1
|
Matz H, Munir D, Logue J, Dooley H. The immunoglobulins of cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103873. [PMID: 32979434 PMCID: PMC7708420 DOI: 10.1016/j.dci.2020.103873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/12/2023]
Abstract
Cartilaginous fishes, comprising the chimeras, sharks, skates, and rays, split from the common ancestor with other jawed vertebrates approx. 450 million years ago. Being the oldest extant taxonomic group to possess an immunoglobulin (Ig)-based adaptive immune system, examination of this group has taught us much about the evolution of adaptive immunity, as well as the conserved and taxon-specific characteristics of Igs. Significant progress has been made analyzing sequences from numerous genomic and transcriptomic data sets. These findings have been supported by additional functional studies characterizing the Igs and humoral response of sharks and their relatives. This review will summarize what we have learned about the genomic organization, protein structure, and in vivo function of these Ig isotypes in cartilaginous fishes and highlight the areas where our knowledge is still lacking.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Danish Munir
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
2
|
Huang T, Sheng Z, Guan X, Guo L, Cao G. A comprehensive analysis of the genomic organization, expression and phylogeny of immunoglobulin light chain genes in pigeon (Columba livia). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:66-72. [PMID: 30096338 DOI: 10.1016/j.dci.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Previous studies on immunoglobulin light chain (IgL) genes in avian species are limited to Galloanseres, and few studies have investigated IgL genes in Neoaves, which includes most living birds. Based on published genome data, we demonstrate that the pigeon (Columba livia) IgL locus spans approximately 24 kb of DNA and contains twenty Vλ segments located upstream of a single pair of Jλ-Cλ. Among the identified Vλ gene segments, four segments are structurally intact and all four segments are able to recombine with Jλ. Moreover, the four functional Vλ segments are preferentially utilized in VλJλ recombination. Phylogenetic analysis suggests that the presence of the four functional Vλ segments in pigeon was likely generated by gene duplication that occurred after the divergence of pigeon and other birds. Our study provides insight into IgL gene evolution and evolutionary diversity of Ig genes in birds.
Collapse
Affiliation(s)
- Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoxing Guan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, PR China
| | - Linyun Guo
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China
| | - Gengsheng Cao
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
3
|
Guselnikov SV, Baranov KO, Najakshin AM, Mechetina LV, Chikaev NA, Makunin AI, Kulemzin SV, Andreyushkova DA, Stöck M, Wuertz S, Gessner J, Warren WC, Schartl M, Trifonov VA, Taranin AV. Diversity of Immunoglobulin Light Chain Genes in Non-Teleost Ray-Finned Fish Uncovers IgL Subdivision into Five Ancient Isotypes. Front Immunol 2018; 9:1079. [PMID: 29892283 PMCID: PMC5985310 DOI: 10.3389/fimmu.2018.01079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.
Collapse
Affiliation(s)
- Sergey V. Guselnikov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Alexander M. Najakshin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Ludmila V. Mechetina
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nikolai A. Chikaev
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Alexey I. Makunin
- Laboratory of Comparative Genomics, Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Sergey V. Kulemzin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A. Andreyushkova
- Laboratory of Comparative Genomics, Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Jörn Gessner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Wesley C. Warren
- School of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO, United States
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Biology, Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Vladimir A. Trifonov
- Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Comparative Genomics, Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Iacoangeli A, Lui A, Haines A, Ohta Y, Flajnik M, Hsu E. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms. THE JOURNAL OF IMMUNOLOGY 2017; 199:1875-1885. [PMID: 28760881 DOI: 10.4049/jimmunol.1700762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM+ cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ+ splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ+ cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Tisch Multiple Sclerosis Research Center of New York, New York, NY 10019
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ashley Haines
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
5
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
6
|
Iacoangeli A, Lui A, Naik U, Ohta Y, Flajnik M, Hsu E. Biased Immunoglobulin Light Chain Gene Usage in the Shark. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3992-4000. [PMID: 26342033 PMCID: PMC4592821 DOI: 10.4049/jimmunol.1501426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ushma Naik
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
7
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
8
|
Bao Y, Wu S, Zang Y, Wang H, Song X, Xu C, Xie B, Guo Y. The immunoglobulin light chain locus of the turkey, Meleagris gallopavo. Vet Immunol Immunopathol 2012; 147:44-50. [PMID: 22560110 DOI: 10.1016/j.vetimm.2012.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 03/23/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
To date, most jawed vertebrate species encode more than one immunoglobulin light (IgL) chain isotypes. It has been shown that several bird species (chickens, white Pekin or domestic duck, and zebra finches) exclusively express lambda isotype. We analyze here the genomic organization of another bird species turkey IgL genes based on the recently released genome data. The turkey IgL locus located on chromosome 17 spans approximately 75.2kb and contains a single functional V(λ) gene, twenty V(λ) pseudogenes, and a single functional J(λ)-C(λ) block. These data suggest that the genomic organization of bird IgL chain genes seems to be conserved. Ten cDNA clones from turkey Igλ chain containing almost full-length V(λ), J(λ) and C(λ) segments were acquired. The comparison of V(λ) cDNA sequences to all the germline V(λ) segments suggests that turkey species may be generating IgL chain diversity by gene conversion and somatic hypermutation like the chicken. This study provides insights into the immunoglobulin light chain genes in another bird species.
Collapse
Affiliation(s)
- Yonghua Bao
- Department of Basic Immunology, Xinxiang Medical University, Jinsui Street, Xinxiang 453003, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang T, Zhang M, Wei Z, Wang P, Sun Y, Hu X, Ren L, Meng Q, Zhang R, Guo Y, Hammarstrom L, Li N, Zhao Y. Analysis of immunoglobulin transcripts in the ostrich Struthio camelus, a primitive avian species. PLoS One 2012; 7:e34346. [PMID: 22479606 PMCID: PMC3315531 DOI: 10.1371/journal.pone.0034346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/26/2012] [Indexed: 11/21/2022] Open
Abstract
Previous studies on the immunoglobulin (Ig) genes in avian species are limited (mainly to galliformes and anseriformes) but have revealed several interesting features, including the absence of the IgD and Igκ encoding genes, inversion of the IgA encoding gene and the use of gene conversion as the primary mechanism to generate an antibody repertoire. To better understand the Ig genes and their evolutionary development in birds, we analyzed the Ig genes in the ostrich (Struthio camelus), which is one of the most primitive birds. Similar to the chicken and duck, the ostrich expressed only three IgH chain isotypes (IgM, IgA and IgY) and λ light chains. The IgM and IgY constant domains are similar to their counterparts described in other vertebrates. Although conventional IgM, IgA and IgY cDNAs were identified in the ostrich, we also detected a transcript encoding a short membrane-bound form of IgA (lacking the last two CH exons) that was undetectable at the protein level. No IgD or κ encoding genes were identified. The presence of a single leader peptide in the expressed heavy chain and light chain V regions indicates that gene conversion also plays a major role in the generation of antibody diversity in the ostrich. Because the ostrich is one of the most primitive living aves, this study suggests that the distinct features of the bird Ig genes appeared very early during the divergence of the avian species and are thus shared by most, if not all, avian species.
Collapse
Affiliation(s)
- Tian Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, People's Republic of China
| | - Ping Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Qingyong Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
- * E-mail:
| |
Collapse
|
10
|
Immunoglobulin from Antarctic fish species of Rajidae family. Mar Genomics 2012; 5:35-41. [DOI: 10.1016/j.margen.2011.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
|
11
|
Edholm ES, Wilson M, Bengten E. Immunoglobulin light (IgL) chains in ectothermic vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:906-915. [PMID: 21256861 DOI: 10.1016/j.dci.2011.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/16/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
Four major ancesteral IgL isotypes have been identified κ, λ, σ and σ-cart. However, depending on the vertebrate class the genomic representation of these isotypes differs in regards to what is encoded in the germline and how these genes are organized. Also, the relative contribution of each isotype in immune responses varies. This review focuses on the IgL chains of ectothermic vertebrates, specifically the number of different isotypes, their phylogenetic relationship, genomic organizations and expression.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | |
Collapse
|
12
|
Zhu C, Feng W, Weedon J, Hua P, Stefanov D, Ohta Y, Flajnik MF, Hsu E. The multiple shark Ig H chain genes rearrange and hypermutate autonomously. THE JOURNAL OF IMMUNOLOGY 2011; 187:2492-501. [PMID: 21804022 DOI: 10.4049/jimmunol.1101671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sharks and skates are representatives of the earliest vertebrates with an immune system based on V(D)J rearrangement. They possess a unique Ig gene organization consisting of 15 to >50 individual IgM loci, each with one VH, two DH, one JH, and one set of constant region exons. The present study attempts to understand how multiple Ig genes are regulated with respect to rearrangement initiation and to targeting during somatic hypermutation. The linkage of three single-copy IgH genes was determined, and single-cell genomic PCR studies in a neonatal animal were used to examine any relationship between relative gene position and likelihood of rearrangement. Our results show that one to three IgH genes are activated independently of linkage or allelic position and the data best fit with a probability model based on the hypothesis that V(D)J rearrangement occurs as a sequence of trials within the B cell. In the neonatal cell set, two closely related IgH, G2A, and G2B, rearranged at similar frequencies, and their membrane forms were expressed at similar levels, like in other young animals. However, older animals displayed a bias in favor of the G2A isotype, which suggests that although rearrangement at G2A and G2B was randomly initiated during primary repertoire generation, the two very similar IgM sequences appear to be differentially expressed with age and exposure to Ag. We performed genomic single-cell PCR on B cells from an immunized individual to study activation-induced cytidine deaminase targeting and found that hypermutation, like V(D)J rearrangement, occurred independently among the many shark IgH.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tian C, Ding Y, Ao J, Chen X. Three isotypes of immunoglobulin light chains in large yellow croaker, Pseudosciaena crocea: Molecular cloning, characterization, and expression analysis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1249-1256. [PMID: 21496488 DOI: 10.1016/j.fsi.2011.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Both cDNA library mining and transcriptome analysis were used to obtain 21 immunoglobulin light chain (IgL) sequences for the large yellow croaker, Pseudosciaena crocea. Full-length cDNA sequences are available for 10 of these, and they were identified as belonging to the three IgL isotypes of LycIgL1, LycIgL2, and LycIgL3. The LycIgL1 isotype is most abundant in the large yellow croaker IgL repertoire, as in the other teleosts. Tissue expression profile analysis revealed that the three LycIgL isotypes were constitutively expressed at different abundances in the kidney, spleen, liver, gill, heart, intestine, and muscle, although the heart did not express LycIgL3. Real-time polymerase chain reaction revealed that expression of the three LycIgL isotypes in the kidney and spleen tissues was up-regulated during 72 h of inductions with poly(I:C) or bacterial vaccine at different intensities and in different manners. The LycIgL1 isotype responded to stimulations most intensely in the spleen, while the LycIgL3 isotype responded most quickly in the kidney. Compared to the LycIgL1 and LycIgL3 isotypes, the LycIgL2 isotype responded more slowly and weakly in both tissues. These results indicate different isotypes of LycIgL respond to immune stimuli in the spleen and kidney in an isotypic-specific manner.
Collapse
Affiliation(s)
- Chen Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
14
|
Hansen JD, Farrugia TJ, Woodson J, Laing KJ. Description of an elasmobranch TCR coreceptor: CD8α from Rhinobatos productus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:452-460. [PMID: 21110999 DOI: 10.1016/j.dci.2010.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
Cell-mediated immunity plays an essential role for the control and eradication of intracellular pathogens. To learn more about the evolutionary origins of the first signal (Signal 1) for T-cell activation, we cloned CD8α from an elasmobranch, Rhinobatos productus. Similar to full-length CD8α cDNAs from other vertebrates, Rhpr-CD8α (1800bp) encodes a 219 amino acid open reading frame composed of a signal peptide, an extracellular IgSF V domain and a stalk/hinge region followed by a well-conserved transmembrane domain and cytoplasmic tail. Overall, the mature Rhpr-CD8α protein (201 aa) displays ∼ 30% amino acid identity with mammalian CD8α including absolute conservation of cysteine residues involved in the IgSf V domain fold and dimerization of CD8αα and CD8αβ. One prominent feature is the absence of the LCK association motif (CXC) that is needed for achieving signal 1 in tetrapods. Both elasmobranch and teleost CD8α protein sequences possess a similar but distinctly different motif (CXH) in the cytoplasmic tail. The overall genomic structure of CD8α has been conserved during the course of vertebrate evolution both for the number of exons and phase of splicing. Finally, quantitative RTPCR demonstrated that elasmobranch CD8α is expressed in lymphoid-rich tissues similar to CD8 in other vertebrates. The results from this study indicate the existence of CD8 prior to the emergence of the gnathostomes (>450 MYA) while providing evidence that the canonical LCK association motif in mammals is likely a derived characteristic of tetrapod CD8α, suggesting potential differences for T-cell education and activation in the various gnathostomes.
Collapse
Affiliation(s)
- John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA.
| | | | | | | |
Collapse
|
15
|
Zhu C, Hsu E. Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:5336-47. [PMID: 20921520 DOI: 10.4049/jimmunol.1000779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sharks are representatives of the earliest vertebrates that possess an immune system utilizing V(D)J recombination to generate Ag receptors. Their Ab repertoire diversity is based in part on a somatic hypermutation process that introduces adjacent nucleotide substitutions of 2-5 bp. We have isolated mutant nonfunctional Ig rearrangements and intronic flank sequences to characterize the nonselected, intrinsic properties of this phenomenon; changes unique to shark were observed. Duplications and deletions were associated with N additions, suggesting participation of a DNA polymerase with some degree of template independence during the repair of DNA breaks initiated by activation-induced cytidine deaminase. Other mutations were consistent with some in vitro activities of mammalian translesion DNA polymerase η: tandem base substitutions, strand slippage, and small insertions/deletions. The nature of substitution patterns shows that DNA lesions at shark Ig genes recruit DNA repair factors with a species-specific repertoire of activities. We speculate that the tandem mutations are introduced by direct sequential misinsertions and that, in shark B cells, the mispairs tend to be extended rather than proofread. Despite extensive changes undergone by some mutants, the physical range of mutational activity remained restricted to VDJ and within the first 2-kb portion of the 6.8-kb J-C intron, perhaps a self-regulating aspect of activation-induced cytidine deaminase action that is conserved in evolution.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203-2098, USA
| | | |
Collapse
|
16
|
Wu Q, Wei Z, Yang Z, Wang T, Ren L, Hu X, Meng Q, Guo Y, Zhu Q, Robert J, Hammarström L, Li N, Zhao Y. Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:579-589. [PMID: 20056120 DOI: 10.1016/j.dci.2009.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 05/28/2023]
Abstract
The reptiles are the last major taxon of jawed vertebrates in which immunoglobulin light chain isotypes have not been well characterized. Using the recently released genome sequencing data, we show in this study that the reptile Anolis carolinensis expresses both lambda and kappa light chain genes. The genomic organization of both gene loci is structurally similar to their respective counterparts in mammals. The identified lambda locus contains three constant region genes each preceded by a joining gene segment, and a total of 37 variable gene segments. In contrast, the kappa locus contains only a single constant region gene, and two joining gene segments with a single family of 14 variable gene segments located upstream. Analysis of junctions of the recombined VJ transcripts reveals a paucity of N and P nucleotides in both expressed lambda and kappa sequences. These results help us to understand the generation of the immunoglobulin repertoire in reptiles and immunoglobulin evolution in vertebrates.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of Igσ and Igλ in channel catfish, Ictalurus punctatus, and Igλ in Atlantic cod, Gadus morhua. Immunogenetics 2009; 61:353-70. [DOI: 10.1007/s00251-009-0365-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
18
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
19
|
Abstract
The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus. Lymphocytes provide a limitless repertoire of antigen receptors, but each lymphocyte expresses only one kind of receptor per cell in order to provide specific recognition and response to pathogen invasion. The restriction, called allelic exclusion, operates in tetrapod vertebrates from frogs to human beings. In mouse, immunoglobulin (Ig) heavy chain (H) exclusion depends on ordered activation of component parts of the highly complex, three-megabase IgH locus in a process that differentiates between the two alleles. However, the regulation and mechanisms ensuring allelic exclusion remain uncertain. Sharks represent the earliest vertebrates with an adaptive immune system; their IgH organization, consisting of multiple miniloci, is considered primitive and ancestral to the classical IgH locus in other vertebrates. We show that allelic exclusion nonetheless exists in shark B lymphocytes, although attained by alternative means. Thus, major aspects of the complex pathway described for allelic exclusion in mammals evolved with their IgH organization. Elucidating shared and divergent regulatory processes allows us to gain insight into the basis and evolution of allelic exclusion, which provides the foundation for the functioning of the adaptive immune system. In B lymphocytes of most animals, only one allele is expressed at the antibody heavy-chain locus, while the other is shut down. Sharks have 15-200 such loci. How is antibody expression regulated in this early vertebrate?
Collapse
|
20
|
Lee V, Huang JL, Lui MF, Malecek K, Ohta Y, Mooers A, Hsu E. The evolution of multiple isotypic IgM heavy chain genes in the shark. THE JOURNAL OF IMMUNOLOGY 2008; 180:7461-70. [PMID: 18490746 DOI: 10.4049/jimmunol.180.11.7461] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Collapse
Affiliation(s)
- Victor Lee
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Criscitiello MF, Flajnik MF. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur J Immunol 2007; 37:2683-94. [PMID: 17899545 PMCID: PMC7094790 DOI: 10.1002/eji.200737263] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of a fourth immunoglobulin (Ig) light (L) chain isotype in sharks has revealed the origins and natural history of all vertebrate L chains. Phylogenetic comparisons have established orthology between this new shark L chain and the unique Xenopus L chain isotype sigma. More importantly, inclusion of this new L chain family in phylogenetic analyses showed that all vertebrate L chains can be categorized into four ancestral clans originating prior to the emergence of cartilaginous fish: one restricted to elasmobranchs (sigma-cart/type I), one found in all cold-blooded vertebrates (sigma/teleost type 2/elasmobranch type IV), one in all groups except bony fish (lambda/elasmobranch type II), and one in all groups except birds (kappa/elasmobranch type III/teleost type 1 and 3). All four of these primordial L chain isotypes (sigma, sigma-cart, lambda and kappa) have maintained separate V region identities since their emergence at least 450 million years ago, suggestive of an ancient physiological distinction of the L chains. We suggest that, based upon unique, discrete sizes of complementarity determining regions 1 and 2 and other features of the V region sequences, the different L chain isotypes arose to provide different functional conformations in the Ig binding site when they pair with heavy chains.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
22
|
Abstract
The mechanism of recombination-activating gene (RAG)-mediated rearrangement exists in all jawed vertebrates, but the organization and structure of immunoglobulin (Ig) genes, as they differ in fish and among fish species, reveal their capability for rapid evolution. In systems where there can exist 100 Ig loci, exon restructuring and sequence changes of the constant regions led to divergence of effector functions. Recombination among these loci created hybrid genes, the strangest of which encode variable (V) regions that function as part of secreted molecules and, as the result of an ancient translocation, are also grafted onto the T-cell receptor. Genomic changes in V-gene structure, created by RAG recombinase acting on germline recombination signal sequences, led variously to the generation of fixed receptor specificities, pseudogene templates for gene conversion, and ultimately to Ig sequences that evolved away from Ig function. The presence of so many Ig loci in fishes raises interesting questions not only as to how their regulation is achieved but also how successive whole-locus duplications are accommodated by a system whose function in other vertebrates is based on clonal antigen receptor expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
23
|
Hsu E, Criscitiello MF. Diverse immunoglobulin light chain organizations in fish retain potential to revise B cell receptor specificities. THE JOURNAL OF IMMUNOLOGY 2006; 177:2452-62. [PMID: 16888007 PMCID: PMC3129705 DOI: 10.4049/jimmunol.177.4.2452] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have characterized the genomic organization of the three zebrafish L chain isotypes and found they all differed from those reported in other teleost fishes. Two of the zebrafish L chain isotypes are encoded by two loci, each carrying multiple V gene segments. To understand the derivation of these L chain genes and their organizations, we performed phylogenetic analyses and show that IgL organization can diverge considerably among closely related species. Except in zebrafish, the teleost fish IgL each contain only two to four recombinogenic components (one to three V, one J) and exist in multiple copies. BCR heterogeneity can be generated, but this arrangement apparently provides neither combinatorial diversification nor an opportunity for the secondary rearrangements that, in mammals, take place during receptor editing, a process crucial to the promotion of tolerance in developing lymphocytes. Examination of the zebrafish IgL recombination possibilities gave insight into how the suppression of self-reactivity by receptor editing might be managed, including in miniloci. We suggest that, despite the diverse IgL organizations in early and higher vertebrates, two elements essential to generating the Ab repertoire are retained: the numerous genes/loci for ligand-binding diversification and the potential for correcting unwanted specificities that arise.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
24
|
Malecek K, Brandman J, Brodsky JE, Ohta Y, Flajnik MF, Hsu E. Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. THE JOURNAL OF IMMUNOLOGY 2006; 175:8105-15. [PMID: 16339548 DOI: 10.4049/jimmunol.175.12.8105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We estimate there are approximately 15 IgM H chain loci in the nurse shark genome and have characterized one locus. It consists of one V, two D, and one J germline gene segments, and the constant (C) region can be distinguished from all of the others by a unique combination of restriction endonuclease sites in Cmu2. On the basis of these Cmu2 markers, 22 cDNA clones were selected from an epigonal organ cDNA library from the same individual; their C region sequences proved to be the same up to the polyadenylation site. With the identification of the corresponding germline gene segments, CDR3 from shark H chain rearrangements could be analyzed precisely, for the first time. Considerable diversity was generated by trimming and N addition at the three junctions and by varied recombination patterns of the two D gene segments. The cDNA sequences originated from independent rearrangements events, and most carried both single and contiguous substitutions. The 53 point mutations occurred with a bias for transition changes (53%), whereas the 78 tandem substitutions, mostly 2-4 bp long, do not (36%). The nature of the substitution patterns is the same as for mutants from six loci of two nurse shark L chain isotypes, showing that somatic hypermutation events are very similar at both H and L chain genes in this early vertebrate. The cis-regulatory elements targeting somatic hypermutation must have already existed in the ancestral Ig gene, before H and L chain divergence.
Collapse
Affiliation(s)
- Karolina Malecek
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dooley H, Flajnik MF. Antibody repertoire development in cartilaginous fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:43-56. [PMID: 16146649 DOI: 10.1016/j.dci.2005.06.022] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There are 3 H chain and 3 L chain isotypes in the cartilaginous fish, all encoded by genes in the so-called cluster (VDDJ, VJ) organization. The H chain isotypes IgM and IgNAR, are readily detected at the protein level in most species. The third is readily identified at the protein level in skates (IgR) but only via immunoprecipitation or at the transcript level in sharks (IgW). High levels of diversity in CDR3 and up to 200 germline genes have been detected for IgM depending upon the species examined. IgNAR displays very high levels of CDR3 diversity but almost none in the germline. At least IgNAR and L chain genes have been shown to hypermutate to very high levels, apparently in response to antigen. The mutation footprints are similar to those in mammals except that the shark genes uniquely mutate nucleotide residues in tandem. A conspicuous feature of cartilaginous fish Ig genes is the presence of germline-joined genes, which are a result of RAG activity in germ cells. Such genes are expressed early in ontogeny and then extinguished or expressed at lower levels. 19S IgM and IgW expression precede that of 7S IgM and IgNAR during ontogeny. The 'switch' from 19S to 7S IgM, the regulation of expression of the Ig clusters, and the microenvironments for mutation/selection of cartilaginous fish B cells are all areas of ongoing research.
Collapse
Affiliation(s)
- H Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|