1
|
Fan L, Liu J, Hu W, Chen Z, Lan J, Zhang T, Zhang Y, Wu X, Zhong Z, Zhang D, Zhang J, Qin R, Chen H, Zong Y, Zhang J, Chen B, Jiang J, Cheng J, Zhou J, Gao Z, Liu Z, Chai Y, Fan J, Wu P, Chen Y, Zhu Y, Wang K, Yuan Y, Huang P, Zhang Y, Feng H, Song K, Zeng X, Zhu W, Hu X, Yin W, Chen W, Wang J. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res 2024; 34:407-427. [PMID: 38491170 PMCID: PMC11143203 DOI: 10.1038/s41422-024-00945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/24/2024] [Indexed: 03/18/2024] Open
Abstract
Atherosclerosis (AS), a leading cause of cardio-cerebrovascular disease worldwide, is driven by the accumulation of lipid contents and chronic inflammation. Traditional strategies primarily focus on lipid reduction to control AS progression, leaving residual inflammatory risks for major adverse cardiovascular events (MACEs). While anti-inflammatory therapies targeting innate immunity have reduced MACEs, many patients continue to face significant risks. Another key component in AS progression is adaptive immunity, but its potential role in preventing AS remains unclear. To investigate this, we conducted a retrospective cohort study on tumor patients with AS plaques. We found that anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) significantly reduces AS plaque size. With multi-omics single-cell analyses, we comprehensively characterized AS plaque-specific PD-1+ T cells, which are activated and pro-inflammatory. We demonstrated that anti-PD-1 mAb, when captured by myeloid-expressed Fc gamma receptors (FcγRs), interacts with PD-1 expressed on T cells. This interaction turns the anti-PD-1 mAb into a substitute PD-1 ligand, suppressing T-cell functions in the PD-1 ligands-deficient context of AS plaques. Further, we conducted a prospective cohort study on tumor patients treated with anti-PD-1 mAb with or without Fc-binding capability. Our analysis shows that anti-PD-1 mAb with Fc-binding capability effectively reduces AS plaque size, while anti-PD-1 mAb without Fc-binding capability does not. Our work suggests that T cell-targeting immunotherapy can be an effective strategy to resolve AS in humans.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Junwei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Hu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology and Biostatistics and Department of Scientific Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Lan
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China
| | - Tongtong Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianpeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiwei Zhong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danyang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Qin
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Zong
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bing Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jifang Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiwei Gao
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junqiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinxuan Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuefeng Zhu
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Department of Respiratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiqin Feng
- Department of Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaichen Song
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Zeng
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Barzak FM, Lu A, Geltzeiler AR, Ledgerwood EC, Chung WK, Day CL. A novel RNF125 variant associated with Tenorio syndrome alters ubiquitin chain binding. Clin Genet 2024; 105:254-261. [PMID: 37986019 DOI: 10.1111/cge.14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
A key signalling pathway required for clearance of viruses from host cells relies on the receptor protein, retinoic acid-inducible gene I (RIG-I). The activity of RIG-I is tightly controlled, and once bound to viral dsRNA, addition of lysine 63-linked ubiquitin chains activates signalling. Meanwhile, the addition of lysine 48-linked ubiquitin chains to RIG-I is required to terminate signalling when the infection has been resolved. Really interesting new gene (RING) finger protein 125 (RNF125) is the E3 ligase responsible for addition of the ubiquitin chains that terminate signalling, with disruption of its function associated with Tenorio syndrome. Here we describe a novel RNF125 gene variant in an individual with clinical symptoms including intellectual disability, macrocephaly and congenital heart disease, consistent with Tenorio syndrome. The newly identified Tenorio syndrome-associated variant [(NM_017831.4):c.670G>C p.Glu224Gln] is the first to be found in the ubiquitin interaction motif (UIM) of RNF125. While the E3 ligase activity of this RNF125 variant is retained, it has an impaired ability to interact with lysine 63-linked ubiquitin chains. The function of the UIM in RNF125 is uncertain; however, this study suggests that the UIM binds lysine 63-linked ubiquitin chains, and that this interaction is required for the normal function of RNF125.
Collapse
Affiliation(s)
- Fareeda M Barzak
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anita Lu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexa R Geltzeiler
- Department of Pediatrics, Boston Children's Hospital Harvard Medical School Boston, Boston, Massachusetts, USA
| | - Elizabeth C Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital Harvard Medical School Boston, Boston, Massachusetts, USA
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Lv R, Du L, Bai L. RNF125, transcriptionally regulated by NFATC2, alleviates osteoarthritis via inhibiting the Wnt/β-catenin signaling pathway through degrading TRIM14. Int Immunopharmacol 2023; 125:111191. [PMID: 37951197 DOI: 10.1016/j.intimp.2023.111191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the progressive degradation of articular cartilage. In this study, as determined by histological staining, the cartilage surface of the OA rats was damaged, defective and broken, and chondrocytes and proteoglycan were reduced. While moderate physical exercise showed protective effects on the cartilage. Besides, RNA-seq was performed to select a target protein and RNF125 (an E3 ubiquitin ligase) was decreased in the cartilage tissues of OA rats and increased after physiological exercise. However, the precise role of RNF125 in OA is still unknown. This work aimed to investigate the involvement and underlying mechanism of RNF125 in OA pathogenesis. Our results defined that adenovirus-mediated overexpression of RNF125 inhibited the degradation of extracellular matrix of chondrocytes induced by IL-1β, as revealed by increased chondrocyte viability, upregulated COL2A1 and ACAN levels, and downregulated MMP1, MMP13 and ADAMTS5 levels, which was abrogated by NR4A2 knockdown. In vivo, RNF125 relieved OA, manifested as reduced cartilage injury and increased chondrocytes. Mechanically, NFATC2 bound to the RNF125 promoter and directly regulated RNF125 transcription, as illustrated by luciferase reporter, Ch-IP and DNA pull-down assays. Furthermore, RNF125 overexpression inhibited the nuclear translocation of β-catenin, thus suppressing activation of the Wnt/β-catenin signaling pathway. Also, RNF125 as E3 ubiquitin ligase led to the ubiquitination and degradation of TRIM14 protein, and TRIM14 overexpression efficiently reversed the effects of RNF125 overexpression on OA progression. Totally, this study provides new insights into OA pathogenesis regulated by RNF125. RNF125 may be a novel biomarker for OA therapy.
Collapse
Affiliation(s)
- Runxiao Lv
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Lunhao Bai
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
4
|
Middleton AJ, Barzak FM, Fokkens TJ, Nguyen K, Day CL. Zinc finger 1 of the RING E3 ligase, RNF125, interacts with the E2 to enhance ubiquitylation. Structure 2023; 31:1208-1219.e5. [PMID: 37541247 DOI: 10.1016/j.str.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Inflammation is essential for healthy immune function, wound healing, and resolution of infection. RIG-I is a key RNA sensor that initiates an immune response, with activation and termination of RIG-I signaling reliant on its modification with ubiquitin. The RING E3 ubiquitin ligase, RNF125, has a critical role in the attenuation of RIG-I signaling, yet it is not known how RNF125 promotes ubiquitin transfer or how its activity is regulated. Here we show that the E3 ligase activity of RNF125 relies on the first zinc finger (ZF1) as well as the RING domain. Surprisingly, ZF1 helps recruit the E2, while residues N-terminal to the RING domain appear to activate the E2∼Ub conjugate. These discoveries help explain how RNF125 brings about the termination of RIG-I dependent inflammatory responses, and help account for the contribution of RNF125 to disease. This study also reveals a new role for ZF domains in E3 ligases.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Fareeda M Barzak
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Thornton J Fokkens
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Khanh Nguyen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
5
|
Hu J, Ding R, Liu S, Wang J, Li J, Shang Y. Hypermethylation of RNF125 promotes autophagy-induced oxidative stress in asthma by increasing HMGB1 stability. iScience 2023; 26:107503. [PMID: 37599832 PMCID: PMC10432822 DOI: 10.1016/j.isci.2023.107503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Asthma is a global chronic airway disease. The expression and role of RNF125, an E3 ubiquitin ligase, in asthma remain uncertain. In this study, we revealed that RNF125 was downregulated in the bronchial epithelium of mice and patients with asthma. Rnf125 hypermethylation was responsible for the low expression of RNF125 in primary airway epithelial cells of mice treated with OVA. Moreover, we demonstrated that RNF125 could attenuate autophagy, oxidative stress, and protect epithelial barrier in vivo and in vitro. Additionally, we identified HMGB1 as a substrate of RNF125, which interacted with the HMG B-box domain of HMGB1 and induced degradation via the ubiquitin proteasome system, reducing autophagy and oxidative stress. Overall, our findings elucidated that hypermethylation of Rnf125 reduced its expression, which promoted autophagy-induced oxidative stress in asthma by increasing HMGB1 stability. These findings offer a theoretical and experimental basis for the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ruiwei Ding
- Pediatric Department, Qingdao Women and Children’s Hospital, Qingdao 266000, China
| | - Shaozhuang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
6
|
Jiang C, He L, Xiao S, Wu W, Zhao Q, Liu F. E3 Ubiquitin Ligase RNF125 Suppresses Immune Escape in Head and Neck Squamous Cell Carcinoma by Regulating PD-L1 Expression. Mol Biotechnol 2022; 65:891-903. [DOI: 10.1007/s12033-022-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
7
|
Cattane N, Courtin C, Mombelli E, Maj C, Mora C, Etain B, Bellivier F, Marie-Claire C, Cattaneo A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022; 22:665. [PMID: 36303132 PMCID: PMC9615157 DOI: 10.1186/s12888-022-04286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. METHODS In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). RESULTS We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. CONCLUSIONS Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways.
Collapse
Affiliation(s)
- Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cindie Courtin
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Elisa Mombelli
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- grid.411097.a0000 0000 8852 305XInstitute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Cristina Mora
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bruno Etain
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Frank Bellivier
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
9
|
Wei M, Mo Y, Liu J, Zhai J, Li H, Xu Y, Peng Y, Tang Z, Wei T, Yang X, Huang L, Shao X, Li J, Zhou L, Zhong H, Wei C, Xie Q, Min M, Wu F. Ubiquitin ligase RNF125 targets PD-L1 for ubiquitination and degradation. Front Oncol 2022; 12:835603. [PMID: 35965501 PMCID: PMC9374197 DOI: 10.3389/fonc.2022.835603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
As a critical immune checkpoint molecule, PD-L1 is expressed at significantly higher levels in multiple neoplastic tissues compared to normal ones. PD-L1/PD-1 axis is a critical target for tumor immunotherapy, blocking the PD-L1/PD-1 axis is recognized and has achieved unprecedented success in clinical applications. However, the clinical efficacy of therapies targeting the PD-1/PD-L1 pathway remains limited, emphasizing the need for the mechanistic elucidation of PD-1/PD-L1 expression. In this study, we found that RNF125 interacted with PD-L1 and regulated PD-L1 protein expression. Mechanistically, RNF125 promoted K48-linked polyubiquitination of PD-L1 and mediated its degradation. Notably, MC-38 and H22 cell lines with RNF125 knockout, transplanted in C57BL/6 mice, exhibited a higher PD-L1 level and faster tumor growth than their parental cell lines. In contrast, overexpression of RNF125 in MC-38 and H22 cells had the opposite effect, resulting in lower PD-L1 levels and delayed tumor growth compared with parental cell lines. In addition, immunohistochemical analysis of MC-38 tumors with RNF125 overexpression showed significantly increased infiltration of CD4+, CD8+ T cells and macrophages. Consistent with these findings, analyses using The Cancer Genome Atlas (TCGA) public database revealed a positive correlation of RNF125 expression with CD4+, CD8+ T cell and macrophage tumor infiltration. Moreover, RNF125 expression was significantly downregulated in several human cancer tissues, and was negatively correlated with the clinical stage of these tumors, and patients with higher RNF125 expression had better clinical outcomes. Our findings identify a novel mechanism for regulating PD-L1 expression and may provide a new strategy to increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Meng Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yunhai Mo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jialong Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jingtong Zhai
- Department of Medical Oncology and State Key Laboratory of Molecular Oncology, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilong Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yixin Xu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yumeng Peng
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Zhihong Tang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tao Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaopan Yang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Linfei Huang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao Shao
- Department of Gastroenterology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jingfei Li
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhou
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaosheng Xie
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Qiaosheng Xie, ; Min Min, ; Feixiang Wu,
| | - Min Min
- Department of Gastroenterology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
- *Correspondence: Qiaosheng Xie, ; Min Min, ; Feixiang Wu,
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
- *Correspondence: Qiaosheng Xie, ; Min Min, ; Feixiang Wu,
| |
Collapse
|
10
|
Kodama T, Kodama M, Jenkins NA, Copeland NG, Chen HJ, Wei Z. Ring Finger Protein 125 Is an Anti-Proliferative Tumor Suppressor in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14112589. [PMID: 35681566 PMCID: PMC9179258 DOI: 10.3390/cancers14112589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and the only cancer with an increasing incidence in the United States. Recent advances in sequencing technology have enabled detailed profiling of liver cancer genomes and revealed extensive inter- and intra-tumor heterogeneity, making it difficult to identify driver genes for HCC. To identify HCC driver genes, we performed transposon mutagenesis screens in a mouse HBV model of HCC and discovered many candidate cancer genes (SB/HBV-CCGs). Here, we show that one of these genes, RNF125 is a potent anti-proliferative tumor suppressor gene in HCC. RNF125 is one of nine CCGs whose expression was >3-fold downregulated in human HCC. Depletion of RNF125 in immortalized mouse liver cells led to tumor formation in transplanted mice and accelerated growth of human liver cancer cell lines, while its overexpression inhibited their growth, demonstrating the tumor-suppressive function of RNF125 in mouse and human liver. Whole-transcriptome analysis revealed that RNF125 transcriptionally suppresses multiple genes involved in cell proliferation and/or liver regeneration, including Egfr, Met, and Il6r. Blocking Egfr or Met pathway expression inhibited the increased cell proliferation observed in RNF125 knockdown cells. In HCC patients, low expression levels of RNF125 were correlated with poor prognosis demonstrating an important role for RNF125 in HCC. Collectively, our results identify RNF125 as a novel anti-proliferative tumor suppressor in HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
- Correspondence: (T.K.); (Z.W.)
| | - Michiko Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Nancy A. Jenkins
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neal G. Copeland
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA;
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhubo Wei
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.); (Z.W.)
| |
Collapse
|
11
|
Lenoir JJ, Parisien JP, Horvath CM. Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF-κB activation. Cell Rep 2021; 37:110175. [PMID: 34965427 DOI: 10.1016/j.celrep.2021.110175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lysine 63-linked polyubiquitin (K63-Ub) chains activate a range of cellular immune and inflammatory signaling pathways, including the mammalian antiviral response. Interferon and antiviral genes are triggered by TRAF family ubiquitin ligases that form K63-Ub chains. LGP2 is a feedback inhibitor of TRAF-mediated K63-Ub that can interfere with diverse immune signaling pathways. Our results demonstrate that LGP2 inhibits K63-Ub by association with and sequestration of the K63-Ub-conjugating enzyme, Ubc13/UBE2N. The LGP2 helicase subdomain, Hel2i, mediates protein interaction that engages and inhibits Ubc13/UBE2N, affecting control over a range of K63-Ub ligase proteins, including TRAF6, TRIM25, and RNF125, all of which are inactivated by LGP2. These findings establish a unifying mechanism for LGP2-mediated negative regulation that can modulate a variety of K63-Ub signaling pathways.
Collapse
Affiliation(s)
- Jessica J Lenoir
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
13
|
Zhou Y, Chen R, Luo X, Zhang WD, Qin JJ. The E2 ubiquitin-conjugating enzyme UbcH5c: an emerging target in cancer and immune disorders. Drug Discov Today 2020; 25:S1359-6446(20)30369-X. [PMID: 32947046 DOI: 10.1016/j.drudis.2020.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitination is a crucial post-translational modification (PTM) of proteins and regulates their stabilities and activities, thereby modulating multiple signaling pathways. UbcH5c, a member of the UbcH5 ubiquitin-conjugating enzyme (E2) protein family, engages in the ubiquitination of dozens of proteins and regulates nuclear factor kappa-B (NF-κB), p53 tumor suppressor, and several other essential signaling pathways. UbcH5c has been reported to be abnormally expressed in human cancer and immune disorders and is involved in the initiation and progression of these diseases. In this review, we mainly focus on UbcH5c structure, activity, signaling pathways, and its relevance to cancer and immune disorders. We end by integrating all known factors relating to UbcH5c inhibition as a potential cancer therapy method, and discuss associated challenges.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaofang Luo
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences; Cancer Hospital of the University of Chinese Academy of Sciences; Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
14
|
Xu C, Dolby GA, Drake KK, Esque TC, Kusumi K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS One 2020; 15:e0238202. [PMID: 32846428 PMCID: PMC7449761 DOI: 10.1371/journal.pone.0238202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - K. Kristina Drake
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Todd C. Esque
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
15
|
Bai Y, Li L, Shan T, Zhang Y, Chen X, Gao F, Jiang Y, Zhou Y, Li G, Yu L, Kong N, Ma Z, Tong G. Proteasomal degradation of nonstructural protein 12 by RNF114 suppresses porcine reproductive and respiratory syndrome virus replication. Vet Microbiol 2020; 246:108746. [PMID: 32605740 DOI: 10.1016/j.vetmic.2020.108746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the swine industry worldwide, and the development of effective and sustainable measures to control PRRSV transmission remains a pressing problem. The function of PRRSV nonstructural protein 12 (Nsp12), which might play essential roles in viral replication and production, remains unknown. In this study, we identified a new host-restricted factor, porcine RING finger protein 114 (RNF114), as an inhibitor of PRRSV replication through its degradation of viral Nsp12. Western blot, quantitative real-time polymerase chain reaction, and viral titer assays indicated that RNF114 overexpression suppressed PRRSV replication, whereas RNF114 knockdown increased viral titer and nucleocapsid protein levels. Additionally, we observed that PPRSV infection led to increased RNF114 levels during the middle and late phases of infection in both porcine alveolar macrophages and MARC-145 cells. Moreover, screening of PRRSV Nsps showed that RNF114 interacted with viral Nsp12, and that RNF114-specific anti-PRRSV effects were associated with its ubiquitin ligase activity, which involves K27-linked polyubiquitination and degradation of Nsp12 through a proteasome-dependent pathway. These findings identified RNF114 as a critical regulator of PRRSV replication and offer insights into the roles of Nsp12 in PRRSV pathogenesis.
Collapse
Affiliation(s)
- Yuanzhe Bai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yujiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
16
|
TLR4 abrogates the Th1 immune response through IRF1 and IFN-β to prevent immunopathology during L. infantum infection. PLoS Pathog 2020; 16:e1008435. [PMID: 32210480 PMCID: PMC7135367 DOI: 10.1371/journal.ppat.1008435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/06/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-β pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of dendritic cells (DCs). Gene expression analyses demonstrated that IRF1 and IFN-β were expressed downstream of TLR4 after infection. Accordingly, IRF1- and IFNAR-deficient mice harbored fewer parasites in the target organs than wild-type mice due to having an increased Th1 immune response. However, the absence of TLR4 or IFNAR increased the serum transaminase levels in infected mice, indicating the presence of liver damage in these animals. In addition, IFN-β limits IFN-γ production by acting directly on Th1 cells. Using RNA sequencing analysis of human samples, we demonstrated that the transcriptional signature for the TLR4 and type I IFN (IFN-I) pathways was positively modulated in asymptomatic subjects compared with VL patients and thus provide direct evidence demonstrating that the TLR4-IFN-I pathway is related to the nondevelopment of the disease. In conclusion, our results demonstrate that the TLR4-IRF1 pathway culminates in IFN-β production as a mechanism for dampening the chronic inflammatory process and preventing immunopathology development. Visceral leishmaniasis (VL) is one of the most lethal neglected tropical diseases and is caused by Leishmania parasites. Most subjects infected with Leishmania present subclinical VL symptoms, and their immune response is mediated by Th1 cells and immunoregulatory mechanisms. However, when infection progresses to disease, VL patients present increased levels of inflammatory mediators in the serum which are related to the severity of disease. During infection, Toll-like receptors (TLRs) interact with Leishmania parasites and contribute to the outcome of the disease. Herein, we report that TLR4 signaling hampers the chronic immune response during VL to prevent immunopathology. TLR4 triggers the activation of IRF1 and thus induces the transcription of IFN-β, which in turn acts directly on Th1 cells to limit the production of IFN-γ. In addition, a transcription analysis of human VL samples provides direct evidence demonstrating that the TLR4-IFN-I pathway is related to the asymptomatic form of the disease. Collectively, our findings reveal that TLR4 hampers the Th1 immune response through IRF1 and IFN-β to prevent immunopathology during VL.
Collapse
|
17
|
Araújo ACD, Fonseca FCDA, Cotta MG, Alves GSC, Miller RNG. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol 2018; 9:1083. [PMID: 29872431 PMCID: PMC5972323 DOI: 10.3389/fimmu.2018.01083] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research.
Collapse
Affiliation(s)
- Yuexiu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, City of Lancaster, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
19
|
Liu ZY, Cao J, Zhang JT, Xu GL, Li XP, Wang FT, Ansari KH, Mohamed H, Fan YZ. Ring finger protein 125, as a potential highly aggressive and unfavorable prognostic biomarker, promotes the invasion and metastasis of human gallbladder cancers via activating the TGF- β1-SMAD3-ID1 signaling pathway. Oncotarget 2018; 8:49897-49914. [PMID: 28611292 PMCID: PMC5564816 DOI: 10.18632/oncotarget.18180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Human gallbladder cancer (GBC) is a lethal aggressive malignant neoplasm. Identification of potential molecular biomarkers and development of targeted therapeutics for GBC patients is very necessary. In this study, we firstly investigated the correlation between ring finger protein 125 (RNF125) expression and the metastasis and prognosis of GBC, and the underlying molecular mechanism. RNF125 expression in a cohort of GBC tissues was examined; its correlation with clinicopathological and prognostic factors of GBC patients was analyzed. Moreover, the metastasis-related difference expressed genes in highly and lowly aggressive GBC cell lines were identified; and the influence of RNF125 knockdown on the metastatic phenotypes and characteristic EMT markers in highly aggressive GBC NOZ cells was detected. Furthermore, the underlying molecular mechanism of RNF125 effect was explored. The results showed that RNF125 was highly expressed in GBC tissues and related with aggressive characteristics such as Nevin stage (P = 0.041) etc. and unfavorable prognosis of GBC patients (P = 0.023, log-rank test). And, RNF125 was proved to a positive metastasis-related gene in vitro. RNF125 knockdown inhibited the invasion and migration, enhanced the adhesion, upregulated E-cadherin and β-catenin expression, and downregulated vimentin and N-cadherin expression (all P < 0.001) of NOZ cells in vitro. RNF125 promoting effect on GBC tumor progression was identified to relate with the activation of TGF-β1-SMAD3-ID1 signaling pathway. These findings firstly confirm that high RNF125 expression is related with aggressive characteristics and unfavorable prognosis of GBC patients; RNF125 promotes the invasion and metastasis of human GBCs via activating the TGF-β1-SMAD3-ID1 signaling pathway.
Collapse
Affiliation(s)
- Zhong-Yan Liu
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Guo-Li Xu
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xin-Ping Li
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Fang-Tao Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Kamar Hasan Ansari
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Hassan Mohamed
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
20
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Saha SS, Caviness G, Yi G, Raymond EL, Mbow ML, Kao CC. E3 Ubiquitin Ligase RNF125 Activates Interleukin-36 Receptor Signaling and Contributes to Its Turnover. J Innate Immun 2017; 10:56-69. [PMID: 29176319 DOI: 10.1159/000481210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Signaling by the interleukin-36 receptor (IL-36R) is linked to inflammatory diseases such as psoriasis. However, the regulation of IL-36R signaling is poorly understood. Activation of IL-36R signaling in cultured cells results in an increased polyubiquitination of the receptor subunit, IL-1Rrp2. Treatment with deubiquitinases shows that the receptor subunit of IL-36R, IL-1Rrp2, is primarily polyubiquitinated at the K63 position, which is associated with endocytic trafficking and signal transduction. A minor amount of ubiquitination is at the K48 position that is associated with protein degradation. A focused siRNA screen identified RNF125, an E3 ubiquitin ligase, to ubiquitinate IL-1Rrp2 upon activation of IL-36R signaling while not affecting the activated IL-1 receptor. Knockdown of RNF125 decreases signal transduction by the IL-36R. Overexpression of RNF125 in HEK293T cells activates IL-36R signaling and increases the ubiquitination of IL-1Rrp2 and its subsequent turnover. RNF125 can coimmunoprecipitate with the IL-36R, and it traffics with IL-1Rrp2 from the cell surface to lysosomes. Mutations of Lys568 and Lys569 in the C-terminal tail of IL-1Rrp2 decrease ubiquitination by RNF125 and increase the steady-state levels of IL-1Rrp2. These results demonstrate that RNF125 has multiple regulatory roles in the signaling, trafficking, and turnover of the IL-36R.
Collapse
Affiliation(s)
- Siddhartha S Saha
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
22
|
Identification and quantification of phenolic compounds through reversed phase HPLC-DAD method in sunflower seeds under various treatments of potassium nitrate, zinc sulphate and gibberellic acid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9637-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Jia X, Zhou H, Wu C, Wu Q, Ma S, Wei C, Cao Y, Song J, Zhong H, Zhou Z, Wang J. The Ubiquitin Ligase RNF125 Targets Innate Immune Adaptor Protein TRIM14 for Ubiquitination and Degradation. THE JOURNAL OF IMMUNOLOGY 2017; 198:4652-4658. [DOI: 10.4049/jimmunol.1601322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
|
24
|
Yang Y, Zhou C, Wang Y, Liu W, Liu C, Wang L, Liu Y, Shang Y, Li M, Zhou S, Wang Y, Zeng W, Zhou J, Huo R, Li W. The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. EMBO Rep 2017; 18:205-216. [PMID: 28073917 DOI: 10.15252/embr.201642573] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
The functional role of the ubiquitin-proteasome pathway during maternal-to-zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two-cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000-protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114-mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF-κB pathway. Taken together, our study uncovers that RNF114-mediated ubiquitination and degradation of TAB1 activate the NF-κB pathway during MZT, and thus directly link maternal clearance to early embryo development.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Reproduction, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Cheng Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Reproduction, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weixiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yuanting Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| | - Wentao Zeng
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Jianli Zhou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, the Chinese Academy of Science, Beijing, China
| |
Collapse
|
25
|
Higgins MJ, Serrano A, Boateng KY, Parsons VA, Phuong T, Seifert A, Ricca JM, Tucker KC, Eidelman AS, Carey MA, Kurt RA. A Multifaceted Role for Myd88-Dependent Signaling in Progression of Murine Mammary Carcinoma. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:157-167. [PMID: 27812285 PMCID: PMC5084708 DOI: 10.4137/bcbcr.s40075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Previous data obtained in our laboratory suggested that there may be constitutive signaling through the myeloid differentiation primary response gene 88 (Myd88)-dependent signaling cascade in murine mammary carcinoma. Here, we extended these findings by showing that, in the absence of an added Toll-like receptor (TLR) agonist, the myddosome complex was preformed in 4T1 tumor cells, and that Myd88 influenced cytoplasmic extracellular signal–regulated kinase (Erk)1/Erk2 levels, nuclear levels of nuclear factor-kappaB (NFκB) and signal transducer and activator of transcription 5 (STAT5), tumor-derived chemokine (C–C motif) ligand 2 (CCL2) expression, and in vitro and in vivo tumor growth. In addition, RNA-sequencing revealed that Myd88-dependent signaling enhanced the expression of genes that could contribute to breast cancer progression and genes previously associated with poor outcome for patients with breast cancer, in addition to suppressing the expression of genes capable of inhibiting breast cancer progression. Yet, Myd88-dependent signaling in tumor cells also suppressed expression of genes that could contribute to tumor progression. Collectively, these data revealed a multifaceted role for Myd88-dependent signaling in murine mammary carcinoma.
Collapse
Affiliation(s)
- Mary J Higgins
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | - Kofi Y Boateng
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | - Tiffany Phuong
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Alyssa Seifert
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Jacob M Ricca
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Kyle C Tucker
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | | | - Robert A Kurt
- Department of Biology, Lafayette College, Easton, PA, USA
| |
Collapse
|
26
|
A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125. Sci Rep 2016; 6:29232. [PMID: 27411375 PMCID: PMC4944129 DOI: 10.1038/srep29232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2.
Collapse
|
27
|
Layman AAK, Oliver PM. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3975-82. [PMID: 27183634 PMCID: PMC5738552 DOI: 10.4049/jimmunol.1502660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/10/2016] [Indexed: 12/22/2022]
Abstract
The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function.
Collapse
Affiliation(s)
- Awo A K Layman
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Paula M Oliver
- Department of Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Rep 2015; 11:1458-73. [PMID: 26027934 PMCID: PMC4681438 DOI: 10.1016/j.celrep.2015.04.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022] Open
Abstract
Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression.
Collapse
|
29
|
Sun Y, Zhu X, Chen X, Liu H, Xu Y, Chu Y, Wang G, Liu X. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity. Nat Commun 2014; 5:5225. [PMID: 25301163 DOI: 10.1038/ncomms6225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xufeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajing Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Rodriguez MS, Egaña I, Lopitz-Otsoa F, Aillet F, Lopez-Mato MP, Dorronsoro A, Dorronroso A, Lobato-Gil S, Sutherland JD, Barrio R, Trigueros C, Lang V. The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death Dis 2014; 5:e1399. [PMID: 25165885 PMCID: PMC4454333 DOI: 10.1038/cddis.2014.366] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022]
Abstract
Accurate regulation of nuclear factor-κB (NF-κB)
activity is crucial to prevent a variety of disorders including immune and
inflammatory diseases. Active NF-κB promotes
IκBα and A20 expression, important negative
regulatory molecules that control the NF-κB response. In this
study, using two-hybrid screening we identify the RING-type zinc-finger protein
114 (RNF114) as an A20-interacting factor. RNF114 interacts with A20 in T cells
and modulates A20 ubiquitylation. RNF114 acts as negative regulator of
NF-κB-dependent transcription, not only by stabilizing the
A20 protein but also IκBα. Importantly, we
demonstrate that in T cells, the effect of RNF114 is linked to the modulation of
T-cell activation and apoptosis but is independent of cell cycle regulation.
Altogether, our data indicate that RNF114 is a new partner of A2O involved in
the regulation of NF-κB activity that contributes to the control
of signaling pathways modulating T cell-mediated immune response.
Collapse
Affiliation(s)
- M S Rodriguez
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - I Egaña
- CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - F Aillet
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - M P Lopez-Mato
- Cytometry and Advanced Optical Microscopy Core Facility, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | - A Dorronroso
- Hematological Diseases, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - S Lobato-Gil
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | - R Barrio
- CIC bioGUNE, Derio, Bizkaia, Spain
| | - C Trigueros
- Hematological Diseases, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - V Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| |
Collapse
|
31
|
Zhang M, Ma Z, Selliah N, Weiss G, Genin A, Finkel TH, Cron RQ. The impact of Nucleofection® on the activation state of primary human CD4 T cells. J Immunol Methods 2014; 408:123-31. [PMID: 24910411 DOI: 10.1016/j.jim.2014.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
Abstract
Gene transfer into primary human CD4 T lymphocytes is a critical tool in studying the mechanism of T cell-dependent immune responses and human immunodeficiency virus-1 (HIV-1) infection. Nucleofection® is an electroporation technique that allows efficient gene transfer into primary human CD4 T cells that are notoriously resistant to traditional electroporation. Despite its popularity in immunological research, careful characterization of its impact on the physiology of CD4 T cells has not been documented. Herein, using freshly-isolated primary human CD4 T cells, we examine the effects of Nucleofection® on CD4 T cell morphology, intracellular calcium levels, cell surface activation markers, and transcriptional activity. We find that immediately after Nucleofection®, CD4 T cells undergo dramatic morphological changes characterized by wrinkled and dilated plasma membranes before recovering 1h later. The intracellular calcium level also increases after Nucleofection®, peaking after 1h before recovering 8h post transfection. Moreover, Nucleofection® leads to increased expression of T cell activation markers, CD154 and CD69, for more than 24h, and enhances the activation effects of phytohemagglutinin (PHA) stimulation. In addition, transcriptional activity is increased in the first 24h after Nucleofection®, even in the absence of exogenous stimuli. Therefore, Nucleofection® significantly alters the activation state of primary human CD4 T cells. The effect of transferred gene products on CD4 T cell function by Nucleofection® should be assessed after sufficient resting time post transfection or analyzed in light of the activation caveats mentioned above.
Collapse
Affiliation(s)
- Mingce Zhang
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, 1825 University Blvd,. Shelby Building, Rm. 371, Birmingham, AL 35233, United States.
| | - Zhengyu Ma
- Nemours/A. I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, United States.
| | - Nithianandan Selliah
- Celgene Cellular Therapeutics, 7 Powder Horn Dr., Warren, NJ 07059, United States.
| | - Greta Weiss
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia.
| | - Anna Genin
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, 1825 University Blvd,. Shelby Building, Rm. 371, Birmingham, AL 35233, United States.
| | - Terri H Finkel
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States.
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, 1825 University Blvd,. Shelby Building, Rm. 371, Birmingham, AL 35233, United States.
| |
Collapse
|
32
|
Yang P, Lu Y, Li M, Zhang K, Li C, Chen H, Tao D, Zhang S, Ma Y. Identification of RNF114 as a novel positive regulatory protein for T cell activation. Immunobiology 2014; 219:432-9. [PMID: 24631332 DOI: 10.1016/j.imbio.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 08/28/2013] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Ping Yang
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Biomedicine, Chengdu Medical College, Chengdu, PR China
| | - Yilu Lu
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Minhui Li
- Center of Science and Research, Chengdu Medical College, Chengdu, PR China
| | - Kun Zhang
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chao Li
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Huijuan Chen
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dachang Tao
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Sizhong Zhang
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
33
|
Feng YY, Sun LD, Zhang C, Zuo XB, Kang XJ, Wu WD, Zhang DZ, Wu XJ, Zhang XJ, Pu XM. Genetic variants of the genes encoding zinc finger protein 313 and interleukin-13 confer a risk for psoriasis in a Chinese Uygur population. Clin Exp Dermatol 2013; 38:768-74. [PMID: 23617596 DOI: 10.1111/ced.12049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent work using genome–wide association studies (GWAS) in Chinese Han and white populations have discovered several novel psoriasis susceptibility genes. AIM To examine whether the risk loci for psoriasis identified in previous GWAS in a white population are also associated with psoriasis in a Chinese Uygur population in Xinjiang. METHODS Genotyping analysis of eight single-nucleotide polymorphisms (SNPs) associated with psoriasis was performed for 539 patients with psoriasis and 749 controls, all of Chinese Uygur descent, using a commercial assay. RESULTS Two SNPs had an association with psoriasis in this Chinese Uygur population: SNP rs495337 in the gene encoding for zinc finger protein 313 (P < 0.001; OR = 0.80) and SNP rs20541 of the gene encoding for interleukin-13 (P < 0.001; OR = 0.82). In subgroup analyses, the two SNPs were significantly associated (P < 0.05) with type I psoriasis, Rs495337 showed statistically difference between positive family history of psoriasis patients and controls whereas rs20541 might preferentially associated with negative family history psoriasis patients. Interestingly, using multifactor dimensionality reduction, a significant two-locus interaction was seen between rs495337 and rs20541, with a crossvalidation consistency of 4/5 and average balanced prediction (accuracy 55.5%, P < 0.001). CONCLUSIONS ZNF313 and IL-13 are associated with risk for psoriasis in a Chinese Uygur population, and there is an effect of interaction between the two genes on this risk.
Collapse
|
34
|
Luo H, Zhang Z, Zheng Z, Ke X, Zhang X, Li Q, Liu Y, Bai B, Mao P, Hu Q, Wang H. Human bocavirus VP2 upregulates IFN-β pathway by inhibiting ring finger protein 125-mediated ubiquitination of retinoic acid-inducible gene-I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:660-9. [PMID: 23772026 DOI: 10.4049/jimmunol.1202933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precise regulation of innate immunity is crucial for maintaining optimal immune responses against infections. Whereas positive regulation of IFN signaling elicits rapid type I IFNs, negative regulation is equally important in preventing the production of superfluous IFNs that can be hazardous to the host. The positive regulators of IFN pathway are known to be the main targets of viruses to antagonize the innate immune system. Whether viruses target the negative regulators of IFN pathway remains to be fully investigated. In this study, we report that the structural protein VP2 of human Bocavirus modulates IFN pathway by targeting the ring finger protein 125 (RNF125), a negative regulator of type I IFN signaling, which conjugates Lys(48)-linked ubiquitination to retinoic acid-inducible gene-I (RIG-I) and subsequently leads to the proteasome-dependent degradation of RIG-I. VP2 not only upregulated Sendai virus (SeV)-induced IFNB promoter activity, but also enhanced SeV-induced IFN-β production at both mRNA and protein levels. In agreement, the level of Ser(396)-phosphorylated IFN regulatory factor 3 stimulated by SeV was enhanced in the presence of VP2. Furthermore, VP2 was demonstrated to physically interact with RNF125, resulting in the reduction of RNF125-mediated ubiquitination and proteasome-dependent degradation of RIG-I. Additional study indicated that endogenous RIG-I degradation was decreased in VP2-expressing cells. Our study delineates a unique phenomenon for aberrant activation of IFN regulatory factor 3 pathway and may represent a new mechanism underlying viral manipulation of the host immune system.
Collapse
Affiliation(s)
- Huanle Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoover RG, Gullickson G, Kornbluth J. Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis. Front Immunol 2012; 3:393. [PMID: 23269922 PMCID: PMC3529306 DOI: 10.3389/fimmu.2012.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/06/2012] [Indexed: 01/23/2023] Open
Abstract
Natural killer lytic-associated molecule (NKLAM) is an E3 ubiquitin ligase that plays a major role in the cytolytic activity of NK cells. NKLAM is rapidly synthesized and then targeted to the granule membranes of NK cells upon NK activation. Previous studies have shown an essential role for NKLAM in NK killing activity in vitro. These findings were extended to an in vivo model of NK-mediated tumor killing in which NKLAM-deficient knockout (KO) mice injected with B16 melanoma cells were found to have significantly higher numbers of pulmonary tumor nodules than wild-type (WT) mice. To further investigate the role of NKLAM and NK function in tumor immunity in vivo, we utilized additional tumor models to compare tumor development and progression in NKLAM KO and WT mice. Primary tumor growth, dissemination, and metastasis of RMA-S lymphoma cells and E0771 breast cancer cells were evaluated. Both tumor cell lines were stably transfected with constructs that allow expression of green fluorescent protein (GFP), which serves as a tumor-specific marker. Intravenous injection of NK-sensitive RMA-S lymphoma cells resulted in greater dissemination of lymphoma cells in NKLAM KO mice than in WT mice. Lymphoma cells were found in the lymph nodes and bone marrow (BM) of NKLAM KO mice 2 weeks after injection; few detectable tumor cells remained in WT mice. E0771 syngeneic breast cancer cells were injected into the mammary pads of NKLAM KO and WT mice. Primary tumor growth was greater in NKLAM KO than in WT mice. More significantly, there were 4–5-fold more tumor cells in the blood and lungs of NKLAM KO than in WT mice 2 weeks after injection of tumor cells into the mammary pad. These results indicate that NKLAM plays a role in tumor development in vivo, especially in controlling tumor dissemination and metastasis to distant sites.
Collapse
Affiliation(s)
- Richard G Hoover
- Department of Pathology, Saint Louis University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
36
|
Maelfait J, Beyaert R. Emerging role of ubiquitination in antiviral RIG-I signaling. Microbiol Mol Biol Rev 2012; 76:33-45. [PMID: 22390971 PMCID: PMC3294425 DOI: 10.1128/mmbr.05012-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Detection of viruses by the innate immune system involves the action of specialized pattern recognition receptors. Intracellular RIG-I receptors sense the presence of viral nucleic acids in infected cells and trigger signaling pathways that lead to the production of proinflammatory and antiviral proteins. Over the past few years, posttranslational modification of RIG-I and downstream signaling proteins by different types of ubiquitination has been found to be a key event in the regulation of RIG-I-induced NF-κB and interferon regulatory factor 3 (IRF3) activation. Multiple ubiquitin ligases, deubiquitinases, and ubiquitin binding scaffold proteins contribute to both positive and negative regulation of the RIG-I-induced antiviral immune response. A better understanding of the function and activity of these proteins might eventually lead to the development of novel therapeutic approaches for management of viral diseases.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Oshiumi H, Matsumoto M, Seya T. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J Biochem 2012; 151:5-11. [PMID: 21890623 DOI: 10.1093/jb/mvr111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku Sapporo 060-8638, Japan.
| | | | | |
Collapse
|
38
|
Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc Natl Acad Sci U S A 2010; 107:15856-61. [PMID: 20724660 DOI: 10.1073/pnas.1004621107] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rapid induction of type I IFN is a central event of the innate defense against viral infections and is tightly regulated by a number of cellular molecules. Viral components induce strong type I IFN responses through the activation of toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as an RNA helicase RIG-I and/or MDA5. According to recent studies, the NF-kappaB essential modulator (NEMO, also called IKKgamma) is crucial for this virus-induced antiviral response. However, the precise roles of signal activation by NEMO adaptor have not been elucidated. Here, we show that virus-induced IRF3 and NF-kappaB activation depends on the K(lys)-27-linked polyubiquitination to NEMO by the novel ubiquitin E3 ligase triparite motif protein 23 (TRIM23). Virus-induced IRF3 and NF-kappaB activation, as well as K27-linked NEMO polyubiquitination, were abrogated in TRIM23 knockdown cells, whereas TRIM23 knockdown had no effect on TNFalpha-mediated NF-kappaB activation. Furthermore, in NEMO-deficient mouse embryo fibroblast cells, IFN-stimulated response element-driven reporter activity was restored by ectopic expression of WT NEMO, as expected, but only partial recovery by NEMO K165/309/325/326/344R multipoints mutant on which TRIM23-mediated ubiquitin conjugation was substantially reduced. Thus, we conclude that TRIM23-mediated ubiquitin conjugation to NEMO is essential for TLR3- and RIG-I/MDA5-mediated antiviral innate and inflammatory responses.
Collapse
|
39
|
Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, Oresic M, Lähdesmäki H, Rasool O, Rao KV, Aittokallio T, Lahesmaa R. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 2010; 32:852-62. [PMID: 20620947 DOI: 10.1016/j.immuni.2010.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/20/2010] [Accepted: 05/26/2010] [Indexed: 01/30/2023]
Abstract
Dissecting the molecular mechanisms by which T helper (Th) cells differentiate to effector Th2 cells is important for understanding the pathogenesis of immune-mediated diseases, such as asthma and allergy. Because the STAT6 transcription factor is an upstream mediator required for interleukin-4 (IL-4)-induced Th2 cell differentiation, its targets include genes important for this process. Using primary human CD4(+) T cells, and by blocking STAT6 with RNAi, we identified a number of direct and indirect targets of STAT6 with ChIP sequencing. The integration of these data sets with detailed kinetics of IL-4-driven transcriptional changes showed that STAT6 was predominantly needed for the activation of transcription leading to the Th2 cell phenotype. This integrated genome-wide data on IL-4- and STAT6-mediated transcription provide a unique resource for studies on Th cell differentiation and, in particular, for designing interventions of human Th2 cell responses.
Collapse
Affiliation(s)
- Laura L Elo
- Biomathematics Research Group, Department of Mathematics, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. Cytokine 2008; 43:359-67. [PMID: 18707898 DOI: 10.1016/j.cyto.2008.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/26/2008] [Indexed: 01/09/2023]
Abstract
Post-translational protein modifications are involved in all functions of living cells. This includes the ability of cells to recognize pathogens and regulate genes involved in their clearance, a concept known as innate immunity. While phosphorylation mechanisms play essential roles in regulating different aspects of the innate immune response, ubiquitination is now recognized as another post-translational modification that works in parallel with phosphorylation to orchestrate the final proper innate immune response against invading pathogens. More precisely, this review will discuss the most recent advances that address the role of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling.
Collapse
|
41
|
Sasaki H, Miura K, Horii A, Kaneko N, Fujibuchi W, Kiseleva L, Gu Z, Murata Y, Karasawa H, Mizoi T, Kobayashi T, Kinouchi M, Ohnuma S, Yazaki N, Unno M, Sasaki I. Orthotopic implantation mouse model and cDNA microarray analysis indicates several genes potentially involved in lymph node metastasis of colorectal cancer. Cancer Sci 2008; 99:711-9. [PMID: 18307535 PMCID: PMC11158708 DOI: 10.1111/j.1349-7006.2008.00725.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/29/2007] [Accepted: 12/02/2007] [Indexed: 12/29/2022] Open
Abstract
In colorectal cancer (CRC) patients, metastasis to the regional lymph node (LN) is an important first step in the dissemination of cancers. To identify the genes possibly involved in LN metastasis of CRC, we analyzed LN metastases in an orthotopic implantation mouse model with 22 CRC cell lines using Matrigel, an extracellular matrix protein derived from mice sarcoma, and combined the data with gene expression profiles of cDNA microarray of those cell lines. With this implantation analysis, the incidence of LN metastasis was 60% in 228 orthotopically implanted mice and varied from 100% to 0% among the cell lines. KM12c and Clone A showed LN metastasis in all orthotopically implanted mice, but DLD-1, HCT-8, and SW948 did not show LN metastases at all. In contrast, the incidence of liver and lung metastasis in 22 CRC cell lines was 13% and 1%, respectively. Combining those data with cDNA microarray in vitro, we isolated 636 genes that were differentially expressed depending on the incidence of LN metastasis. Among those genes, the expression level of ring finger protein 125 (RNF125), previously known as an E3 ubiquitin ligase in T cell activation, was significantly different between primary tumors in Stage III CRC patients with LN metastasis and Stage II patients without LN metastasis. In conclusion, the orthotopic implantation mice model with Matrigel was useful, and we isolated candidate genes such as RNF125 that possibly play an important role in LN metastasis of CRC cells.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Division of Biological-Regulation and Oncology, Tohoku University Graduate School of Medicine, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Capon F, Bijlmakers MJ, Wolf N, Quaranta M, Huffmeier U, Allen M, Timms K, Abkevich V, Gutin A, Smith R, Warren RB, Young HS, Worthington J, Burden AD, Griffiths CEM, Hayday A, Nestle FO, Reis A, Lanchbury J, Barker JN, Trembath RC. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum Mol Genet 2008; 17:1938-45. [PMID: 18364390 DOI: 10.1093/hmg/ddn091] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is an immune-mediated skin disorder that is inherited as a multifactorial trait. Linkage studies have clearly identified a primary disease susceptibility locus lying within the major histocompatibility complex (MHC), but have generated conflicting results for other genomic regions. To overcome this difficulty, we have carried out a genome-wide association scan, where we analyzed more than 408,000 SNPs in an initial sample of 318 cases and 288 controls. Outside of the MHC, we observed a single cluster of disease-associated markers, spanning 47 kb on chromosome 20q13. The analysis of two replication data sets confirmed this association, with SNP rs495337 yielding a combined P-value of 1.4 x 10(-8) in an overall sample of 2679 cases and 2215 controls. Rs495337 maps to the SPATA2 transcript and is in absolute linkage disequilibrium with five SNPs lying in the adjacent ZNF313 gene (also known as RNF114). Real-time PCR experiments showed that, unlike SPATA2, ZNF313 is abundantly expressed in skin, T-lymphocytes and dendritic cells. Furthermore, an analysis of the expression data available from the Genevar database indicated that rs495337 is associated with increased ZNF313 transcripts levels (P = 0.003), suggesting that the disease susceptibility allele may be a ZNF313 regulatory variant tagged by rs495337. Homology searches indicated that ZNF313 is a paralogue of TRAC-1, an ubiquitin ligase regulating T-cell activation. We performed cell-free assays and confirmed that like TRAC-1, ZNF313 binds ubiquitin via an ubiquitin-interaction motif (UIM). These findings collectively identify a novel psoriasis susceptibility gene, with a putative role in the regulation of immune responses.
Collapse
Affiliation(s)
- Francesca Capon
- Division of Genetics and Molecular Medicine, Infection and Inflammatory Disease, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008; 40:200-10. [DOI: 10.1016/j.bcmd.2007.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 01/10/2023]
|
44
|
Giannini AL, Gao Y, Bijlmakers MJ. T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem J 2008; 410:101-11. [PMID: 17990982 PMCID: PMC2733222 DOI: 10.1042/bj20070995] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recently identified RNF125 [RING (really interesting new gene) finger protein 125], or TRAC-1 (T-cell RING protein in activation 1), is unique among ubiquitin ligases in being a positive regulator of T-cell activation. In addition, TRAC-1 has been shown to down-modulate HIV replication and to inhibit pathogen-induced cytokine production. However, apart from the presence of an N-terminal C3HC4 (Cys(3)-His-Cys(4)) RING domain, the TRAC-1 protein remains uncharacterized. In the present paper, we report novel interactions and modifications for TRAC-1, and elucidate its domain organization. Specifically, we determine that TRAC-1 associates with membranes and is excluded from the nucleus through myristoylation. Our data are further consistent with a crucial role for the C-terminus in TRAC-1 function. In this region, novel domains were recognized through the identification of three closely related proteins: RNF114, RNF138 and RNF166. TRAC-1 and its relatives were found to contain, apart from the RING domain, a C2HC (Cys(2)-His-Cys)- and two C2H2 (Cys(2)-His(2))-type zinc fingers, as well as a UIM (ubiquitin-interacting motif). The UIM of TRAC-1 binds Lys(48)-linked polyubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. As a consequence of auto-ubiquitination, the half-life of TRAC-1 is shorter than 30 min. The identification of these novel modifications, interactions, domains and relatives significantly widens the contexts for investigating TRAC-1 activity and regulation.
Collapse
Affiliation(s)
- Ana Lucia Giannini
- Department of Immunobiology, 2 Floor New Guy’s House, Guy’s Hospital, St Thomas Street, London SE1 9RT, UK.
| | - Yifang Gao
- Department of Immunobiology, 2 Floor New Guy’s House, Guy’s Hospital, St Thomas Street, London SE1 9RT, UK.
| | - Marie-José Bijlmakers
- Department of Immunobiology, 2 Floor New Guy’s House, Guy’s Hospital, St Thomas Street, London SE1 9RT, UK.
| |
Collapse
|
45
|
Shoji-Kawata S, Zhong Q, Kameoka M, Iwabu Y, Sapsutthipas S, Luftig RB, Ikuta K. The RING finger ubiquitin ligase RNF125/TRAC-1 down-modulates HIV-1 replication in primary human peripheral blood mononuclear cells. Virology 2007; 368:191-204. [PMID: 17643463 DOI: 10.1016/j.virol.2007.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/04/2007] [Accepted: 06/19/2007] [Indexed: 11/27/2022]
Abstract
CXCR4-using HIV-1 was previously shown to replicate more efficiently in a healthy donor-derived CD4(+) CD38(+) than in a CD4(+) CD38(-) T-cell subset after stimulation with interleukin (IL)-4. Here, we identified 3 cellular genes, which were expressed to a higher level in an IL-4-stimulated CD38(-) subset. One of the 3 genes, RNF125/TRAC-1, was involved in the down-regulation of HIV-1 replication not only in cell lines, but also in peripheral blood mononuclear cells. RNF125/TRAC-1 bears the RING finger domain, important for E3 ubiquitin protein ligase. Mutations in this domain of RNF125/TRAC-1 led to the loss of HIV-1 down-modulatory activity, suggesting that E3 ligase activity is necessary. In addition, the results of Northern blotting and reporter gene analysis indicated that RNF125/TRAC-1 function occurs at the viral transcription step. These results suggest that RNF125/TRAC-1 could function to recruit host factor(s) controlling HIV-1 transcription to the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Sanae Shoji-Kawata
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Directing both innate and adaptive immune responses against foreign pathogens with correct timing, location and specificity is a fundamental objective for the immune system. Full activation of CD4+ T cells requires the binding of peptide-MHC complexes coupled with accessory signals provided by the antigen-presenting cell. However, aberrant activation of the T-cell receptor alone in mature T cells can produce a long-lived state of functional unresponsiveness, known as anergy. Recent studies probing both immune signalling pathways and the ubiquitin-proteasome system have helped to refine and elaborate current models for the molecular mechanisms underlying T-cell anergy. Controlling anergy induction and maintenance will be a key component in the future to mitigate unwanted T-cell activation that leads to autoimmune disease.
Collapse
Affiliation(s)
- C Garrison Fathman
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, CCSR Building, 269 Campus Drive, Room 2225, Stanford, California 94305-5166, USA.
| | | |
Collapse
|
47
|
Arimoto KI, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 2007; 104:7500-5. [PMID: 17460044 PMCID: PMC1863485 DOI: 10.1073/pnas.0611551104] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) plays a pivotal role in the regulation of cytokine production induced by pathogens. The RIG-I also augments the production of IFN and other cytokines via an amplification circuit. Because the production of cytokines is closely controlled, up- and down-regulation of RIG-I signaling also needs strict regulation. The mechanism of this regulation, however, remains elusive. Here, we found that RIG-I undergoes proteasomal degradation after conjugation to ubiquitin by RNF125. Further, RNF125 conjugates ubiquitin to MDA5, a family protein of RIG-I as well as IPS-1, which is also a downstream protein of RIG-I signaling that results in suppressing the functions of these proteins. Because RNF125 is enhanced by IFN, these functions constitute a negative regulatory loop circuit for IFN production.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Fujita
- Department of Genetic and Molecular Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kunitada Shimotohno
- *Department of Viral Oncology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Huang YH, Barouch-Bentov R, Herman A, Walker J, Sauer K. Integrating traditional and postgenomic approaches to investigate lymphocyte development and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 584:245-76. [PMID: 16802612 DOI: 10.1007/0-387-34132-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Yina Hsing Huang
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
49
|
Fortier JM, Kornbluth J. NK Lytic-Associated Molecule, Involved in NK Cytotoxic Function, Is an E3 Ligase. THE JOURNAL OF IMMUNOLOGY 2006; 176:6454-63. [PMID: 16709802 DOI: 10.4049/jimmunol.176.11.6454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK lytic-associated molecule (NKLAM) is a protein involved in the cytolytic function of NK cells and CTLs. It has been localized to the cytolytic granules in NK cells and is up-regulated when cells are exposed to cytokines IL-2 or IFN-beta. We report in this study that NKLAM contains a cysteine-rich really interesting new gene (RING) in between RING-RING domain, and that this domain possesses strong homology to the RING domain of the known E3 ubiquitin ligase, Dorfin. To determine whether NKLAM functions as an E3 ligase, we performed coimmunoprecipitation binding assays with ubiquitin conjugates (Ubcs) UbcH7, UbcH8, and UbcH10. We demonstrated that both UbcH7 and UbcH8 bind to full-length NKLAM. We then performed a similar binding assay using endogenous NKLAM and UbcH8 expressed by human NK clone NK3.3 to show that the protein interaction occurs in vivo. Using the yeast two-hybrid system, we identified uridine kinase like-1 (URKL-1) protein as a substrate for NKLAM. We confirmed that NKLAM and URKL-1 interact in mammalian cells by using both immunoprecipitation and confocal microscopy. We demonstrated decreased protein expression and enhanced ubiquitination of URKL-1 in the presence of NKLAM. These data indicate that NKLAM is a RING finger protein that binds Ubcs and has as one of its substrates, URKL-1, thus defining this cytolytic protein as an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Julie M Fortier
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
50
|
Wohlfert EA, Gorelik L, Mittler R, Flavell RA, Clark RB. Cutting Edge: Deficiency in the E3 Ubiquitin Ligase Cbl-b Results in a Multifunctional Defect in T Cell TGF-β Sensitivity In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2006; 176:1316-20. [PMID: 16424156 DOI: 10.4049/jimmunol.176.3.1316] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice deficient in the E3 ubiquitin ligase Cbl-b have CD28-independent T cells and develop autoimmunity. We previously reported that Cbl-b-/- CD4+CD25- T effector cells are resistant in vitro to the antiproliferative effects of CD4+CD25+ regulatory T cells and TGF-beta. We have now asked whether the resistance noted in Cbl-b-/- T cells is restricted solely to TGF-beta's antiproliferative effects, whether the TGF-beta resistance has in vivo relevance, and whether a defect can be identified in the TGF-beta signaling pathway. We now demonstrate the following: 1) in vitro, Cbl-b deficiency prevents the TGF-beta-mediated induction of Foxp3+ functional regulatory T cells; 2) in vivo, Cbl-b-/- mice show a significantly enhanced response to a tumor that is strictly TGF-beta regulated; and 3) Cbl-b-/- T effector cells have defective TGF-beta-mediated Smad2 phosphorylation. These studies are the first to document that the E3 ubiquitin ligase Cbl-b plays an integral role in T cell TGF-beta signaling, and that its absence results in multifunctional TGF-beta-related defects that have important disease-related implications.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Immunology, Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | |
Collapse
|