parasites displayed blunted immune responses compared to their WT controls. Importantly, vaccination with DLD-deficient parasites conferred robust protection against virulent L. major challenge, characterized by a strong IFN-γ-mediated immune response. These findings establish DLD as an essential metabolic enzyme for L. major intracellular survival and pathogenesis. Targeting DLD not only impairs parasite viability but also holds promise as a novel strategy for vaccine development to combat cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Somtochukwu S. Onwah
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gaurav Gupta
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patience Obi
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Jia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayesha Saleem
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jude Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
4
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Central and Effector Memory Human CD4+ and CD8+ T Cells during Cutaneous Leishmaniasis and after In Vitro Stimulation with Leishmania (Viannia) braziliensis Epitopes. Vaccines (Basel) 2023; 11:vaccines11010158. [PMID: 36680003 PMCID: PMC9861845 DOI: 10.3390/vaccines11010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Cutaneous Leishmaniasis (CL) is a Neglected Tropical Disease characterized by skin ulcers caused by Leishmania spp. protozoans and there is no safe and effective vaccine to reduce its negative consequences. In a previous work by our group, we identified T cell epitopes of Leishmania (Viannia) braziliensis which stimulated patients' T cells in vitro. In the present work, the peptides were tested as two pools for their ability to rescue memory T cells during natural infection by Leishmania. We analyzed the frequency of central memory (TCM, CD45RA-CD62L+) and effector memory (TEM, CD45RA + CD62L-) cells during active CL and post-treatment. In parallel, we investigated cell proliferation levels and the cytokines produced after stimulation. Interestingly, we observed higher frequencies (%) in CD4+ TEM during CL, and CD8+ TEM and CD8+ TCM during CL and post-treatment. Cell proliferation was increased, and a significant difference in expression was observed on T-bet and RORγT. Besides that, IFN-γ, IL-2, and IL-10 were detected in patient samples. Collectively, this dataset suggests that during CL there is an increase in the frequency of TCM and TEM, especially in the CD8 compartment. These results indicate a potentially immunogenic profile of the peptide pools, which can support the development of anti-Leishmania formulations.
Collapse
|
6
|
Polanco G, Scott NE, Lye LF, Beverley SM. Expanded Proteomic Survey of the Human Parasite Leishmania major Focusing on Changes in Null Mutants of the Golgi GDP-Mannose/Fucose/Arabinopyranose Transporter LPG2 and of the Mitochondrial Fucosyltransferase FUT1. Microbiol Spectr 2022; 10:e0305222. [PMID: 36394313 PMCID: PMC9769760 DOI: 10.1128/spectrum.03052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The trypanosomatid protozoan parasite Leishmania has a significant impact on human health globally. Understanding the pathways associated with virulence within this significant pathogen is critical for identifying novel vaccination and chemotherapy targets. Within this study we leverage an ultradeep proteomic approach to improve our understanding of two virulence-associated genes in Leishmania, encoding the Golgi mannose/arabinopyranose/fucose nucleotide-sugar transporter (LPG2) and the mitochondrial fucosyltransferase (FUT1). Using deep peptide fractionation followed by complementary fragmentation approaches with higher-energy collisional dissociation (HCD) and electron transfer dissociation (ETD) allowed the identification of over 6,500 proteins, nearly doubling the experimentally known Leishmania major proteome. This deep proteomic analysis revealed significant quantitative differences in both Δlpg2- and Δfut1s mutants with FUT1-dependent changes linked to marked alterations within mitochondrion-associated proteins, while LPG2-dependent changes impacted many pathways, including the secretory pathway. While the FUT1 enzyme has been shown to fucosylate peptides in vitro, no evidence for protein fucosylation was identified within our ultradeep analysis, nor did we observe fucosylated glycans within Leishmania glycopeptides isolated using hydrophilic interaction liquid chromatography (HILIC) enrichment. This work provides a critical resource for the community on the observable Leishmania proteome as well as highlighting phenotypic changes associated with LPG2 or FUT1, ablation of which may guide the development of future therapeutics. IMPORTANCE Leishmania is a widespread trypanosomatid protozoan parasite of humans, with ~12 million cases currently, ranging from mild to fatal, and hundreds of millions asymptomatically infected. This work advances knowledge of the experimental proteome by nearly 2-fold, to more than 6,500 proteins and thus provides a great resource to investigators seeking to decode how this parasite is transmitted and causes disease and to identify new targets for therapeutic intervention. The ultradeep proteomics approach identified potential proteins underlying the "persistence-without-pathology" phenotype of mutants with deletion of the Golgi nucleotide transporter LPG2, showing many alterations and several candidates. Studies of a rare mutant with deletion of the mitochondrial fucosyltransferase FUT1 revealed changes underlying its strong mitochondrial dysfunction but did not reveal examples of fucosylation of either peptides or N-glycans. This suggests that this vital protein's elusive target(s) may be more complex than the methods used could detect or that this target may not be a protein but perhaps another glycoconjugate or glycolipid.
Collapse
Affiliation(s)
- Gloria Polanco
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lon F. Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
8
|
The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates. Pathogens 2022; 11:pathogens11040431. [PMID: 35456106 PMCID: PMC9025045 DOI: 10.3390/pathogens11040431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current treatments for leishmaniasis are not highly efficacious and are associated with high costs, especially in low- and middle-income endemic countries, and high toxicity. Due to a surge in the incidence of leishmaniases worldwide, the development of new strategies such as a prophylactic vaccine has become a high priority. However, the ability of Leishmania to undermine immune recognition has limited our efforts to design safe and efficacious vaccines against leishmaniasis. Numerous antileishmanial vaccine preparations based on DNA, subunit, and heat-killed parasites with or without adjuvants have been tried in several animal models but very few have progressed beyond the experimental stage. However, it is known that people who recover from Leishmania infection can be protected lifelong against future infection, suggesting that a successful vaccine requires a controlled infection to develop immunologic memory and subsequent long-term immunity. Live attenuated Leishmania parasites that are non-pathogenic and provide a complete range of antigens similarly to their wild-type counterparts could evoke such memory and, thus, would be effective vaccine candidates. Our laboratory has developed several live attenuated Leishmania vaccines by targeted centrin gene disruptions either by homologous recombination or, more recently, by using genome editing technologies involving CRISPR-Cas9. In this review, we focused on the sequential history of centrin gene-deleted Leishmania vaccine development, along with the characterization of its safety and efficacy. Further, we discussed other major considerations regarding the transition of dermotropic live attenuated centrin gene-deleted parasites from the laboratory to human clinical trials.
Collapse
|
9
|
Abstract
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field.
Collapse
|
10
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
11
|
Parkash V, Kaye PM, Layton AM, Lacey CJ. Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Rev Vaccines 2021; 20:1407-1418. [PMID: 34664543 PMCID: PMC9835556 DOI: 10.1080/14760584.2021.1991795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Leishmaniasis is a neglected tropical disease that is defined by the World Health Organization as vaccine preventable. Although several new candidate vaccines are in development, no vaccine has successfully reached the market for human use. Several species of Leishmania cause human disease and have co-evolved with their respective sand fly vectors. These unique relationships have implications for initiation of infection and vaccine development. An approach to vaccine development for many infectious diseases is the use of controlled human infection models (CHIMs). AREAS COVERED We describe the history and recent development of experimental and deliberate infection using Leishmania in humans and the rationale for developing a new sand fly-initiated CHIM to progress leishmaniasis vaccine development. Examples from other infectious diseases are discussed in the context of the development of a new leishmaniasis CHIM. We also reflect upon the manufacture of the challenge agent, practical considerations, safety, ethics, and regulatory issues. EXPERT OPINION A new cutaneous Leishmania CHIM is being developed to enable testing of vaccines in the development pipeline. Questions remain about the use of such CHIMs to determine effectiveness of vaccines against visceral leishmaniasis. However, such a CHIM will be invaluable in expediting time to market for vaccines.
Collapse
Affiliation(s)
- Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
- Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, UK
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Charles J Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
12
|
Feiz Haddad MH, Lomei J, Shokri A, Habibpour H, Rezvan H, Nourian A, Mahmoudi MR. Review of Development of Live Vaccines against Leishmaniasis. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1731336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractLeishmaniasis is a serious public health problem in both tropical and temperate regions, caused by protozoan parasites of the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis worldwide. After recovery from the initial infection in most of the patients, a long-lasting natural immunity will be established. In individuals with HIV infection or in immune deficient patients, the more dangerous forms can occur. Despite many attempts, there is no efficient vaccine for leishmaniasis. The main concern for live-attenuated vaccines is the possibility of returning to the virulent form. Therefore, the safety is an important point in designing a successful vaccine. Nonvirulent parasites as vaccine candidates are achievable through gamma-irradiation, long-term culture, random mutations induced by chemical agents, and temperature-sensitive mutations. The type of change(s) in such parasites is not known well and drawbacks such as reversion to virulent forms was soon realized. Leishmania tarentolae with capacity of adaptation to mammalian system has a potential to be used as nonpathogenic vector in vaccine programs. Due to its nonpathogenic intrinsic property, it does not have the ability to replace with the pathogen form. Moreover, the main problems are associated with the production of live vaccines, including lyophilization, storage, standards, and quality control that must be considered. In this review, we focused on the importance of different approaches concerning the development of a live vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Mohammad Hossein Feiz Haddad
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jalal Lomei
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Azar Shokri
- Vector-borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Habib Habibpour
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Rezvan
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Mahmoudi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
Barazandeh AF, Mou Z, Ikeogu N, Mejia EM, Edechi CA, Zhang WW, Alizadeh J, Hatch GM, Ghavami S, Matlashewski G, Marshall AJ, Uzonna JE. The Phosphoenolpyruvate Carboxykinase Is a Key Metabolic Enzyme and Critical Virulence Factor of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2021; 206:1013-1026. [PMID: 33462138 DOI: 10.4049/jimmunol.2000517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.
Collapse
Affiliation(s)
- Aida Feiz Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Nnamdi Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Edgard M Mejia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and.,Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Aaron J Marshall
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada;
| |
Collapse
|
14
|
Photodynamic inactivation of Leishmania braziliensis doubly sensitized with uroporphyrin and diamino-phthalocyanine activates effector functions of macrophages in vitro. Sci Rep 2020; 10:17065. [PMID: 33051524 PMCID: PMC7555832 DOI: 10.1038/s41598-020-74154-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Photodynamic inactivation of Leishmania has been shown to render them non-viable, but retain their immunological activities. Installation of dual photodynamic mechanisms ensures complete inactivation of species in the Leishmania subgenus, raising the prospect of their safe and effective application as whole-cell vaccines against leishmaniasis. Here, we report the successful extension of this approach to L. braziliensis in the Viannia subgenus, viz. genetic engineering of promastigotes for cytosolic accumulation of UV-sensitive uroporphyrin (URO) and their loading with red light excitable phthalocyanines (PC) that was cationized by chemical engineering. The transgenic strategy used previously produced L. braziliensis transfectants, which gave the same phenotype of aminolevulinate (ALA)-inducible uroporphyria as found in Leishmania subgenus, indicative of pre-subgenus evolutionary origin for similar genetic deficiencies in porphyrin/heme biosynthesis. In the present study, 12 independent clones were obtained and were invariably ALA-responsive, albeit to different extent for uroporphyrinogenesis and UV-inactivation. In a separate study, L. braziliensis was also found, like other Leishmania spp., to take up diamino-PC (PC2) for red light inactivation. In vitro interactions of a highly uroporphyrinogenic clone with primary macrophages were examined with the intervention of URO/PC2-medated double-photodynamic inactivation to ascertain its complete loss of viability. Doubly sensitized L. braziliensis transfectants were photo-inactivated before (Strategy #1) or after (Strategy #2) loading of macrophages. In both cases, macrophages were found to take up L. braziliensis and degrade them rapidly in contrast to live Leishmania infection. The effector functions of macrophages became upregulated following their loading with L. braziliensis photodynamically inactivated by both strategies, including CD86 expression, and IL6 and NO production. This was in contrast to the immunosuppressive infection of macrophages with live parasites, marked by IL10 production. The results provide evidence that photodynamically inactivated L. braziliensis are susceptible to the degradative pathway of macrophages with upregulation of immunity relevant cytokine and co-stimulatory markers. The relative merits of the two loading strategies with reference to previous experimental vaccination were discussed in light of the present findings with L. braziliensis.
Collapse
|
15
|
Mou Z, Barazandeh AF, Hamana H, Kishi H, Zhang X, Jia P, Ikeogu N, Onyilagha C, Gupta G, Uzonna JE. Identification of a Protective Leishmania Antigen Dihydrolipoyl Dehydrogenase and Its Responding CD4 + T Cells at Clonal Level. THE JOURNAL OF IMMUNOLOGY 2020; 205:1355-1364. [PMID: 32727889 DOI: 10.4049/jimmunol.2000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
There is currently no clinically effective vaccine against cutaneous leishmaniasis because of poor understanding of the Ags that elicit protective CD4+ T cell immunity. In this study, we identified a naturally processed peptide (DLD63-79) that is derived from Leishmania dihydrolipoyl dehydrogenase (DLD) protein. DLD is conserved in all pathogenic Leishmania species, is expressed by both the promastigote and amastigote stages of the parasite, and elicits strong CD4+ T cell responses in mice infected with L. major We generated I-Ab-DLD63-79 tetramer and identified DLD-specific CD4+ T cells at clonal level. Following L. major infection, DLD63-79-specific CD4+ T cells massively expanded and produced effector cytokines (IFN-γ and TNF). This was followed by a gradual contraction, stable maintenance following lesion resolution, and display of memory (recall) response following secondary challenge. Vaccination with rDLD protein induced strong protection in mice against virulent L. major challenge. Identification of Ags that elicit protective immunity and their responding Ag-specific T cells are critical steps necessary for developing effective vaccines and vaccination strategies against infectious agents, including protozoan parasites.
Collapse
Affiliation(s)
- Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida F Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Hiroshi Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; and
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; and
| | - Xiaoping Zhang
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Nnamdi Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; .,Department of Medical Microbiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
16
|
Martínez-Rodrigo A, Mas A, Álvarez-Campos D, Orden JA, Domínguez-Bernal G, Carrión J. Epitope Selection for Fighting Visceral Leishmaniosis: Not All Peptides Function the Same Way. Vaccines (Basel) 2020; 8:E352. [PMID: 32630347 PMCID: PMC7564088 DOI: 10.3390/vaccines8030352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniosis (VL) caused by Leishmania infantum is a disease with an increasing prevalence worldwide. Treatments are expensive, toxic, and ineffective. Therefore, vaccination seems to be a promising approach to control VL. Peptide-based vaccination is a useful method due to its stability, absence of local side effects, and ease of scaling up. In this context, bioinformatics seems to facilitate the use of peptides, as this analysis can predict high binding affinity epitopes to MHC class I and II molecules of different species. We have recently reported the use of HisAK70 DNA immunization in mice to induce a resistant phenotype against L. major, L. infantum, and L. amazonensis infections. In the present study, we used bioinformatics tools to select promising multiepitope peptides (HisDTC and AK) from the polyprotein encoded in the HisAK70 DNA to evaluate their immunogenicity in the murine model of VL by L. infantum. Our results revealed that both multiepitope peptides were able to induce the control of VL in mice. Furthermore, HisDTC was able to induce a better cell-mediated immune response in terms of reduced parasite burden, protective cytokine profile, leishmanicidal enzyme modulation, and specific IgG2a isotype production in immunized mice, before and after infectious challenge. Overall, this study indicates that the HisDTC chimera may be considered a satisfactory tool to control VL because it is able to activate a potent CD4+ and CD8+ T-cell protective immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (D.Á.-C.); (J.A.O.); (J.C.)
| | | |
Collapse
|
17
|
Chimeric Vaccines Designed by Immunoinformatics-Activated Polyfunctional and Memory T Cells That Trigger Protection against Experimental Visceral Leishmaniasis. Vaccines (Basel) 2020; 8:vaccines8020252. [PMID: 32471081 PMCID: PMC7349981 DOI: 10.3390/vaccines8020252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Many vaccine candidates against visceral leishmaniasis (VL) have been proposed; however, to date, none of them have been efficacious for the human or canine disease. On this basis, the design of leishmaniasis vaccines has been constantly changing, and the use of approaches to select specific epitopes seems to be crucial in this scenario. The ability to predict T cell-specific epitopes makes immunoinformatics an even more necessary approach, as in VL an efficient immune response against the parasite is triggered by T lymphocytes in response to Leishmania spp. immunogenic antigens. Moreover, the success of vaccines depends on the capacity to generate long-lasting memory and polyfunctional cells that are able to eliminate the parasite. In this sense, our study used a combination of different approaches to develop potential chimera candidate vaccines against VL. The first point was to identify the most immunogenic epitopes of Leishmania infantum proteins and construct chimeras composed of Major histocompatibility complex (MHC) class I and II epitopes. For this, we used immunoinformatics features. Following this, we validated these chimeras in a murine model in a thorough memory study and multifunctionality of T cells that contribute to a better elucidation of the immunological protective mechanisms of polyepitope vaccines (chimera A and B) using multicolor flow cytometry. Our results showed that in silico-designed chimeras can elicit polyfunctional T cells producing T helper (Th)1 cytokines, a strong immune response against Leishmania antigen, and the generation of central and effector memory T cells in the spleen cells of vaccinated animals that was able to reduce the parasite burden in this organ. These findings contribute two potential candidate vaccines against VL that can be used in further studies, and help in this complex field of vaccine development against this challenging parasite.
Collapse
|
18
|
Pandey SC, Kumar A, Samant M. Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis. Parasite Immunol 2020; 42:e12732. [PMID: 32418227 DOI: 10.1111/pim.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Visceral leishmaniasis (VL) is caused by a protozoan parasite Leishmania donovani mainly influencing the population of tropical and subtropical regions across the globe. The arsenal of drugs available is limited, and prolonged use of such drugs makes parasite to become resistant. Therefore, it is very imperative to develop a safe, cost-effective and inexpensive vaccine against VL. Although in recent years, many strategies have been pursued by researchers, so far only some of the vaccine candidates reached for clinical trial and more than half of them are still in pipeline. There is now a broad consent among Leishmania researchers that the perseverance of parasite is very essential for eliciting a protective immune response and may perhaps be attained by live attenuated parasite vaccination. For making a live attenuated parasite, it is very essential to ensure that the parasite is deficient of virulence and should further study genetically modified parasites to perceive the mechanism of pathogenesis. So it is believed that in the near future, a complete understanding of the Leishmania genome will explore clear strategies to discover a novel vaccine. This review describes the need for a genetically modified live attenuated vaccine against VL, and obstacles associated with its development.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Mukesh Samant
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India
| |
Collapse
|
19
|
Zutshi S, Kumar S, Sarode A, Roy S, Sarkar A, Saha B. Leishmania major adenylate kinase immunization offers partial protection to a susceptible host. Parasite Immunol 2020; 42:e12688. [PMID: 31797390 DOI: 10.1111/pim.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Leishmania major causes mild-to-severe cutaneous lesions resulting in significant disfigurations, if untreated. The drugs are toxic, and drug-resistance parasites are emerging. Therefore, a prophylactic vaccination is an urgent need. As no vaccine is available, we compared the genes expressed by virulent and avirulent parasites. We identify L major adenylate kinase (AdeK) as a probable vaccine candidate after a series of experimentations. We cloned the gene in mammalian pcDNA6/HisA and pet28a+ vector for in vivo expression following immunization and in vitro protein expression for booster, respectively. We observed that immunization of susceptible BALB/c mice with AdeK resulted in significant protection against L major challenge infection. The protection was accompanied by increased IFN-γ producing lymphocytes and reduced IL-4, IL-17 and IL-10 secreting central and effector Th2, Th17 and Treg memory cells, respectively. These observations indicate L major AdeK as a potential vaccine candidate.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, India
| | | | | | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
20
|
Coutinho De Oliveira B, Duthie MS, Alves Pereira VR. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum Vaccin Immunother 2019; 16:919-930. [PMID: 31634036 DOI: 10.1080/21645515.2019.1678998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leishmaniases are a collection of vector-borne parasitic diseases caused by a number of different Leishmania species that are distributed worldwide. Clinical and laboratory research have together revealed several important immune components that control Leishmania infection and indicate the potential of immunization to prevent leishmaniasis. In this review we introduce previous and ongoing experimental research efforts to develop vaccines against Leishmania species. First, second and third generation vaccine strategies that have been proposed to counter cutaneous and visceral leishmaniasis (CL and VL, respectively) are summarized. One of the major bottlenecks in development is the transition from results in animal model studies to humans, and we highlight that although American tegumentary leishmaniasis (ATL; New World CL) can progress to destructive and disfiguring mucosal lesions, most research has been conducted using mouse models and Old World Leishmania species. We conclude that assessment of vaccine candidates in ATL settings therefore appears merited.
Collapse
Affiliation(s)
- Beatriz Coutinho De Oliveira
- Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil
| | | | | |
Collapse
|
21
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
22
|
Terra R, Alves PJF, Lima AKC, Gomes SMR, Rodrigues LS, Salerno VP, Da-Silva SAG, Dutra PML. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2019; 9:115. [PMID: 31131262 PMCID: PMC6510011 DOI: 10.3389/fcimb.2019.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.
Collapse
Affiliation(s)
- Rodrigo Terra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro J. F. Alves
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana K. C. Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane M. R. Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S. Rodrigues
- Discipline of General Pathology, Department of Pathology and Laboratories, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, School of Physical Education and Sports, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia A. G. Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M. L. Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Leishmania major p27 gene knockout as a novel live attenuated vaccine candidate: Protective immunity and efficacy evaluation against cutaneous and visceral leishmaniasis in BALB/c mice. Vaccine 2019; 37:3221-3228. [DOI: 10.1016/j.vaccine.2019.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022]
|
24
|
Elikaee S, Mohebali M, Rezaei S, Eslami H, Khamesipour A, Keshavarz H, Eshraghian MR. Development of a new live attenuated Leishmania major p27 gene knockout: Safety and immunogenicity evaluation in BALB/c mice. Cell Immunol 2018; 332:24-31. [DOI: 10.1016/j.cellimm.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
|
25
|
Iborra S, Solana JC, Requena JM, Soto M. Vaccine candidates against leishmania under current research. Expert Rev Vaccines 2018; 17:323-334. [PMID: 29589966 DOI: 10.1080/14760584.2018.1459191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for vaccines to prevent human leishmaniasis is an active field of investigation aimed to prevent the devastating effects of this family of diseases on human health. The design and commercialization of several vaccines against canine leishmaniasis is a hopeful advance toward the achievement of a human vaccine. AREAS COVERED This review includes a summary of the most relevant immunological aspects accompanying leishmaniasis in natural hosts as well as a description of the latest advances in the multiple strategies that are being followed to develop leishmanial prophylactic vaccines. We have combined citations of the latest specialized reviews with research articles presenting the most recent results. EXPERT COMMENTARY Achieving safe, effective, durable and low-cost prophylactic vaccines against leishmaniasis is still a major challenge. These vaccines should control not only parasite progression, but also the accompanying pathology, which results from an imbalanced interaction between the infectious agent and the human host immune system. Different strategies for development of vaccines are currently under investigation. They range from the use of live non-pathogenic vectors to the employment of subunit vaccines combined with adjuvants and/or delivery systems inducing cell-mediated immunity.
Collapse
Affiliation(s)
- Salvador Iborra
- a Department of Vascular Biology and Inflammation Centro Nacional de Investigaciones Cardiovasculares (CNIC) , Immunobiology of Inflammation Laboratory , Madrid , Spain.,b School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - José Carlos Solana
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - José María Requena
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - Manuel Soto
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
26
|
Viana SM, Celes FS, Ramirez L, Kolli B, Ng DKP, Chang KP, de Oliveira CI. Photodynamic Vaccination of BALB/c Mice for Prophylaxis of Cutaneous Leishmaniasis Caused by Leishmania amazonensis. Front Microbiol 2018; 9:165. [PMID: 29467751 PMCID: PMC5808246 DOI: 10.3389/fmicb.2018.00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Photosensitizers (PS), like porphyrins and phthalocyanines (PC) are excitable by light to generate cytotoxic singlet oxygen and other reactive oxygen species in the presence of atmospheric O2. Photodynamic inactivation of Leishmania by this means renders them non-viable, but preserves their effective use as vaccines. Leishmania can be photo-inactivated after PS-sensitization by loading via their endocytic uptake of PC or endogenous induction of transgenic mutants with delta-aminolevulinate (ALA) to accumulate cytosolic uroporphyrin I (URO). Here, PS-sensitization and photo-inactivation of Leishmaniaamazonensis was further examined in vitro and in vivo for vaccination against cutaneous leishmaniasis (CL). Methods and Results:Leishmania amazonensis promastigotes were photodynamically inactivated in vitro by PC-loading followed by exposure to red light (1–2 J/cm2) or ALA-induction of uroporphyrinogenic transfectants to accumulate cytosolic URO followed by longwave UV exposure. When applied individually, both strategies of photodynamic inactivation were found to significantly, albeit incompletely abolish the MTT reduction activities of the promastigotes, their uptake by mouse bone marrow-derived macrophages in vitro and their infectivity to mouse ear dermis in vivo. Inactivation of Leishmania to completion by using a combination of both strategies was thus used for the sake of safety as whole-cell vaccines for immunization of BALB/c mice. Different cutaneous sites were assessed for the efficacy of such photodynamic vaccination in vivo. Each site was inoculated first with in vitro doubly PS-sensitized promastigotes and then spot-illuminated with white light (50 J/cm2) for their photo-inactivation in situ. Only in ear dermis parasites were photo-inactivated beyond detection. Mice were thus immunized once in the ear and challenged 3 weeks later at the tail base with virulent L. amazonensis. Prophylaxis was noted in mice photodynamically vaccinated with doubly photo-inactivated parasites, as indicated by a significant delay in the onset of lesion development and a substantial decrease in the parasite loads. Conclusion: Leishmania doubly PS-sensitized and in situ photo-inactivated as described proved to be safe and effective when used for one-time immunization of ear dermis, as indicated by its significant protection of the inherently very susceptible BALB/c mice against CL.
Collapse
Affiliation(s)
| | | | - Laura Ramirez
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Bala Kolli
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kwang P Chang
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Camila I de Oliveira
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (iii-INCT) - Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
27
|
Pirdel L, Farajnia S. A Non-pathogenic RecombinantLeishmaniaExpressing Lipophosphoglycan 3 Against Experimental Infection withLeishmania infantum. Scand J Immunol 2017; 86:15-22. [DOI: 10.1111/sji.12557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
Affiliation(s)
- L. Pirdel
- Department of Medical Sciences; Ardabil Branch; Islamic Azad University; Ardabil Iran
| | - S. Farajnia
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
28
|
Solana JC, Ramírez L, Corvo L, de Oliveira CI, Barral-Netto M, Requena JM, Iborra S, Soto M. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 2017; 11:e0005644. [PMID: 28558043 PMCID: PMC5466331 DOI: 10.1371/journal.pntd.0005644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. Despite numerous efforts made, a vaccine against leishmaniasis for humans is not available. Attempts based on parasite fractions or selected antigens failed to confer long lasting protection. On the other side, leishmanization, which consists in the inoculation of live virulent parasites in hidden parts of the body, is effective against cutaneous leishmaniasis in humans but objectionable in terms of biosafety. Some efforts have been made to design live vaccines to make leishmanization safer. A promising strategy is the development of genetically attenuated parasites, able to confer immunity without undesirable side effects. Here, we have employed an attenuated L. infantum line (LiΔHSP70-II) as a vaccine against heterologous challenge with L. major in two experimental models. Infection with LiΔHSP70-II parasites does not cause pathology and induces long-term protection based on the induction of IFN-γ producing T cells that are recruited rapidly and specifically to the site of challenge with the virulent parasites. These results support the idea of using attenuated parasites for vaccination.
Collapse
Affiliation(s)
- José Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ). Salvador, Bahia, Brazil
| | - José María Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| |
Collapse
|
29
|
Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 2017; 114:E801-E810. [PMID: 28096392 DOI: 10.1073/pnas.1619265114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS- cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2- mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.
Collapse
|
30
|
Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0004963. [PMID: 27580076 PMCID: PMC5007048 DOI: 10.1371/journal.pntd.0004963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Conclusions Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice. Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There is no effective vaccine available against VL for any age group and importantly, there are no previous studies regarding immune responses against experimental Leishmania vaccines tested in aged animals. We have reported earlier that immunization with a live attenuated L. donovani parasites (LdCen-/-) induced protective immune response in young animals viz, mice, hamsters and dogs. In this study we analyzed LdCen-/- mediated modulation of innate and adaptive responses in aged mice and compared to young mice. We observed that LdCen-/- infected dendritic cells from young and aged mice resulted in enhanced innate effector functions compared to LdWT parasites both in vitro and in vivo. Further, upon virulent challenge, LdCen-/- immunized young and aged mice displayed protective Th1 immune response which correlated with a significantly reduced parasite burden in the visceral organs compared with naïve challenged mice. Although there was no difference in the LdCen-/- induced dendritic cell response between aged and young mice; adaptive response in aged was reduced, compared to young which correlated with less protection in aged compared to young mice. This study supports the potential use of LdCen-/- as vaccine candidate across all age groups against VL.
Collapse
|
31
|
Mandell MA, Beverley SM. Concomitant Immunity Induced by Persistent Leishmania major Does Not Preclude Secondary Re-Infection: Implications for Genetic Exchange, Diversity and Vaccination. PLoS Negl Trop Dis 2016; 10:e0004811. [PMID: 27352043 PMCID: PMC4924822 DOI: 10.1371/journal.pntd.0004811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many microbes have evolved the ability to co-exist for long periods of time within other species in the absence of overt pathology. Evolutionary biologists have proposed benefits to the microbe from 'asymptomatic persistent infections', most commonly invoking increased likelihood of transmission by longer-lived hosts. Typically asymptomatic persistent infections arise from strong containment by the immune system, accompanied by protective immunity; such 'vaccination' from overt disease in the presence of a non-sterilizing immune response is termed premunition or concomitant immunity. Here we consider another potential benefit of persistence and concomitant immunity to the parasite: the 'exclusion' of competing super-infecting strains, which would favor transmission of the original infecting organism. METHODOLOGY / PRINCIPLE FINDINGS To investigate this in the protozoan parasite Leishmania major, a superb model for the study of asymptomatic persistence, we used isogenic lines of comparable virulence bearing independent selectable markers. One was then used to infect genetically resistant mice, yielding infections which healed and progressed to asymptomatic persistent infection; these mice were then super-infected with the second marked line. As anticipated, super-infection yielded minimal pathology, showing that protective immunity against disease pathology had been established. The relative abundance of the primary and super-infecting secondary parasites was then assessed by plating on selective media. The data show clearly that super-infecting parasites were able to colonize the immune host effectively, achieving numbers comparable to and sometimes greater than that of the primary parasite. CONCLUSIONS / SIGNIFICANCE We conclude that induction of protective immunity does not guarantee the Leishmania parasite exclusive occupation of the infected host. This finding has important consequences to the maintenance and generation of parasite diversity in the natural Leishmania infectious cycle alternating between mammalian and sand fly hosts.
Collapse
Affiliation(s)
- Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells. PLoS Negl Trop Dis 2015; 9:e0004238. [PMID: 26630499 PMCID: PMC4667916 DOI: 10.1371/journal.pntd.0004238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Leishmania major infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction. Methodology/Principal Findings Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription. Conclusions/Significance These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12. Leishmaniasis is a group of parasitic diseases caused by intracellular protozoa belonging to the genus Leishmania, pathological manifestations ranging from self-healing cutaneous forms to severe visceral infections that result in death. These clinical outcomes are dictated by the Leishmania species initiating the infection and are influenced by early responses of host immune cells, which ultimately initiate an IL12 mediated immune response in resolving infections. Like the diseases themselves, the magnitude of IL12 induction in hDCs is Leishmania-species and strain specific, where species that elicit visceral disease do not induce IL12, while most cutaneous disease-causing L. major strains induce robust IL12 responses and confer life-long immunity. The molecular mechanisms that mediate the ability of these innate immune cells to discriminate between pathogens remain elusive and have been primarily investigated in murine model systems. Here we identified L. major LPG as a major PAMP that induces IL12 in hDCs. Elucidation of this critical component of human immunity to L. major has ramifications for leishmaniasis vaccine development.
Collapse
|
33
|
Al-Qadhi BN, Musa IS, Al-Mulla Hummadi YMK. Comparative immune study on cutaneous leishmaniasis patients with single and multiple sores. J Parasit Dis 2015; 39:361-70. [PMID: 26345036 PMCID: PMC4554559 DOI: 10.1007/s12639-013-0368-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
Ninety-five Iraqi patients with cutaneous leishmaniasis (CL) caused by Leishmania tropica at AL-Karama Hospital in Baghdad were included in this study. Sixty patients were with single sore and the remaining with multiple sores. The study also included 10 atopic patients and 30 healthy individuals as a control group. Cellular and humoral immune response at different stages of the disease activity (early and late) were evaluated by estimation of serum IFN-γ, IL-4 and total IgE antibodies using ELISA kits while, the detection of specific anti leishmanial IgE antibodies was done manually. Specific IgE antibodies were only detected in early CL (<2 months) patients 68 (71.57 %) while, were not detected in late CL, atopic and healthy controls 30 (100 %). The results also showed a positive relationship between this antibody and the number of sores. Th-2 predominates during the early stage of the disease then shifts to Th-1 that proceed in the late stage, but both cytokines increased in CL patients in comparison to control group. The immune response of CL infection is possibly regulated by both Th-1 and Th-2. Multiple sores patients showed an increase of anti leishmanial IgE (0.120 ± 0.014), total IgE (120.7 ± 39.58 IU/ml), IFN-γ (87.4 ± 30.52 pg/ml) and IL-4 (63.70 ± 20.32 pg/ml) levels than single sore patients with mean value of 0.108 ± 0.14, 92.3 ± 35.23 IU/ml, 47.2 ± 27.80 pg/ml and 51.04 ± 15.0 pg/ml respectively. It can be presented also as ratio of INF-γ/IL-4 = 1.37 which is greater than those for single sore 0.9. These results indicated that the immune response of multiple sores patient's is higher than that with single sores.
Collapse
Affiliation(s)
- Ban Noori Al-Qadhi
- Biology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Salim Musa
- Biology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
34
|
Di Pilato M, Sánchez-Sampedro L, Mejías-Pérez E, Sorzano COS, Esteban M. Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. J Gen Virol 2015; 96:2360-2371. [PMID: 25972354 DOI: 10.1099/vir.0.000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vaccinia viruses (VACVs) with distinct early promoters have been developed to enhance antigen expression and improve antigen-specific CD8 T-cell responses. It has not been demonstrated how the length of the spacer between the coding region of the gene and its regulatory early promoter motif influences antigen expression, and whether the timing of gene expression can modify the antigen-specific CD4 T-cell response. We generated several recombinant VACVs based on the attenuated modified vaccinia Ankara (MVA) strain, which express GFP or the Leishmania LACK antigen under the control of an optimized promoter, using different spacer lengths. Longer spacer length increased GFP and LACK early expression, which correlated with an enhanced LACK-specific memory CD4 and CD8 T-cell response. These results show the importance of promoter spacer length for early antigen expression by VACV and provide alternative strategies for the design of poxvirus-based vaccines.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
35
|
Okwor IB, Jia P, Mou Z, Onyilagha C, Uzonna JE. CD8+ T cells are preferentially activated during primary low dose leishmania major infection but are completely dispensable during secondary anti-Leishmania immunity. PLoS Negl Trop Dis 2014; 8:e3300. [PMID: 25412267 PMCID: PMC4238992 DOI: 10.1371/journal.pntd.0003300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/27/2014] [Indexed: 11/19/2022] Open
Abstract
We previously showed that CD8+ T cells are required for optimal primary immunity to low dose Leishmania major infection. However, it is not known whether immunity induced by low dose infection is durable and whether CD8+ T cells contribute to secondary immunity following recovery from low dose infection. Here, we compared primary and secondary immunity to low and high dose L. major infections and assessed the influence of infectious dose on the quality and magnitude of secondary anti-Leishmania immunity. In addition, we investigated the contribution of CD8+ T cells in secondary anti-Leishmania immunity following recovery from low and high dose infections. We found that the early immune response to low and high dose infections were strikingly different: while low dose infection preferentially induced proliferation and effector cytokine production by CD8+ T cells, high dose infection predominantly induced proliferation and cytokine production by CD4+ T cells. This differential activation of CD4+ and CD8+ T cells by high and low dose infections respectively, was imprinted during in vitro and in vivo recall responses in healed mice. Both low and high dose-infected mice displayed strong infection-induced immunity and were protected against secondary L. major challenge. While depletion of CD4+ cells in mice that healed low and high dose infections abolished resistance to secondary challenge, depletion of CD8+ cells had no effect. Collectively, our results show that although CD8+ T cells are preferentially activated and may contribute to optimal primary anti-Leishmania immunity following low dose infection, they are completely dispensable during secondary immunity. It is known that CD8+ T cells are important for primary immunity to low dose L. major infection, but whether low dose-induced immunity is long lasting and whether CD8+ T cells are also important for memory immune response to low dose L. major is unknown. We studied whether infectious dose affects primary anti-Leishmania immunity and the contribution of CD8+ T cells in immunity following recovery from low and high dose infections. We found that low and high dose infections preferentially induced proliferation and cytokine production by CD8+ and CD4+ T cells, respectively, during early and late stages of infections. Also, both low and high dose-infected mice were solidly protected against secondary L. major challenge. Depletion of CD4+ cells in mice that healed low and high dose infections abolished resistance to secondary challenge, but depletion of CD8+ cells had no effect. Together, our results show that although CD8+ T cells are selectively activated and contribute to optimal primary immunity after low dose infection, they are not required for secondary immunity. This research further enhances our understanding of the immunobiology of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ifeoma B. Okwor
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Jia
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhirong Mou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Jude E. Uzonna
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
36
|
Abstract
Leishmaniasis is a neglected tropical disease spread by an arthropod vector. It remains a significant health problem with an incidence of 0.2–0.4 million visceral leishmaniasis and 0.7–1.2 million cutaneous leishmaniasis cases each year. There are limitations associated with the current therapeutic regimens for leishmaniasis and the fact that after recovery from infection the host becomes immune to subsequent infection therefore, these factors force the feasibility of a vaccine for leishmaniasis. Publication of the genome sequence of Leishmania has paved a new way to understand the pathogenesis and host immunological status therefore providing a deep insight in the field of vaccine research. This review is an effort to study the antigenic targets in Leishmania to develop an anti-leishmanial vaccine.
Collapse
|
37
|
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology 2014; 141:1544-1562. [PMID: 25075460 DOI: 10.1017/s003118201400095x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Krystal J Evans
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
| |
Collapse
|
38
|
Duthie MS, Reed SG. The Emergence of Defined Subunit Vaccines for the Prevention of Leishmaniasis. CURRENT TROPICAL MEDICINE REPORTS 2014. [DOI: 10.1007/s40475-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Dey R, Natarajan G, Bhattacharya P, Cummings H, Dagur PK, Terrazas C, Selvapandiyan A, McCoy JP, Duncan R, Satoskar AR, Nakhasi HL. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. THE JOURNAL OF IMMUNOLOGY 2014; 193:3513-27. [PMID: 25156362 DOI: 10.4049/jimmunol.1303145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we showed that genetically modified live-attenuated Leishmania donovani parasite cell lines (LdCen(-/-) and Ldp27(-/-)) induce a strong cellular immunity and provide protection against visceral leishmaniasis in mice. In this study, we explored the mechanism of cross-protection against cutaneous lesion-causing Leishmania mexicana. Upon challenge with wild-type L. mexicana, mice immunized either for short or long periods showed significant protection. Immunohistochemical analysis of ears from immunized/challenged mice exhibited significant influx of macrophages, as well as cells expressing MHC class II and inducible NO synthase, suggesting an induction of potent host-protective proinflammatory responses. In contrast, substantial inhibition of IL-10, IL-4, and IL-13 expression and the absence of degranulated mast cells and less influx of eosinophils within the ears of immunized/challenged mice suggested a controlled anti-inflammatory response. L. mexicana Ag-stimulated lymph node cell culture from the immunized/challenged mice revealed induction of IFN-γ secretion by the CD4 and CD8 T cells compared with non-immunized/challenged mice. We also observed suppression of Th2 cytokines in the culture supernatants of immunized/challenged lymph nodes compared with non-immunized/challenged mice. Adoptively transferred total T cells from immunized mice conferred strong protection in recipient mice against L. mexicana infection, suggesting that attenuated L. donovani can provide protection against heterologous L. mexicana parasites by induction of a strong T cell response. Furthermore, bone marrow-derived dendritic cells infected with LdCen(-/-) and Ldp27(-/-) parasites were capable of inducing a strong proinflammatory response leading to the proliferation of Th1 cells. These studies demonstrate the potential of live-attenuated L. donovani parasites as pan-Leishmania species vaccines.
Collapse
Affiliation(s)
- Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Gayathri Natarajan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Hannah Cummings
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Pradeep K Dagur
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - César Terrazas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | | | - John P McCoy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
40
|
Selvapandiyan A, Dey R, Gannavaram S, Solanki S, Salotra P, Nakhasi HL. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis. Vaccine 2014; 32:3895-901. [PMID: 24837513 DOI: 10.1016/j.vaccine.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/19/2014] [Accepted: 05/01/2014] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sumit Solanki
- Institute of Molecular Medicine, New Delhi, India; C.G. Bhakta Institute of Biotechnology, Tarsadi, Gujarat, India
| | - Poonam Salotra
- National Institute of Pathology (ICMR), New Delhi, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| |
Collapse
|
41
|
Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014; 5:134. [PMID: 24744757 PMCID: PMC3978289 DOI: 10.3389/fimmu.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023] Open
Abstract
Vaccination with durable immunity is the main goal and fundamental to control leishmaniasis. To stimulate the immune response, small numbers of parasites are necessary to be presented in the mammalian host. Similar to natural course of infection, strategy using live vaccine is more attractive when compared to other approaches. Live vaccines present the whole spectrum of antigens to the host immune system in the absence of any adjuvant. Leishmanization was the first effort for live vaccination and currently used in a few countries against cutaneous leishmaniasis, in spite of their obstacle and safety. Then, live attenuated vaccines developed with similar promotion of creating long-term immunity in the host with lower side effect. Different examples of attenuated strains are generated through long-term in vitro culturing, culturing under drug pressure, temperature sensitivity, and chemical mutagenesis, but none is safe enough and their revision to virulent form is possible. Attenuation through genetic manipulation and disruption of virulence factors or essential enzymes for intracellular survival are among other approaches that are intensively under study. Other designs to develop live vaccines for visceral form of leishmaniasis are utilization of live avirulent microorganisms such as Lactococcus lactis, Salmonella enterica, and Leishmania tarentolae called as vectored vaccine. Apparently, these vaccines are intrinsically safer and can harbor the candidate antigens in their genome through different genetic manipulation and create more potential to control Leishmania parasite as an intracellular pathogen.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahareh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
42
|
Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 2014; 8:e2751. [PMID: 24675711 PMCID: PMC3967951 DOI: 10.1371/journal.pntd.0002751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/06/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. CONCLUSION/SIGNIFICANCE The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Cysteine Proteases/biosynthesis
- Cysteine Proteases/genetics
- Cysteine Proteases/immunology
- Disease Models, Animal
- Female
- Leishmania/immunology
- Leishmaniasis/prevention & control
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Psychodidae
- Salivary Proteins and Peptides/biosynthesis
- Salivary Proteins and Peptides/genetics
- Salivary Proteins and Peptides/immunology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Barbara Papadopoulou
- Research Centre in Infectious Disease, CHUL Research Centre (CHU de Québec Research Centre) and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
43
|
Sánchez-Valdéz FJ, Pérez Brandán C, Ramírez G, Uncos AD, Zago MP, Cimino RO, Cardozo RM, Marco JD, Ferreira A, Basombrío MÁ. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge. PLoS Negl Trop Dis 2014; 8:e2696. [PMID: 24551259 PMCID: PMC3923724 DOI: 10.1371/journal.pntd.0002696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/02/2014] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma cruzi calreticulin (TcCRT) is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/−) and another overexpressing it (TcCRT+), both derived from the attenuated TCC T. cruzi strain. The TcCRT+/− mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/− parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/− inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/− parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/− clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor. Trypanosoma cruzi is a protozoan parasite which infects 9 million people in Latin America. Currently there is no vaccine to prevent this disease. Therefore, different approaches or alternatives are urgently needed to identify new protective immunogens. Live vaccines are likely to be most effective in inducing protection; however, safety issues associated with their use have been raised. Hence, we genetically manipulated an attenuated strain of T. cruzi as a safety device to rule out the possibility of reversion to the virulent phenotype. The genetically modified parasites were highly susceptible to killing by the complement machinery and presented a reduced propagation and differentiation rate. We have extended these studies to assess, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Accordingly, we show that genetically modified parasites present attenuated virulence in mice. The genetic alteration was stable and, after long term infection, it did not revert back to wild type form. Furthermore, after challenge with a virulent T. cruzi strain, mutant immunization induces a highly protective response evidenced by significantly lowered parasite density, mortality, spleen weight index and tissue inflammatory response. Our study provides new insights into the host-pathogen interactions and into the use and evaluation of irreversibly gene-deleted live attenuated parasites to protect against Chagas disease.
Collapse
Affiliation(s)
- Fernando J. Sánchez-Valdéz
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
- * E-mail: (FJSV); (AF)
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Galia Ramírez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Alejandro D. Uncos
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - M. Paola Zago
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Rubén O. Cimino
- Cátedra de Química Biológica, Universidad Nacional de Salta, Salta, Argentina
| | - Rubén M. Cardozo
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Jorge D. Marco
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Arturo Ferreira
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (FJSV); (AF)
| | - Miguel Ángel Basombrío
- Instituto de Patología Experimental–CONICET, Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
44
|
Zofou D, Nyasa RB, Nsagha DS, Ntie-Kang F, Meriki HD, Assob JCN, Kuete V. Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infect Dis Poverty 2014; 3:1. [PMID: 24401663 PMCID: PMC3895778 DOI: 10.1186/2049-9957-3-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023] Open
Abstract
Vector-borne protozoan diseases represent a serious public health challenge, especially in the tropics where poverty together with vector-favorable climates are the aggravating factors. Each of the various strategies currently employed to face these scourges is seriously inadequate. Despite enormous efforts, vaccines-which represent the ideal weapon against these parasitic diseases-are yet to be sufficiently developed and implemented. Chemotherapy and vector control are therefore the sole effective attempts to minimize the disease burden. Nowadays, both strategies are also highly challenged by the phenomenon of drug and insecticide resistance, which affects virtually all interventions currently used. The recently growing support from international organizations and governments of some endemic countries is warmly welcome, and should be optimally exploited in the various approaches to drug and insecticide research and development to overcome the burden of these prevalent diseases, especially malaria, leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease.
Collapse
Affiliation(s)
- Denis Zofou
- Biotechnology Unit, Faculty of Science, University of Buea, P,O, Box 63, Buea, South West Region, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu D, Okwor I, Mou Z, Beverley SM, Uzonna JE. Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity. PLoS One 2013; 8:e66058. [PMID: 23776605 PMCID: PMC3679009 DOI: 10.1371/journal.pone.0066058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8+ T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals.
Collapse
Affiliation(s)
- Dong Liu
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ifeoma Okwor
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Zhirong Mou
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jude E. Uzonna
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- * E-mail:
| |
Collapse
|
46
|
Saljoughian N, Taheri T, Zahedifard F, Taslimi Y, Doustdari F, Bolhassani A, Doroud D, Azizi H, Heidari K, Vasei M, Namvar Asl N, Papadopoulou B, Rafati S. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Negl Trop Dis 2013; 7:e2174. [PMID: 23638195 PMCID: PMC3630202 DOI: 10.1371/journal.pntd.0002174] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and has emerged as an opportunistic infection in HIV-1 infected patients in many parts of the world. Drug-resistant forms have developed so emergence and increased the need for advanced preventive strategies. Using live avirulent organisms as a vaccine has been proven to be more effective than other regimens. The lizard protozoan parasite Leishmania tarentolae is considered as nonpathogenic to humans. In our previous work, a recombinant L. tarentolae strain expressing the amastigote-specific L. donovani A2 antigen as a vaccine candidate elicited protection against L. infantum challenge in mice. Furthermore, combinations of CPA/CPB cysteine proteinases were more protective against visceral and cutaneous Leishmania infections than the individual forms. Herein, we used DNA/Live and Live/Live prime-boost vaccination strategies against visceral leishmaniasis in BALB/c mice consisting of the A2-CPA-CPB-CTE tri-fusion genes formulated with cationic solid lipid nanoparticles and a recombinant L. tarentolae expressing the tri-fusion. Assessments of cytokine production, humoral responses, parasite burden and histopathological studies support that the recombinant L. tarentolae A2-CPA-CPB-CTE candidate vaccine elicits a protective response against visceral leishmaniasis in mice and represents an important step forward in the development of new vaccine combinations against Leishmania infections.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Hiva Azizi
- Research Centre in Infectious Disease, CHUL Research Centre and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
| | - Kazem Heidari
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabiollah Namvar Asl
- Department of Laboratory of Animal Sciences, Pasteur Institute of Iran, Tehran, Iran
| | - Barbara Papadopoulou
- Research Centre in Infectious Disease, CHUL Research Centre and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
- * E-mail: (BP); (SR)
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (BP); (SR)
| |
Collapse
|
47
|
Alvar J, Croft SL, Kaye P, Khamesipour A, Sundar S, Reed SG. Case study for a vaccine against leishmaniasis. Vaccine 2013; 31 Suppl 2:B244-9. [PMID: 23598489 DOI: 10.1016/j.vaccine.2012.11.080] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023]
Abstract
Leishmaniasis in many ways offers a unique vaccine case study. Two reasons for this are that leishmaniasis is a disease complex caused by several different species of parasite that are highly related, thus raising the possibility of developing a single vaccine to protect against multiple diseases. Another reason is the demonstration that a leishmaniasis vaccine may be used therapeutically as well as prophylactically. Although there is no registered human leishmaniasis vaccine today, immunization approaches using live or killed organisms, as well as defined vaccine candidates, have demonstrated at least some degree of efficacy in humans to prevent and to treat some forms of leishmaniasis, and there is a vigorous pipeline of candidates in development. Current approaches include using individual or combined antigens of the parasite or of salivary gland extract of the parasites' insect vector, administered with or without formulation in adjuvant. Animal data obtained with several vaccine candidates are promising and some have been or will be entered into clinical testing in the near future. There is sufficient scientific and epidemiological justification to continue to invest in the development of vaccines against leishmaniasis.
Collapse
Affiliation(s)
- Jorge Alvar
- Drugs for Neglected Disease initiative (DNDi) 15, Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Mou Z, Muleme HM, Liu D, Jia P, Okwor IB, Kuriakose SM, Beverley SM, Uzonna JE. Parasite-derived arginase influences secondary anti-Leishmania immunity by regulating programmed cell death-1-mediated CD4+ T cell exhaustion. THE JOURNAL OF IMMUNOLOGY 2013; 190:3380-9. [PMID: 23460745 DOI: 10.4049/jimmunol.1202537] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The breakdown of L-arginine to ornithine and urea by host arginase supports Leishmania proliferation in macrophages. Studies using arginase-null mutants show that Leishmania-derived arginase plays an important role in disease pathogenesis. We investigated the role of parasite-derived arginase in secondary (memory) anti-Leishmania immunity in the resistant C57BL/6 mice. We found that C57BL/6 mice infected with arginase-deficient (arg(-)) L. major failed to completely resolve their lesion and maintained chronic pathology after 16 wk, a time when the lesion induced by wild-type L. major is completely resolved. This chronic disease was associated with impaired Ag-specific proliferation and IFN-γ production, a concomitant increase in programmed cell death-1 (PD-1) expression on CD4(+) T cells, and failure to induce protection against secondary L. major challenge. Treatment with anti-PD-1 mAb restored T cell proliferation and IFN-γ production in vitro and led to complete resolution of chronic lesion in arg(-) L. major-infected mice. These results show that infection with arg(-) L. major results in chronic disease due in part to PD-1-mediated clonal exhaustion of T cells, suggesting that parasite-derived arginase contributes to the overall quality of the host immune response and subsequent disease outcome in L. major-infected mice. They also indicate that persistent parasites alone do not regulate the quality of secondary anti-Leishmania immunity in mice and that the quality of the primary immune response may be playing a hitherto unrecognized dominant role in this process.
Collapse
Affiliation(s)
- Zhirong Mou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM. Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res 2013; 27:85-102. [PMID: 23554800 PMCID: PMC3602867 DOI: 10.7555/jbr.27.20120064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/14/2012] [Accepted: 08/12/2012] [Indexed: 01/13/2023] Open
Abstract
Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. Resistance to infection is associated with a T-helper-1 immune response that activates macrophages to kill the intracellular parasite in a nitric oxide-dependent manner. Conversely, disease progression is generally associated with a T-helper-2 response that activates humoral immunity. Current control is based on chemotherapeutic treatments which are expensive, toxic and associated with high relapse and resistance rates. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no vaccine is available despite substantial efforts by many laboratories. Major impediments in Leishmania vaccine development include: lack of adequate funding from national and international agencies, problems related to the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, an important but least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on the progress of the search for an effective vaccine against human and canine leishmaniasis.
Collapse
Affiliation(s)
- Joshua Muli Mutiso
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
- Department of Zoological Sciences, Kenyatta University, Nairobi 43844-00100, Kenya.
| | - John Chege Macharia
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Maria Ndunge Kiio
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - James Maina Ichagichu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Hitler Rikoi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | | |
Collapse
|
50
|
Dey R, Dagur PK, Selvapandiyan A, McCoy JP, Salotra P, Duncan R, Nakhasi HL. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:2138-49. [PMID: 23338240 DOI: 10.4049/jimmunol.1202801] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leishmaniasis causes significant morbidity and mortality worldwide, and no vaccines against this disease are available. Previously, we had shown that the amastigote-specific protein p27 (Ldp27) is a component of an active cytochrome c oxidase complex in Leishmania donovani and that upon deletion of its gene the parasite had reduced virulence in vivo. In this study, we have shown that Ldp27(-/-) parasites do not survive beyond 20 wk in BALB/c mice and hence are safe as an immunogen. Upon virulent challenge, mice 12 wk postimmunization showed significantly lower parasite burden in the liver and spleen. When mice were challenged 20 wk postimmunization, a significant reduction in parasite burden was still noted, suggesting long-term protection by Ldp27(-/-) immunization. Immunization with Ldp27(-/-) induced both pro- and anti-inflammatory cytokine responses and activated splenocytes for enhanced leishmanicidal activity in association with NO production. Protection in both short- and long-term immunized mice after challenge with the wild-type parasite correlated with the stimulation of multifunctional Th1-type CD4 and CD8 T cells. Adoptive transfer of T cells from long-term immunized mice conferred protection against virulent challenge in naive recipient mice, suggesting involvement of memory T cell response in protection against Leishmania infection. Immunization of mice with Ldp27(-/-)also demonstrated cross-protection against Leishmania major and Leishmania braziliensis infection. Our data show that genetically modified live attenuated Ldp27(-/-) parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species.
Collapse
Affiliation(s)
- Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|