1
|
Asaduzzaman M, Davidson C, Nahirney D, Fiteih Y, Puttagunta L, Vliagoftis H. Proteinase-activated receptor-2 blockade inhibits changes seen in a chronic murine asthma model. Allergy 2018; 73:416-420. [PMID: 28940559 DOI: 10.1111/all.13313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Proteinase-Activated Receptor-2 (PAR2 ) is a G protein-coupled receptor activated by serine proteinases. We have shown that PAR2 activation in the airways is involved in the development of allergic inflammation and airway hyperresponsiveness (AHR) in acute murine models. We hypothesized that functional inhibition of PAR2 prevents allergic inflammation, AHR and airway remodeling in chronic allergic airway inflammation models. MATERIAL AND METHODS We developed and used a 12 week model of cockroach extract (CE)-mediated AHR, airway inflammation and remodeling in BALB/c mice. RESULTS Mice sensitized and challenged with CE for 12 weeks exhibit AHR, increased numbers of eosinophils in bronchoalveolar lavage (BAL) and increased collagen content in the lung tissue compared to saline controls. Administration of an anti-PAR2 antibody, SAM-11, after the initial development of airway inflammation significantly inhibited all these parameters. CONCLUSIONS Our data demonstrate that PAR2 signaling plays a key role in CE-induced AHR and airway inflammation/remodeling in long term models of allergic airway inflammation. Targeting PAR2 activation may be a successful therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- M. Asaduzzaman
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - C. Davidson
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - D. Nahirney
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - Y. Fiteih
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - L. Puttagunta
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - H. Vliagoftis
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| |
Collapse
|
2
|
Coutinho DS, Anjos-Valotta EA, do Nascimento CVMF, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, E Silva PMR, Martins MA. 15-Deoxy-Delta-12,14-Prostaglandin J 2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma. Front Immunol 2017; 8:740. [PMID: 28713373 PMCID: PMC5491902 DOI: 10.3389/fimmu.2017.00740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA) or house dust mite extract (HDM). Characteristics of lung inflammation, airway hyper-reactivity (AHR), mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL)-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.
Collapse
Affiliation(s)
- Diego S Coutinho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Caio V M F do Nascimento
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia A Pires
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Vinícius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafael C Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Micera A, Balzamino BO, Zazzo AD, Biamonte F, Sica G, Bonini S. Toll-Like Receptors and Tissue Remodeling: The Pro/Cons Recent Findings. J Cell Physiol 2015; 231:531-44. [DOI: 10.1002/jcp.25124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Antonio Di Zazzo
- Department of Ophthalmology; University Campus Bio-Medico; Rome Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology; Faculty of Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Gigliola Sica
- Institute of Histology and Embryology; Faculty of Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Stefano Bonini
- Department of Ophthalmology; University Campus Bio-Medico; Rome Italy
| |
Collapse
|
4
|
Wang Y, Yamamoto Y, Shigemori S, Watanabe T, Oshiro K, Wang X, Wang P, Sato T, Yonekura S, Tanaka S, Kitazawa H, Shimosato T. Inhibitory/suppressive oligodeoxynucleotide nanocapsules as simple oral delivery devices for preventing atopic dermatitis in mice. Mol Ther 2014; 23:297-309. [PMID: 25502904 DOI: 10.1038/mt.2014.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Abstract
Here, we report a simple and low-cost oral oligodeoxynucleotide (ODN) delivery system targeted to the gut Peyer's patches (PPs). This system requires only Dulbecco's modified eagle's medium, calcium chloride, ODNs, and basic laboratory equipment. ODN nanocapsules (ODNcaps) were directly delivered to the PPs through oral administration and were taken up by macrophages in the PPs, where they induced an immune response. Long-term continuous oral dosing with inhibitory/suppressive ODNcaps (iODNcaps, "iSG3caps" in this study) was evaluated using an atopic dermatitis mouse model to visually monitor disease course. Administration of iSG3caps improved skin lesions and decreased epidermal thickness. Underlying this effect is the ability of iSG3 to bind to and prevent phosphorylation of signal transducer and activator of transcription 6, thereby blocking the interleukin-4 signaling cascade mediated by binding of allergens to type 2 helper T cells. The results of our iSG3cap oral delivery experiments suggest that iSG3 may be useful for treating allergic diseases.
Collapse
Affiliation(s)
- Yeqin Wang
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan
| | | | - Suguru Shigemori
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | | | - Kazushi Oshiro
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Xinyu Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Pengfei Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Takashi Sato
- Department of Internal Medicine and Clinical Immunology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shinichi Yonekura
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| | - Sachi Tanaka
- Frontier Agriscience and Technology Center (FAST), Shinshu University, Kamiina, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takeshi Shimosato
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Graduate School of Agriculture, Shinshu University, Kamiina, Japan [3] Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| |
Collapse
|
5
|
Campbell JD, Kell SA, Kozy HM, Lum JA, Sweetwood R, Chu M, Cunningham CR, Salamon H, Lloyd CM, Coffman RL, Hessel EM. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 2014; 69:565-573. [PMID: 24464743 DOI: 10.1136/thoraxjnl-2013-204605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG-containing oligodeoxynucleotides (CpG-ODNs) are potent inhibitors of T helper 2 mediated allergic airway disease in sensitised mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. OBJECTIVE To optimise the treatment regimen for sustained efficacy and to determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. METHODS We set up a chronic allergic-asthma model using ragweed-sensitised mice exposed weekly to intranasal ragweed. Using this model, the effects of a limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were evaluated during treatment and for several weeks after treatments had stopped but weekly allergen exposures continued. Treatment efficacy was evaluated by measuring effects on lung T helper 2 cytokines and eosinophilia, and lung dendritic cell function and T-cell responses. RESULTS Twelve intranasal 1018 ISS treatments induced significant suppression of bronchoalveolar lavage eosinophilia and interleukin 4, 5 and 13 levels. This suppression of allergic T helper 2 parameters was maintained through 13 weekly ragweed exposures administered after treatment cessation. Subsequent experiments demonstrated that at least five treatments were required for lasting suppression. Although CpG-ODN induced moderate T helper 1 responses, suppression of allergic airway disease did not require interferon γ but was associated with induction of a regulatory T-cell response. CONCLUSIONS A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen.
Collapse
Affiliation(s)
| | | | | | | | | | - Mabel Chu
- Dynavax Technologies, Berkeley, CA 94710
| | | | | | - Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | | | | |
Collapse
|
6
|
Suzukawa M, Miller M, Rosenthal P, Cho JY, Doherty TA, Varki A, Broide D. Sialyltransferase ST3Gal-III regulates Siglec-F ligand formation and eosinophilic lung inflammation in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5939-48. [PMID: 23677475 DOI: 10.4049/jimmunol.1203455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialic acid-binding, Ig-like lectin (Siglec)-F is highly expressed on mouse eosinophils and plays an important role in regulating levels of eosinophilic lung inflammation. In this study we investigated the mechanism of constitutive and inducible Siglec-F ligand expression by lung airway epithelial cells and inflammatory cells in wild-type (WT) and genetically altered mice (ST3Gal-III heterozygotes, Fuc-TIV/VII double null, STAT6 null). Flow cytometry demonstrated that Siglec-F ligands are constitutively expressed in vitro and in vivo in selected lung cell types (epithelial cells, eosinophils, macrophages, and mast cells, but not CD4, CD8, or B cells) and are induced in response to divergent stimuli, including innate stimuli (TLR ligands, Alternaria), Th2 cytokines (IL-4, IL-13), and adaptive immune stimuli (OVA allergen). Furthermore, studies of deficient mice demonstrated the greater importance of the sialyltransferase ST3Gal-III compared with fucosyltransferases Fuc-TIV/VII in the synthesis of the constitutive and inducible Siglec-F ligands by lung epithelial and nonepithelial cells. In keeping with this, ST3Gal-III heterozygote mice (deficient in expression of Siglec-F ligands) also had significantly enhanced OVA-induced eosinophilic airway inflammation associated with reduced eosinophil apoptosis. Reduced eosinophil apoptosis in the lung of ST3Gal-III-deficient mice is likely mediated by reduced epithelial expression of Siglec-F ligands as WT eosinophils (which highly express Siglec-F) cultured with ST3Gal-III-deficient epithelial cells (which do not express Siglec-F ligand) showed reduced eosinophil apoptosis compared with WT eosinophils cultured with WT epithelial cells. Overall, these studies demonstrate that ST3Gal-III plays an important role in Siglec-F ligand formation and eosinophil apoptosis with resultant effects on eosinophilic inflammation in the lung.
Collapse
Affiliation(s)
- Maho Suzukawa
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Yum HY, Cho JY, Miller M, Broide DH. Allergen-induced coexpression of bFGF and TGF-β1 by macrophages in a mouse model of airway remodeling: bFGF induces macrophage TGF-β1 expression in vitro. Int Arch Allergy Immunol 2010; 155:12-22. [PMID: 21109744 DOI: 10.1159/000317213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is a cytokine that is mitogenic for fibroblasts and smooth muscle and may play a role in airway remodeling in asthma. We have used a mouse model of chronic ovalbumin (OVA) allergen-induced airway remodeling to determine whether bFGF and fibroblast growth factor receptor-1 are expressed and regulated by corticosteroids in the airway, as well as to determine whether bFGF mediates expression of another proremodeling cytokine, transforming growth factor (TGF)-β1. METHODS The airway levels and localization of bFGF, FGF receptor-1 and TGF-β1 were determined by ELISA, immunohistology and image analysis in the remodeled airways of chronic OVA-challenged mice treated with either corticosteroids or diluent. In vitro cultures of bone narrow-derived macrophages were used to determine whether bFGF induced TGF-β1 expression. RESULTS Mice chronically challenged with OVA developed significant airway remodeling that was associated with significantly increased levels of bFGF and TGF-β1. Immunohistochemistry demonstrated significantly increased bFGF and FGF receptor-1 expression by peri- bronchial F4/80+ cells. Double-label immunofluorescence microscopy studies demonstrated that peribronchial macrophages coexpressed bFGF and TGF-β1. In vitro studies demonstrated that incubation of bone marrow-derived macrophages with bFGF induced expression of TGF-β1. Mice treated with corticosteroids and subjected to chronic OVA challenge had significantly reduced levels of bFGF, FGF receptor-1, peribronchial TGF-β1+ cells and airway remodeling. CONCLUSIONS Overall, this study demonstrates that allergen challenge stimulates peribronchial macrophages to coexpress bFGF and TGF-β1 and that bFGF may potentiate macrophage release of TGF-β1 through autocrine and/or paracrine pathways.
Collapse
Affiliation(s)
- Hye Young Yum
- Department of Medicine, University of California San Diego, USA
| | | | | | | |
Collapse
|
8
|
Bossé Y, Stankova J, Rola-Pleszczynski M. Transforming growth factor-beta1 in asthmatic airway smooth muscle enlargement: is fibroblast growth factor-2 required? Clin Exp Allergy 2010; 40:710-24. [PMID: 20447083 DOI: 10.1111/j.1365-2222.2010.03497.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enlargement of airway smooth muscle (ASM) tissue around the bronchi/bronchioles is a histopathological signature of asthmatic airway remodelling and has been suggested to play a critical role in the increased lung resistance and airway hyperresponsiveness seen in asthmatic patients. The pleiotropic cytokine, TGF-beta1, is believed to contribute to several aspects of asthmatic airway remodelling and is known to influence the growth of many cell types. Increased TGF-beta1 expression/signalling and ASM growth have been shown to occur concurrently in animal models of asthma. Abundant studies further substantiate this association by showing that therapeutic strategies that reduce or prevent TGF-beta1 overexpression/signalling lead to a parallel decrease or prevention of ASM enlargement. Finally, recent findings have supported a direct link of causality between TGF-beta1 overexpression/signalling and the overgrowth of ASM tissue. To follow-up on these in vivo studies, many investigators have pursued detailed investigation of ASM in cell culture conditions, assessing the direct role of TGF-beta1 on cellular proliferation and/or hypertrophy. Inconsistencies among the in vitro studies suggest that the effect of TGF-beta1 on ASM cell proliferation/hypertrophy is contextual. A hypothesis focusing on fibroblast growth factor-2 is presented at the end of this review, which could potentially reconcile the apparent discrepancy between the conflicting in vitro findings with the consistent in vivo finding that TGF-beta1 is required for ASM enlargement in asthma.
Collapse
Affiliation(s)
- Y Bossé
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
9
|
Kang JY, Kim JW, Kim JS, Kim SJ, Lee SH, Kwon SS, Kim YK, Moon HS, Song JS, Park SH, Lee SY. Inhibitory effects of anti-immunoglobulin E antibodies on airway remodeling in a murine model of chronic asthma. J Asthma 2010; 47:374-80. [PMID: 20528589 DOI: 10.3109/02770901003801972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Airway remodeling is one of the cardinal features of asthma and is thought to play a pivotal role in refractory or persistent asthma. Immunoglobulin E (IgE) has a major effect on the pathogenesis of asthma. The aim of this study was to investigate the effects of anti-IgE antibody not only on airway inflammation and bronchial hyperresponsiveness, but also on airway remodeling in a murine model of chronic asthma. METHODS The authors developed a mouse model of chronic asthma in which ovalbumin (OVA)-sensitized female BALB/c-mice were exposed to intranasal OVA administration twice a week for 3 months. Anti-IgE antibodies were administered intravenously starting on the 38th day and once a month thereafter for 3 months during the intranasal OVA challenge. RESULTS Mice that were chronically exposed to OVA developed sustained eosinophilic airway inflammation and airway hyperresponsiveness (AHR) to methacholine and showed increased levels of collagen, hydroxyproline, and alpha-smooth muscle actin, as compared with control mice. Treatment with anti-IgE antibody inhibited the development of AHR, eosinophilic inflammation, and airway remodeling. Moreover, anti-IgE antibody treatment reduced the levels of interleukin (IL)-5 and IL-13 in the bronchoalveolar lavage fluids, although it did not affect the levels of IL-10, transforming growth factor-beta, and activin A. CONCLUSION These results suggest that anti-IgE antibody treatment modulates the airway inflammation and remodeling associated with chronic allergen challenge. The inhibition of inflammation may be related to the regulation of Th2 cytokines. However, the mechanisms underlying the blocking of airway remodeling by anti-IgE antibody remain to be elucidated.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ramaprakash H, Hogaboam CM. Intranasal CpG therapy attenuated experimental fungal asthma in a TLR9-dependent and -independent manner. Int Arch Allergy Immunol 2009; 152:98-112. [PMID: 20016192 DOI: 10.1159/000265531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/19/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CpG administration abolishes airway inflammation and remodeling in acute models of allergic airway disease. METHODS Herein, we investigated the therapeutic effect of CpG in a chronic fungal model of asthma. TLR9+/+ and TLR9-/- mice were sensitized to soluble Aspergillus fumigatus antigens and challenged with live A. fumigatus conidia. Mice were treated with intraperitoneal (IP) or intranasal (IN) CpG, or left untreated 14-28 days after conidium challenge. All features of allergic airway disease were attenuated in TLR9+/+ mice treated with IN CpG, including airway hyperresponsiveness (AHR), mucus production, and peribronchial fibrosis. RESULTS TLR9-/- mice treated with IN CpG exhibited attenuated airway remodeling but not AHR. Whole-lung IL-12 levels were significantly elevated in both TLR9+/+ and TLR9-/- mice receiving IN CpG but not in either group receiving IP CpG. Whole-lung IL-10 levels were significantly elevated in IN CpG-treated TLR9+/+ mice but not in TLR9-/- mice receiving IN CpG. Increased whole-lung transcript and protein levels of the scavenger receptors SR-A and MARCO were observed in TLR9-/- mice compared with TLR9+/+ mice, possibly accounting for the CpG responsiveness in the knockout group. CONCLUSIONS Together, these data show that IN CpG has a therapeutic effect during established fungal asthma, which is TLR9 dependent and independent.
Collapse
Affiliation(s)
- Hemanth Ramaprakash
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
11
|
Song DJ, Min MG, Miller M, Cho JY, Yum HY, Broide DH. Toll-like receptor-9 agonist inhibits airway inflammation, remodeling and hyperreactivity in mice exposed to chronic environmental tobacco smoke and allergen. Int Arch Allergy Immunol 2009; 151:285-96. [PMID: 19851071 DOI: 10.1159/000250437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND As passive environmental tobacco smoke (ETS) exposure in nonsmokers can increase both asthma symptoms and the frequency of asthma exacerbations, we utilized a mouse model, in which ovalbumin (OVA) + ETS induce significantly increased levels of eosinophilic airway inflammation and remodeling compared to either stimulus alone, to determine whether a Toll-like receptor-9 (TLR-9) agonist could reduce levels of airway inflammation, airway remodeling and airway hyperreactivity (AHR). METHODS Mice treated with or without a TLR-9 agonist were sensitized to OVA and challenged with OVA + ETS for 1 month. AHR to methacholine was assessed in intubated and ventilated mice. Lung Th2 cytokines and TGF-beta(1) were measured by ELISA. Lungs were processed for histology and immunohistology to quantify eosinophils, mucus, peribronchial fibrosis and smooth muscle changes using image analysis. RESULTS Administration of a TLR-9 agonist to mice coexposed to chronic ETS and chronic OVA allergen significantly reduced levels of eosinophilic airway inflammation, mucus production, peribronchial fibrosis, the thickness of the peribronchial smooth muscle layer, and AHR. The reduced airway remodeling in mice treated with the TLR-9 agonist was associated with significantly reduced numbers of peribronchial MBP+ and peribronchial TGF-beta(1)+ cells, and with significantly reduced levels of lung Th2 cytokines [interleukin-5 and interleukin-13] and TGF-beta(1). CONCLUSION These studies demonstrate that TLR-9-based therapies inhibit airway inflammation, remodeling and AHR in mice coexposed to ETS and allergen who exhibit enhanced airway inflammation and remodeling.
Collapse
Affiliation(s)
- Dae Jin Song
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Akdis M, Akdis CA. Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov 2009; 8:645-60. [PMID: 19644474 DOI: 10.1038/nrd2653] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune tolerance - the adaptation of the immune system to external antigens or allergens - might be therapeutically manipulated to restore normal immunity in conditions such as allergy, asthma and autoimmune diseases. The field of allergen-specific immunotherapy is experiencing exciting and novel developments for the treatment of allergic and autoimmune diseases, and recent insights into the reciprocal regulation and counter-balance between different T-cell subsets is foreseen to facilitate new strategies for immunointervention. This Review highlights current knowledge of immunomodulatory therapies for the manipulation of immune tolerance and highlights recent approaches to improve allergen-specific immunotherapy for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Obere Strasse 22, Davos Platz, Switzerland.
| | | |
Collapse
|
13
|
Takeda K, Dow SW, Miyahara N, Kodama T, Koya T, Taube C, Joetham A, Park JW, Dakhama A, Kedl RM, Gelfand EW. Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:181-90. [PMID: 19542429 DOI: 10.4049/jimmunol.0803967] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Suppressing the abnormalities associated with asthma has been difficult to accomplish using immunotherapy or vaccination once the disease is established. The effector cells necessary for effective immunization/vaccination and immunotherapy of asthma are also not well understood. Therefore, we vaccinated allergen (OVA)-sensitized mice to determine whether therapeutic immunization could suppress airway hyperresponsiveness (AHR) and inflammation and to identify key immune effector cells and cytokines. Mice were immunized with a vaccine comprised of Ag and cationic liposome-DNA complexes (CLDC), a vaccine which has previously been shown to elicit strong CD4(+) and CD8(+) T cell responses and activation of Th1 immunity. We showed that immunization with the OVA-CLDC vaccine significantly suppressed AHR, eosinophilia, goblet cell metaplasia, and Th2 cytokine production. In contrast, immunization with CLDC alone suppressed eosinophilia and Th2 cytokine production, but failed to suppress AHR and goblet cell changes. Using adoptive transfer experiments, we found that suppression of AHR was mediated by Ag-specific CD8(+) T cells and was dependent on IFN-gamma production by the transferred T cells. Thus, we conclude that generation of strong, allergen-specific CD8(+) T cell responses by immunization may be capable of suppressing AHR and allergic airway inflammation, even in previously sensitized and challenged mice.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Constabel H, Stankov MV, Hartwig C, Tschernig T, Behrens GMN. Impaired lung dendritic cell migration and T cell stimulation induced by immunostimulatory oligonucleotides contribute to reduced allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3443-53. [PMID: 19667097 DOI: 10.4049/jimmunol.0804223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CpG-containing oligonucleotides (CpG) have been shown to reduce key features of allergic airway inflammation in mouse models. Given the inhibitory effects of CpG treatment on Ag presentation of subsequently encountered Ags via MHC class I and II molecules by dendritic cells (DC), we hypothesized that intranasal CpG treatment would lead to reduced Ag-specific T cell stimulation in the lung-draining lymph nodes, thereby reducing the inflammatory response in sensitized mice. Intranasal CpG administration led to phenotypic maturation of lung and mediastinal lymph node DC as determined by expression of MHC class II, CD80, and CD86. This was accompanied by a significant reduction in the proliferation of adoptively transferred Ag-specific CD4(+) and CD8(+) T cells in mediastinal lymph nodes, when CpG was given before inhalative OVA challenges. DC obtained from mediastinal lymph nodes of CpG-treated mice before OVA inhalation led to reduced T cell stimulation via MHC class I and II molecules. In addition, CpG diminished airway eosinophilia and pulmonary infiltration after sensitization or following adoptive transfer of Ag-specific Th2 cells. These results were explained by reduced CCL21 expression and inhibition of lung DC migration following CpG administration, which could be restored by transfer of bone marrow-derived DC, because CpG had no major impact on the constitutive MHC class II Ag presentation of protein-derived Ag by lung tissue-derived DC. We conclude that CpG treatment can effectively impair the DC-mediated Ag transport from the lungs to the lymph nodes, resulting in reduced T cell activation and blunted airway inflammation.
Collapse
Affiliation(s)
- Hannelore Constabel
- Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
15
|
Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK. Immune Mechanisms and Therapeutic Potential of CpG Oligodeoxynucleotides. Int Rev Immunol 2009; 25:183-213. [PMID: 16818371 DOI: 10.1080/08830180600785868] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unmethylated CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides activate immune cells that express Toll-like Receptor 9. Activation through this receptor triggers cellular signaling that leads to production of a proinflammatory and a Th1-type, antigen-specific immune response. The immunostimulatory effects of CpG oligodeoxynucleotides confer protection against infectious disease, allergy and cancer in animal models, and clinical trials have been initiated. However, CpG oligodeoxynucleotides may exacerbate disease in some situations. We will review current concepts in the mechanisms of activating Toll-like Receptor 9 with CpG oligodeoxynucleotides and highlight opportunities for using large animal models to better determine the mechanisms of action.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Mine Y, Yang M. Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4874-4900. [PMID: 18543935 DOI: 10.1021/jf8001153] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence of egg allergy has had both industrial and clinical implications. In industrialized countries, egg allergy accounts for one of the most prevalent food hypersensitivities, especially in children. Atopic dermatitis represents the most common clinical manifestation in infancy; however, the range of clinical signs is broad and encompasses life-threatening anaphylaxis. The dominant egg allergens are proteins and are mainly present in the egg white, for example, ovalbumin, ovomucoid, ovotransferrin, and lysozyme. However, egg yolk also displays low-level allergenicity, for example, alpha-livetin. Strict avoidance of the offending food remains the most common recommendation for egg-allergic individuals. Nevertheless, the omnipresence of egg-derived components in prepackaged or prepared foods makes it difficult. Therefore, more efficient preventive approaches are investigated to protect consumers from inadvertent exposure and ensuing adverse reactions. On the one hand, commercial kits have become readily available that allow for the detection of egg contaminants at trace levels. On the other hand, attempts to produce hypoallergenic egg-containing products through food-processing techniques have met with promising results, but the approach is limited due to its potentially undesirable effects on the unique functional and sensory attributes of egg proteins. Therefore, the development of preventive or curative strategies for egg allergy remains strongly warranted. Pilot studies have suggested that oral immunotherapy (IT) with raw or cooked preparations of egg may represent a safe alternative, immediately available to allergic subjects, but remains applicable to only nonanaphylactic patients. Due to the limitations of conventional IT, novel forms of immunotherapy are sought based on information obtained from the molecular characterization of major egg allergens. In the past decade, promising approaches to the treatment and prevention of egg allergy have been explored and include, among others, the production of hypoallergenic recombinant egg proteins, the development of customized peptides, and bacterial-mediated immunotherapy. Nonspecific approaches have also been evaluated, and preliminary trials with the use of probiotic bacteria have yielded encouraging results. The current understanding of egg allergens offers novel approaches toward the making of food products safe for human consumption and the development of efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| | | |
Collapse
|
17
|
Lok CN, Ehrlich HP, White SL, Buttolph TR, Cutroneo KR, Chiu JF. Oligodeoxynucleotide decoy therapy blocks type 1 procollagen transcription and the prolyl hydroxylase beta subunit translation. J Cell Biochem 2008; 103:1066-75. [PMID: 18027883 DOI: 10.1002/jcb.21477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Persistent transforming growth factor-beta1 (TGF-beta1) exposure to lungs increases type 1 collagen synthesis and deposition resulting in excess fibrosis which leads to morbidity and possibly death. We now report using human embryonic lung fibroblasts in the presence of TGF-beta1, a novel double-stranded (ds) DNA decoy with phosphorothioate (PT) linkages, containing the TGF-beta cis-element found in the distal promoter region of the COL1A1 gene which silences COL1A1 gene expression. In a cell-free protein translation system, we have previously reported that collagen synthesis was inhibited by disulfide isomerase, the prolyl-4-hydroxylase (P-4-H) beta subunit. By comparative proteomics dsdecoy therapy increased the levels of disulfide isomerase, the P-4-H beta subunit. These findings taken together support the notion that the dsdecoy inhibits type 1 collagen synthesis at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Chun-Nam Lok
- Department of Anatomy, Hong Kong University, Peoples' Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Mauad T, Bel EH, Sterk PJ. Asthma therapy and airway remodeling. J Allergy Clin Immunol 2007; 120:997-1009; quiz 1010-1. [PMID: 17681364 DOI: 10.1016/j.jaci.2007.06.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 12/13/2022]
Abstract
Asthma is characterized by variable degrees of chronic inflammation and structural alterations in the airways. The most prominent abnormalities include epithelial denudation, goblet cell metaplasia, subepithelial thickening, increased airway smooth muscle mass, bronchial gland enlargement, angiogenesis, and alterations in extracellular matrix components, involving large and small airways. Chronic inflammation is thought to initiate and perpetuate cycles of tissue injury and repair in asthma, although remodeling may also occur in parallel with inflammation. In the absence of definite evidence on how different remodeling features affect lung function in asthma, the working hypothesis should be that structural alterations can lead to the development of persistent airway hyperresponsiveness and fixed airway obstruction. It is still unanswered whether and when to begin treating patients with asthma to prevent or reverse deleterious remodeling, which components of remodeling to target, and how to monitor remodeling. Consequently, efforts are being made to understand better the effects of conventional anti-inflammatory therapies, such as glucocorticosteroids, on airway structural changes. Animal models, in vitro studies, and some clinical studies have advanced present knowledge on the cellular and molecular pathways involved in airway remodeling. This has encouraged the development of biologicals aimed to target various components of airway remodeling. Progress in this area requires the explicit linking of modern structure-function analysis with innovative biopharmaceutical approaches.
Collapse
Affiliation(s)
- Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Le AV, Cho JY, Miller M, McElwain S, Golgotiu K, Broide DH. Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:7310-6. [PMID: 17513781 DOI: 10.4049/jimmunol.178.11.7310] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness.
Collapse
Affiliation(s)
- Annie V Le
- Division of Allergy and Immunology, Scripps Clinic and Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
20
|
Min MG, Song DJ, Miller M, Cho JY, McElwain S, Ferguson P, Broide DH. Coexposure to environmental tobacco smoke increases levels of allergen-induced airway remodeling in mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:5321-8. [PMID: 17404317 DOI: 10.4049/jimmunol.178.8.5321] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental tobacco smoke (ETS) can increase asthma symptoms and the frequency of asthma attacks. However, the contribution of ETS to airway remodeling in asthma is at present unknown. In this study, we have used a mouse model of allergen-induced airway remodeling to determine whether the combination of chronic exposure to ETS and chronic exposure to OVA allergen induces greater levels of airway remodeling than exposure to either chronic ETS or chronic OVA allergen alone. Mice exposed to chronic ETS alone did not develop significant eosinophilic airway inflammation, airway remodeling, or increased airway hyperreactivity to methacholine. In contrast, mice exposed to chronic OVA allergen had significantly increased levels of peribronchial fibrosis, increased thickening of the smooth muscle layer, increased mucus, and increased airway hyperreactivity which was significantly enhanced by coexposure to the combination of chronic ETS and chronic OVA allergen. Mice coexposed to chronic ETS and chronic OVA allergen had significantly increased levels of eotaxin-1 expression in airway epithelium which was associated with increased numbers of peribronchial eosinophils, as well as increased numbers of peribronchial cells expressing TGF-beta1. These studies suggest that chronic coexposure to ETS significantly increases levels of allergen-induced airway remodeling (in particular smooth muscle thickness) and airway responsiveness by up-regulating expression of chemokines such as eotaxin-1 in airway epithelium with resultant recruitment of cells expressing TGF-beta1 to the airway and enhanced airway remodeling.
Collapse
Affiliation(s)
- Myung Goo Min
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Inoue J, Aramaki Y. Suppression of skin lesions by transdermal application of CpG-oligodeoxynucleotides in NC/Nga mice, a model of human atopic dermatitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:584-91. [PMID: 17182599 DOI: 10.4049/jimmunol.178.1.584] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis (AD) is a pruritic inflammatory skin disease characterized by an elevation of the total IgE level in plasma, the infiltration of mast cells and eosinophils, and the expression of cytokines by Th2 cells. NC/Nga mice kept in conventional conditions are known to develop skin lesions resembling human AD. We examined in this study the alterations of immune response in NC/Nga mice kept in conventional conditions, following transdermal application of CpG-oligodeoxynucleotides (ODN), which plays a critical role in immunity via the augmentation of Th1-type and suppression of Th2-type responses. CpG-ODN remarkably changed the immune response from type Th2 to Th1 as determined from cytokine mRNA and Ab levels. The serum IgE level was decreased and the expression of IgG2a was up-regulated. The application of CpG-ODN to the skin also decreased inflammatory infiltration of mast cells, and suppression in the skin lesions was observed. Furthermore, the generation of regulatory T cells, which are considered immune suppressive T cells, was observed in the skin on treatment with CpG-ODN. These results suggested CpG-ODN is effective for immunotherapy in patients with AD, which is characterized by Th2-dominated inflammation.
Collapse
Affiliation(s)
- Joe Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | |
Collapse
|
22
|
Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 2007; 109:4280-7. [PMID: 17272508 PMCID: PMC1885492 DOI: 10.1182/blood-2006-08-039255] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD33-related Siglecs (CD33rSiglecs) are a family of sialic acid-recognizing lectins on immune cells whose biologic functions are unknown. We studied in vivo functions of Siglec-F, the CD33rSiglec expressed on mouse eosinophils, which are prominent in allergic processes. Induction of allergic lung inflammation in mice caused up-regulation of Siglec-F on blood and bone marrow eosinophils, accompanied by newly induced expression on some CD4(+) cells, as well as quantitative up-regulation of endogenous Siglec-F ligands in the lung tissue and airways. Taken together with the tyrosine-based inhibitory motif in the cytosolic tail of Siglec-F, the data suggested a negative feedback loop, controlling allergic responses of eosinophils and helper T cells, via Siglec-F and Siglec-F ligands. To pursue this hypothesis, we created Siglec-F-null mice. Allergen-challenged null mice showed increased lung eosinophil infiltration, enhanced bone marrow and blood eosinophilia, delayed resolution of lung eosinophilia, and reduced peribronchial-cell apoptosis. Anti-Siglec-F antibody cross-linking also enhanced eosinophil apoptosis in vitro. These data support the proposed negative feedback role for Siglec-F, represent the first in vivo demonstration of biologic functions for any CD33rSiglec, and predict a role for human Siglec-8 (the isofunctional paralog of mouse Siglec-F) in regulating the pathogenesis of human eosinophil-mediated disorders.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/physiology
- Apoptosis/drug effects
- Bronchial Provocation Tests
- Disease Models, Animal
- Eosinophils/metabolism
- Gene Expression Regulation
- Hypersensitivity/genetics
- Hypersensitivity/metabolism
- Lung Diseases/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Acetylneuraminic Acid/pharmacology
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/metabolism
- Sequence Homology
- Sialic Acid Binding Ig-like Lectin 3
- Sialic Acid Binding Immunoglobulin-like Lectins
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mai Zhang
- Glycobiology Research and Training Center, Departments of Medicine and Cellular & Molecular Medicine, and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
A significant amount of data generated over the last few years supports the contention that Toll-like receptor (TLR) 9-based immunotherapy is effective in the prevention and treatment of animal models of allergic disorders. We will review here our experience with two distinct therapeutic strategies: TLR9-based immunomodulation and TLR9-based vaccination. Immunomodulation of allergic inflammation by TLR9 ligand (TLR9-L) is transient. It prevents both the early and late phases of the allergic reaction in experimental models of allergic asthma, rhinitis, and conjunctivitis. It also reverses ongoing allergic inflammation. Indoleamine 2.3-dioxygenase, the rate-limiting enzyme of tryptophan, is induced by TLR9-L and mediates, in part, these anti-inflammatory effects. TLR9-based immunomodulation is independent of allergens and, therefore, has a potential therapeutic advantage in a broad spectrum of allergic patients. On the other hand, TLR9-based vaccination therapy is an allergen-specific mode of immunotherapy, which provides long-term inhibition of allergen-specific hypersensitivities. Current clinical trials with TLR9-based immunotherapy demonstrate high immunogenic and therapeutic efficacy, as well as improved safety when compared with conventional allergen desensitization. Thus, if proven efficient, therapeutic strategies with TLR9-L may revolutionize the current treatment of allergic diseases.
Collapse
Affiliation(s)
- Tomoko Hayashi
- Department of Medicine, University of California San Diego, La Jolla CA, 92093, USA
| | | |
Collapse
|
24
|
Lim DH, Cho JY, Miller M, McElwain K, McElwain S, Broide DH. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am J Physiol Lung Cell Mol Physiol 2006; 291:L265-71. [PMID: 16825657 DOI: 10.1152/ajplung.00305.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.
Collapse
Affiliation(s)
- Dae Hyun Lim
- Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cho JY, Miller M, McElwain K, McElwain S, Shim JY, Raz E, Broide DH. Remodeling associated expression of matrix metalloproteinase 9 but not tissue inhibitor of metalloproteinase 1 in airway epithelium: modulation by immunostimulatory DNA. J Allergy Clin Immunol 2006; 117:618-25. [PMID: 16522462 DOI: 10.1016/j.jaci.2005.12.1324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 11/24/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor of metalloproteinase 1 (TIMP-1) are hypothesized to play a role in the pathogenesis of airway remodeling in asthma. OBJECTIVE We have used a mouse model of airway remodeling to determine the pattern of expression of MMP-9 and TIMP-1 in airway epithelium and peribronchial cells, and assess whether TIMP-1, an inhibitor of MMP-9, is expressed at the same sites in the airway. In addition, we have investigated whether immunostimulatory sequences (ISSs) of DNA modulate levels of expression of MMP-9, TIMP-1, and peribronchial fibrosis. METHODS Levels of lung MMP-9 and TIMP-1 were assessed by zymography, ELISA, and immunohistochemistry. RESULTS Repetitive ovalbumin challenge induced a significant increase in levels of MMP-9, TIMP-1, and peribronchial collagen deposition. The pattern of expression of MMP-9 and TIMP-1 in the remodeled airway was significantly different. MMP-9 but not TIMP-1 was expressed in airway epithelium, whereas both MMP-9 and TIMP-1 were expressed in peribronchial inflammatory cells. ISS significantly reduced expression of MMP-9 in airway epithelium (which immunostained positive for Toll receptor 9), as well as in peribronchial inflammatory cells. In vitro studies demonstrated that ISS inhibited bone marrow macrophage generation of MMP-9. CONCLUSION Allergen-induced peribronchial fibrosis is associated with expression of MMP-9 and TIMP-1 at different anatomical sites in the remodeled airway. The ability of ISS to inhibit the expression of MMP-9 in airway epithelium (a site where its inhibitor TIMP-1 is not induced by allergen challenge) may be important in determining whether ISS contributes to reductions in airway remodeling by reducing levels of MMP-9. CLINICAL IMPLICATIONS Immunostimulatory sequences of DNA, which are being investigated as novel therapeutics in asthma, inhibit airway remodeling in mice as well as epithelial expression of MMP-9, an enzyme that degrades the extracellular matrix proteins surrounding the airway.
Collapse
Affiliation(s)
- Jae Youn Cho
- Department of Medicine, University of California San Diego, La Jolla 92093-0635, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lazarczyk M, Grzela K, Grzela T. Immunostimulatory oligonucleotides in therapy of allergic diseases. Expert Opin Biol Ther 2006; 5:525-36. [PMID: 15934830 DOI: 10.1517/14712598.5.4.525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
At present, the improvement of hygienic life standards is considered as an environmental condition, increasing the prevalence of allergic diseases, as early contact with some pathogens is, according to the hygiene hypothesis, required for maturation of the immune system. The recognition of microbial components involves acquired and innate immunity mechanisms. Recently, the link between innate and acquired immunity has been discovered. It involves the evolutionarily old Toll-like receptor (TLR) system. Ligands recognised by TLRs include unmethylated deoxycytidil-deoxyguanosine (CpG) motif-containing microbial DNA. TLR-mediated signalling induces expression of cytokines preferentially promoting a Th1-directed response. Therefore, synthetic CpG motif-containing immunostimulatory oligonucleotides could be employed in causal allergy treatment. This review discusses some molecular aspects of the TLR system, as well as results of animal studies and early experiences, including treatment safety, from human clinical trials with immunostimulatory CpG motif-containing oligonucleotides.
Collapse
Affiliation(s)
- Maciej Lazarczyk
- Department of Histology and Embryology, Biostructure Research Center, Medical University of Warsaw, 5 Chalubinskiego Str., PL 02 004 Warsaw, Poland
| | | | | |
Collapse
|
27
|
Lee SY, Cho JY, Miller M, McElwain K, McElwain S, Sriramarao P, Raz E, Broide DH. Immunostimulatory DNA inhibits allergen-induced peribronchial angiogenesis in mice. J Allergy Clin Immunol 2006; 117:597-603. [PMID: 16522459 DOI: 10.1016/j.jaci.2005.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/24/2005] [Accepted: 11/03/2005] [Indexed: 12/24/2022]
Abstract
BACKGROUND Airway remodeling in asthma is associated with angiogenesis. OBJECTIVE We have examined whether immunostimulatory sequences of DNA (ISSs) inhibit allergen-induced airway angiogenesis and expression of angiogenic cytokines in a mouse model of airway remodeling. METHODS Mice sensitized to ovalbumin were challenged repetitively with ovalbumin for three months to develop airway remodeling and angiogenesis. Levels of angiogenesis were compared in ISS-treated and control mice. RESULTS Mice challenged with ovalbumin developed significantly increased levels of peribronchial angiogenesis (increase in the number of CD31+ peribronchial small blood vessels) and an increase in the peribronchial vascular area as assessed by image analysis. Ovalbumin-induced peribronchial angiogenesis was associated with increased bronchoalveolar lavage levels of vascular endothelial growth factor (VEGF) and an increase in the number of peribronchial cells expressing VEGF. Treatment of mice with ISS before repetitive ovalbumin challenge significantly reduced the levels of peribronchial angiogenesis as well as the levels of bronchoalveolar lavage VEGF and the number of peribronchial cells expressing VEGF. ISS is unlikely to act directly on endothelial cells to inhibit angiogenesis because lung endothelial cells did not express Toll receptor 9, the receptor for ISS as assessed by RT-PCR. In vitro studies demonstrated that ISS inhibited macrophage expression of VEGF. CONCLUSION The ability of ISS to inhibit angiogenesis in vivo is likely to be mediated by several mechanisms, including ISS reducing the number of peribronchial inflammatory cells that express VEGF, ISS inhibiting expression of TH2 cytokines such as IL-13 that promote VEGF expression, and direct effects of ISS on macrophages to inhibit VEGF expression.
Collapse
Affiliation(s)
- Sook Young Lee
- Department of Medicine, University of California San Diego, La Jolla 92093-0635, USA, and Kangnam St Mary's Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Miller M, Cho JY, McElwain K, McElwain S, Shim JY, Manni M, Baek JS, Broide DH. Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2006; 290:L162-9. [PMID: 16344333 DOI: 10.1152/ajplung.00252.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At present there are conflicting results from studies investigating the role of corticosteroids in inhibiting airway remodeling in asthma. We have used a mouse model to determine whether administration of corticosteroids prevents the development of allergen-induced structural features of airway remodeling. Mice treated with corticosteroids were subjected to repetitive ovalbumin (OVA) challenge for 3 mo, at which time levels of peribronchial fibrosis and the thickness of the peribronchial smooth muscle layer were assessed by immunohistology, levels of transforming growth factor (TGF)-beta1 by ELISA, and the number of alpha-smooth muscle actin+/Col-1+ peribronchial myofibroblasts by immunohistochemistry. Corticosteroids significantly reduced allergen-induced increases in peribronchial collagen deposition and levels of total lung collagen but did not reduce allergen-induced increases in the thickness of the peribronchial smooth muscle layer. Levels of lung TGF-beta1 were significantly reduced in mice treated with systemic corticosteroids, and this was associated with a significant decrease in the number of peribronchial inflammatory cells that expressed TGF-beta1, including eosinophils and mononuclear cells. Corticosteroids also significantly reduced the number of peribronchial myofibroblasts. Overall, these studies demonstrate that administration of corticosteroids significantly reduces levels of allergen-induced peribronchial fibrosis. The reduction in peribronchial fibrosis mediated by corticosteroids is likely to be due to several mechanisms including inhibition of expression of TGF-beta1, a reduction in the number of peribronchial inflammatory cells expressing TGF-beta1 (eosinophils, macrophages), as well as by corticosteroids reducing the accumulation of peribronchial myofibroblasts that contribute to collagen expression.
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California San Diego, CA 92093-0635, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Doganci A, Sauer K, Karwot R, Finotto S. Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol 2005; 28:257-70. [PMID: 16129910 DOI: 10.1385/criai:28:3:257] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although allergic asthma was described to be associated with the presence of mucosal T helper (Th)2 cells, it is not entirely clear which factors are responsible for priming of T cells to differentiate into Th2 effector cells in this disease. Interleukin (IL)-6 has been recognized as important because it is secreted by cells of the innate immunity and induces the expansion of the Th2 effector cells, which are major players of the adaptive immune responses. Additionally, IL-6 released by dendritic cells (DCs) inhibits the suppressive function of CD4+CD25+ T regulatory cells, thus inhibiting the peripheral tolerance. The signal transduction of IL-6 has recently taught us how this cytokine influences different aspects of the immune response, especially under pathological conditions. IL-6 can bind to the soluble IL-6R, increased after allergen challenge in asthmatic patients, and, through a mechanism called trans-signaling, induces proliferation of cells expressing the cognate receptor gp130. This mechanism appears to be used for proliferation by developed Th2 cells in the airways. In contrast, through the membrane-bound IL-6R, IL-6 controls CD4+CD25+ survival, as well as the initial stages of the Th2 cells development in the lung. These findings impact the establishment of new therapies for allergic diseases; indeed, blockade of the soluble IL-6R through the fusion protein gp130Fc reduces Th2 cells in the lung, and by blocking the membrane-bound IL-6R, anti-IL-6R antibody treatment induces the number of T-regulatory cells in the lung, thereby reducing the local number of CD4+ T-effector cells in experimental asthma.
Collapse
Affiliation(s)
- Aysefa Doganci
- Laboratory of Cellular and Molecular Immunology of the Lung, I. Medical Clinic, University of Mainz, Germany
| | | | | | | |
Collapse
|
30
|
Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, Wills-Karp M, Coffman RL. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. ACTA ACUST UNITED AC 2005; 202:1563-73. [PMID: 16314434 PMCID: PMC2213327 DOI: 10.1084/jem.20050631] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways.
Collapse
|
31
|
Cho JY, Miller M, McElwain K, McElwain S, Broide DH. Combination of corticosteroid therapy and allergen avoidance reverses allergen-induced airway remodeling in mice. J Allergy Clin Immunol 2005; 116:1116-22. [PMID: 16275385 DOI: 10.1016/j.jaci.2005.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/04/2005] [Accepted: 08/09/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Allergen avoidance and anti-inflammatory therapy are standard therapeutic approaches guidelines advocate to control asthma symptoms. Currently, it is not known whether such strategies reduce airway remodeling. OBJECTIVE We have therefore used a mouse model of allergen-induced airway remodeling to determine whether allergen avoidance combined with corticosteroid therapy can reverse established airway remodeling. METHODS Mice were sensitized to ovalbumin and then repetitively challenged with intranasal ovalbumin for 3 months to develop structural features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. At this time point, mice were treated with allergen avoidance, allergen avoidance and corticosteroids, or corticosteroids for 1 month to determine whether either strategy could reverse established airway remodeling. RESULTS Mice repetitively challenged with ovalbumin developed peribronchial fibrosis (increased total lung collagen and increased peribronchial trichrome staining) as well as increased thickness of the peribronchial smooth muscle layer. Allergen avoidance significantly reduced airway inflammation and mucus expression, slightly reduced peribronchial fibrosis, and had no effect on the thickness of the peribronchial smooth muscle layer. Addition of corticosteroids to allergen avoidance significantly reduced levels of peribronchial fibrosis as well as the thickness of the peribronchial smooth muscle layer. CONCLUSION Allergen avoidance reduces airway inflammation and mucus expression but has more limited immediate effects on reducing structural features of established airway remodeling. The combination of allergen avoidance and corticosteroid therapy is effective in reversing established features of airway remodeling including peribronchial fibrosis and the increased thickness of the smooth muscle layer.
Collapse
Affiliation(s)
- Jae Youn Cho
- Department of Medicine, University of California San Diego, USA
| | | | | | | | | |
Collapse
|
32
|
Broide DH. Immunostimulatory sequences of DNA and conjugates in the treatment of allergic rhinitis. Curr Allergy Asthma Rep 2005; 5:182-5. [PMID: 15842954 DOI: 10.1007/s11882-005-0035-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Therapeutic strategies based on the use of immunostimulatory sequences of DNA containing a CpG motif (also known as ISS DNA, or CpG DNA) are focused on minimizing the allergenicity of immunotherapy while improving its effectiveness. Several ISS DNA-based methods of immunization (ISS DNA alone, ISS DNA conjugated to a protein allergen) have shown promise in animal models of asthma, and some of these ISS DNA-based therapies have entered clinical trials. These ongoing clinical trials will help to determine whether any of these ISS DNA-based therapies are safe and effective to use in subjects with allergic rhinitis and asthma.
Collapse
Affiliation(s)
- David H Broide
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0635, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000175939.68435.7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|