1
|
Bourque J, Hawiger D. Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation. BIOLOGY 2023; 12:biology12050716. [PMID: 37237529 DOI: 10.3390/biology12050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010929. [PMID: 36445875 PMCID: PMC9707759 DOI: 10.1371/journal.pntd.0010929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.
Collapse
Affiliation(s)
- Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| |
Collapse
|
3
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Trop 2022; 226:106263. [PMID: 34879232 DOI: 10.1016/j.actatropica.2021.106263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Elastase belongs to the serine protease family. Previous studies showed that Trichinella spiralis elastase (TsE) was highly expressed in intestinal infective larvae (IIL). Recombinant TsE (rTsE) promoted the larval intrusion of enteral epithelium cells (IECs), whereas anti-rTsE antibodies and siRNA impeded larval intrusion. Subcutaneous vaccination of mice with rTsE showed a partial protective immunity, suggesting that TsE might be a promising vaccine target against Trichinella infection. In this study, complete TsE cDNA sequence was cloned into pcDNA3.1, and the rTsE DNA was transformed into attenuated S. typhimurium strain ΔcyaSL1344. Oral vaccination of mice with TsE DNA elicited a systemic Th1/Th2/Treg mixed immune response and gut local mucosal sIgA response. Immunized mice exhibited a significant immune protection against T. spiralis larval challenge, as demonstrated by a 52.48% reduction of enteral adult worms and a 69.43% reduction of muscle larvae. The protection might be related to the TsE-induced production of intestinal mucus, specific anti-TsE sIgA and IgG, and secretion of IFN-γ, IL-2, IL-4 and IL-10, which protected gut mucosa from larval intrusion, suppressed worm development and impeded female reproduction. The results demonstrated that attenuated Salmonella-delivered TsE DNA vaccine provided a prospective strategy for the control of Trichinella infection in food animals.
Collapse
|
5
|
Dhingra D, Marathe SA, Sharma N, Marathe A, Chakravortty D. Modeling the immune response to Salmonella during typhoid. Int Immunol 2021; 33:281-298. [PMID: 33406267 DOI: 10.1093/intimm/dxab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Several facets of the host immune response to Salmonella infection have been studied independently at great depths to understand the progress and pathogenesis of Salmonella infection. The circumstances under which a Salmonella-infected individual succumbs to an active disease, evolves as a persister or clears the infection are not understood in detail. We have adopted a system-level approach to develop a continuous-time mechanistic model. We considered key interactions of the immune system state variables with Salmonella in the mesenteric lymph node to determine the final disease outcome deterministically and exclusively temporally. The model accurately predicts the disease outcomes and immune response trajectories operational during typhoid. The results of the simulation confirm the role of anti-inflammatory (M2) macrophages as a site for persistence and relapsing infection. Global sensitivity analysis highlights the importance of both bacterial and host attributes in influencing the disease outcome. It also illustrates the importance of robust phagocytic and anti-microbial potential of M1 macrophages and dendritic cells (DCs) in controlling the disease. Finally, we propose therapeutic strategies for both antibiotic-sensitive and antibiotic-resistant strains (such as IFN-γ therapy, DC transfer and phagocytic potential stimulation). We also suggest prevention strategies such as improving the humoral response and macrophage carrying capacity, which could complement current vaccination schemes for enhanced efficiency.
Collapse
Affiliation(s)
- Divy Dhingra
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Nandita Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Amol Marathe
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Eastman AJ, Xu J, Bermik J, Potchen N, den Dekker A, Neal LM, Zhao G, Malachowski A, Schaller M, Kunkel S, Osterholzer JJ, Kryczek I, Olszewski MA. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. SCIENCE ADVANCES 2019; 5:eaaw9051. [PMID: 31840058 PMCID: PMC6892624 DOI: 10.1126/sciadv.aaw9051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/18/2019] [Indexed: 05/16/2023]
Abstract
Epigenetic modifications play critical roles in inducing long-lasting immunological memory in innate immune cells, termed trained immunity. Whether similar epigenetic mechanisms regulate dendtritic cell (DC) function to orchestrate development of adaptive immunity remains unknown. We report that DCs matured with IFNγ and TNFα or matured in the lungs during invasive fungal infection with endogenous TNFα acquired a stable TNFα-dependent DC1 program, rendering them resistant to both antigen- and cytokine-induced alternative activation. TNFα-programmed DC1 had increased association of H3K4me3 with DC1 gene promoter regions. Furthermore, MLL1 inhibition blocked TNFα-mediated DC1 phenotype stabilization. During IFI, TNFα-programmed DC1s were required for the development of sustained TH1/TH17 protective immunity, and bone marrow pre-DCs exhibited TNFα-dependent preprogramming, supporting continuous generation of programmed DC1 throughout the infection. TNFα signaling, associated with epigenetic activation of DC1 genes particularly via H3K4me3, critically contributes to generation and sustenance of type 1/17 adaptive immunity and the immune protection against persistent infection.
Collapse
Affiliation(s)
- Alison J. Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | - Jintao Xu
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | - Jennifer Bermik
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Aaron den Dekker
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lori M. Neal
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guolei Zhao
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | | | - Matt Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Steven Kunkel
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John J. Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Kryczek
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection. Infect Immun 2017. [PMID: 28630067 PMCID: PMC5563584 DOI: 10.1128/iai.00393-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors.
Collapse
|
8
|
New Insights into the Roles of Long Polar Fimbriae and Stg Fimbriae in Salmonella Interactions with Enterocytes and M Cells. Infect Immun 2017. [PMID: 28630073 DOI: 10.1128/iai.00172-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi causes the systemic disease typhoid fever. After ingestion, it adheres to and invades the host epithelium while evading the host innate immune response, causing little if any inflammation. Conversely, Salmonella enterica serovar Typhimurium causes gastroenteritis in humans and thrives in the inflamed gut. Upon entering the host, S Typhimurium preferentially colonizes Peyer's patches, a lymphoid organ in which microfold cells (M cells) overlay an arrangement of B cells, T cells, and antigen-presenting cells. Both serovars can adhere to and invade M cells and enterocytes, and it has been assumed that S Typhi also preferentially targets M cells. In this study, we present data supporting the alternative hypothesis that S Typhi preferentially targets enterocytes. Using a tissue culture M cell model, we examined S Typhi strains with a deletion in the stg fimbriae. The stg deletion resulted in increased adherence to M cells and, as expected, decreased adherence to Caco-2 cells. Adherence to M cells could be further enhanced by introduction of the long polar fimbriae (Lpf), which facilitate adherence of S Typhimurium to M cells. Deletion of stg and/or introduction of lpf enhanced M cell invasion as well, leading to significant increases in secretion of interleukin 8. These results suggest that S Typhi may preferentially target enterocytes in vivo.
Collapse
|
9
|
Fernández-Santoscoy M, Wenzel UA, Persson E, Yrlid U, Agace W, Wick MJ. A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection. Immunol Lett 2016; 176:72-80. [DOI: 10.1016/j.imlet.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/21/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022]
|
10
|
Papadopoulos A, Gorvel JP. Subversion of mouse dendritic cell subset function by bacterial pathogens. Microb Pathog 2015; 89:140-9. [PMID: 26453826 DOI: 10.1016/j.micpath.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role as sentinels of the immune system in initiating and controlling the quality of adaptive immune responses. Located at entry points of the host they can sense and alert the body from dangers such as infection by pathogenic bacteria. Considering their strategic localization it is not surprising that DCs have evolved in a series of DC subtypes, which are well adapted to their microenvironment. Nowadays, the advent of the identification of specific DC subtypes has opened the way for the study of pathogen-DCs interactions and the involved mechanisms of these interactions. Due to key aspect of DCs, several bacterial pathogens have taken advantage of these cells and developed mechanisms to subvert DC function and thereby evade the immune system. This review brings recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
11
|
Abstract
The interaction betweenSalmonella and its host is complex and dynamic: the host mounts an immune defense against the pathogen, which in turn acts to reduce, evade, or exploit these responses to successfully colonize the host. Although the exact mechanisms mediating protective immunity are poorly understood, it is known that T cells are a critical component of immunity to Salmonella infection, and a robust T-cell response is required for both clearance of primary infection and resistance to subsequent challenge. B-cell functions, including but not limited to antibody production, are also required for generation of protective immunity. Additionally, interactions among host cells are essential. For example, antigen-presenting cells (including B cells) express cytokines that participate in CD4+ T cell activation and differentiation. Differentiated CD4+ T cells secrete cytokines that have both autocrine and paracrine functions, including recruitment and activation of phagocytes, and stimulation of B cell isotype class switching and affinity maturation. Multiple bacterium-directed mechanisms, including altered antigen expression and bioavailability and interference with antigen-presenting cell activation and function, combine to modify Salmonella's "pathogenic signature" in order to minimize its susceptibility to host immune surveillance. Therefore, a more complete understanding of adaptive immune responses may provide insights into pathogenic bacterial functions. Continued identification of adaptive immune targets will guide rational vaccine development, provide insights into host functions required to resist Salmonella infection, and correspondingly provide valuable reagents for defining the critical pathogenic capabilities of Salmonella that contribute to their success in causing acute and chronic infections.
Collapse
|
12
|
Wenzel UA, Fernandez-Santoscoy M, Tam MA, Tegtmeyer P, Wick MJ. Synergy between CD40 and MyD88 Does Not Influence Host Survival to Salmonella Infection. Front Immunol 2015; 6:460. [PMID: 26441965 PMCID: PMC4568434 DOI: 10.3389/fimmu.2015.00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues. In contrast to infected wildtype and CD40(-/-) mice, both MyD88(-/-) mice and DKO mice lack detectable serum IFN-γ and have elevated IL-10. A synergistic effect of TLRs and CD40 was revealed in co-culture experiments where OT-II T cell proliferation was compromised when DKO DCs were pulsed with OVA protein and OVA323-339 peptide, but not with heat-killed Salmonella expressing OVA (HKSOVA), relative to MyD88(-/-) DCs. By contrast, MyD88(-/-) or DKO DCs pulsed with any of the antigens had a similar ability to induce IFN-γ that was lower than WT or CD40(-/-) DCs. DKO DCs pulsed with HKSOVA, but not with OVA or OVA323-339, had increased IL-10 relative to MyD88(-/-) DCs. Finally, HKSOVA-pulsed MyD88(-/-) and DKO DCs had similar and low induction of NFκB-dependent and -independent genes upon co-culture with OT-II cells. Overall, our data revealed that synergistic effects of CD40 and MyD88 do not influence host survival to Salmonella infection or serum levels of IFN-γ or IL-10. However, synergistic effects of MyD88 and CD40 may be apparent on some (IL-10 production) but not all (OT-II proliferation and IFN-γ production) DC functions and depend on the complexity of the antigen. Indeed, synergistic effects observed using purified ligands and well-defined antigens may not necessarily apply when complex antigens, such as live bacteria, challenge the immune system.
Collapse
Affiliation(s)
- Ulf Alexander Wenzel
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Maria Fernandez-Santoscoy
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | | | - Pia Tegtmeyer
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; TWINCORE Centre for Experimental and Clinical Infection Research, Institute for Experimental Infection Research , Hannover , Germany
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
13
|
Hägerbrand K, Westlund J, Yrlid U, Agace W, Johansson-Lindbom B. MyD88 Signaling Regulates Steady-State Migration of Intestinal CD103+ Dendritic Cells Independently of TNF-α and the Gut Microbiota. THE JOURNAL OF IMMUNOLOGY 2015; 195:2888-99. [PMID: 26259586 DOI: 10.4049/jimmunol.1500210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023]
Abstract
Intestinal homeostasis and induction of systemic tolerance to fed Ags (i.e., oral tolerance) rely on the steady-state migration of small intestinal lamina propria dendritic cells (DCs) into draining mesenteric lymph nodes (MLN). The majority of these migratory DCs express the α integrin chain CD103, and in this study we demonstrate that the steady-state mobilization of CD103(+) DCs into the MLN is in part governed by the IL-1R family/TLR signaling adaptor molecule MyD88. Similar to mice with complete MyD88 deficiency, specific deletion of MyD88 in DCs resulted in a 50-60% reduction in short-term accumulation of both CD103(+)CD11b(+) and CD103(+)CD11b(-) DCs in the MLN. DC migration was independent of caspase-1, which is responsible for the inflammasome-dependent proteolytic activation of IL-1 cytokine family members, and was not affected by treatment with broad-spectrum antibiotics. Consistent with the latter finding, the proportion and phenotypic composition of DCs were similar in mesenteric lymph from germ-free and conventionally housed mice. Although TNF-α was required for CD103(+) DC migration to the MLN after oral administration of the TLR7 agonist R848, it was not required for the steady-state migration of these cells. Similarly, TLR signaling through the adaptor molecule Toll/IL-1R domain-containing adapter inducing IFN-β and downstream production of type I IFN were not required for steady-state CD103(+) DC migration. Taken together, our results demonstrate that MyD88 signaling in DCs, independently of the microbiota and TNF-α, is required for optimal steady-state migration of small intestinal lamina propria CD103(+) DCs into the MLN.
Collapse
Affiliation(s)
| | - Jessica Westlund
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; and
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; and
| | - William Agace
- Immunology Section, Lund University, 221 84 Lund, Sweden; Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | | |
Collapse
|
14
|
Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile. PLoS One 2015; 10:e0130713. [PMID: 26125939 PMCID: PMC4488386 DOI: 10.1371/journal.pone.0130713] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/22/2015] [Indexed: 01/15/2023] Open
Abstract
Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies.
Collapse
|
15
|
Liu P, Wang ZQ, Liu RD, Jiang P, Long SR, Liu LN, Zhang XZ, Cheng XC, Yu C, Ren HJ, Cui J. Oral vaccination of mice with Trichinella spiralis nudix hydrolase DNA vaccine delivered by attenuated Salmonella elicited protective immunity. Exp Parasitol 2015; 153:29-38. [PMID: 25733024 DOI: 10.1016/j.exppara.2015.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
We have previously reported that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and the vaccination of mice with recombinant TsNd protein (rTsNd) produced a partial protective immunity against challenge infection in mice. In this study, the full-length cDNA sequence of TsNd gene was cloned into the eukaryotic expression plasmid pcDNA3.1, and the recombinant TsNd DNA was transformed into attenuated Salmonella typhimurium strain ⊿cyaSL1344. Oral immunization of mice with TsNd/S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 10) responses in splenocytes of immunized mice upon stimulation with the rTsNd. The oral immunization of mice with TsNd/S. typhimurium displayed a statistically significant 73.32% reduction in adult worm burden and a 49.5% reduction in muscle larvae after challenge with T. spiralis muscle larvae, compared with PBS control group. Our results demonstrated that TsNd DNA delivered by attenuated live S. typhimurium elicited a local IgA response and a mixed Th1/Th2 immune response, and produced a partial protection against T. spiralis infection in mice.
Collapse
Affiliation(s)
- Pei Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Li Na Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Xiang Chao Cheng
- The Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chuan Yu
- The Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Hui Jun Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Ali A, Zhu X, Kwiecinski J, Gjertsson I, Lindholm C, Iwakura Y, Wang X, Lycke N, Josefsson E, Pullerits R, Jin T. Antibiotic-killed Staphylococcus aureus induces destructive arthritis in mice. Arthritis Rheumatol 2015; 67:107-116. [PMID: 25302691 DOI: 10.1002/art.38902] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 09/30/2014] [Indexed: 04/15/2024]
Abstract
OBJECTIVE Permanent reduction in joint function is a severe postinfectious complication in patients with Staphylococcus aureus septic arthritis. We undertook this study to determine whether this reduction in joint function might be caused by persistent joint inflammation after the adequate eradication of bacteria by antibiotics. METHODS After intraarticular injection of cloxacillin-killed S aureus into mouse knee joints, we investigated whether antibiotic-killed S aureus induced joint inflammation and elucidated the molecular and cellular mechanisms of this type of arthritis. RESULTS Intraarticular injection of antibiotic-killed S aureus induced mild-to-moderate synovitis and bone erosions that lasted for a minimum of 14 days. Compared with wild-type animals, mice deficient in tumor necrosis factor receptor type I (TNFRI), receptor for advanced glycation end products (RAGE), or Toll-like receptor 2 (TLR-2) had a significantly reduced frequency and severity of synovitis. Combined depletion of monocytes and neutrophils also resulted in a significantly lower frequency of synovitis. Among bacterial factors, insoluble cell debris played a more important role than bacterial DNA or soluble components in inducing joint inflammation. Importantly, anti-TNF therapy abrogated joint inflammation induced by antibiotic-killed S aureus. CONCLUSION Antibiotic-killed S aureus induced and maintained joint inflammation mediated through TLR-2, TNFRI, and RAGE. The cross-talk between neutrophils and monocytes is responsible for this type of arthritis. Anti-TNF therapy might be used as a novel strategy, in combination with antibiotics, to treat staphylococcal septic arthritis.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/microbiology
- Arthritis, Experimental/pathology
- Arthritis, Infectious/metabolism
- Arthritis, Infectious/microbiology
- Arthritis, Infectious/pathology
- Cell Communication/physiology
- Cloxacillin/pharmacology
- Disease Models, Animal
- Female
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/pathology
- Neutrophils/pathology
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Severity of Illness Index
- Staphylococcus aureus/drug effects
- Toll-Like Receptor 2/deficiency
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
Collapse
Affiliation(s)
- Abukar Ali
- Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maney NJ, Reynolds G, Krippner-Heidenreich A, Hilkens CM. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4914-4923. [PMID: 25288570 PMCID: PMC4896387 DOI: 10.4049/jimmunol.1302929] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The capacity of dendritic cells (DC) to regulate adaptive immunity is controlled by their maturation state and lifespan. Although TNF is a well-known maturation and survival factor for DC, the role of the two TNFR, TNFR1 and TNFR2, in mediating these effects is poorly understood. By using unique TNF variants that selectively signal through TNFR1 and/or TNFR2, we demonstrate differential functions of TNFR in human monocyte-derived and blood CD1c(+) DC. Activation of TNFR1, but not TNFR2, efficiently induced DC maturation, as defined by enhanced expression of cell surface maturation markers (CD83, CD86, and HLA-DR) as well as enhanced T cell stimulatory capacity. In contrast, both TNFR1 and TNFR2 significantly protected DC against cell death, indicating that innate signals can promote DC survival in the absence of DC maturation. We further show differential activation of NF-κB signaling pathways by the TNFR: TNFR1 activated both the p65 and p52 pathways, whereas TNFR2 triggered p52, but not p65, activation. Accordingly, the p65 NF-κB pathway only played a role in the prosurvival effect of TNFR1. However, cell death protection through both TNFR was mediated through the Bcl-2/Bcl-xL pathway. Taken together, our data show that TNFR1, but not TNFR2, signaling induces DC maturation, whereas DC survival can be mediated independently through both TNFR. These data indicate differential but partly overlapping responses through TNFR1 and TNFR2 in both inflammatory and conventional DC, and they demonstrate that DC maturation and DC survival can be regulated through independent signaling pathways.
Collapse
MESH Headings
- Adaptive Immunity
- Antigens, CD/genetics
- Antigens, CD/immunology
- B7-2 Antigen/genetics
- B7-2 Antigen/immunology
- Biomarkers/metabolism
- Cell Differentiation
- Cell Lineage/immunology
- Cell Proliferation
- Cell Survival
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Gene Expression Regulation
- HLA-DR Antigens/genetics
- HLA-DR Antigens/immunology
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Monocytes/cytology
- Monocytes/immunology
- NF-kappa B p52 Subunit/genetics
- NF-kappa B p52 Subunit/immunology
- Primary Cell Culture
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Signal Transduction
- Transcription Factor RelA/genetics
- Transcription Factor RelA/immunology
- bcl-X Protein/genetics
- bcl-X Protein/immunology
- CD83 Antigen
Collapse
Affiliation(s)
- Nicola J. Maney
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gary Reynolds
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Anja Krippner-Heidenreich
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Catharien M.U. Hilkens
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
18
|
Bieber K, Autenrieth SE. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens. Immunobiology 2014; 220:215-26. [PMID: 25468558 DOI: 10.1016/j.imbio.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
19
|
Wang J, Shah D, Chen X, Anderson RR, Wu MX. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun 2014; 5:4447. [PMID: 25033973 PMCID: PMC4391636 DOI: 10.1038/ncomms5447] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need of adjuvants for cutaneous vaccination. Here we report that micro-sterile inflammation induced at inoculation sites can augment immune responses to influenza vaccines in animal models. The inoculation site is briefly illuminated with a handheld, non-ablative fractional laser before the vaccine is intradermally administered, which creates an array of self-healing microthermal zones (MTZs) in the skin. The dying cells in the MTZs send “danger” signals that attract a large number of antigen-presenting cells, in particular, plasmacytoid dendritic cells (pDCs) around each MTZ forming a micro-sterile inflammation array. A pivotal role for pDCs in the adjuvanticity is ascertained by significant abrogation of the immunity after systemic depletion of pDCs, local application of a TNF-α inhibitor, or null mutation of IFN regulatory factor7 (IRF7). In contrast to conventional adjuvants that cause persistent inflammation and skin lesions, micro-sterile inflammation enhances efficacy of influenza vaccines, yet with diminished adverse effects.
Collapse
Affiliation(s)
- Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - Dilip Shah
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - Xinyuan Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - R Rox Anderson
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA [2] Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, Massachusetts 02139, USA
| | - Mei X Wu
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA [2] Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R, Du P, Rosenfeld J, Leiner I, Chen CC, Ron Y, Hohl TM, Rivera A. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog 2014; 10:e1003940. [PMID: 24586155 PMCID: PMC3930594 DOI: 10.1371/journal.ppat.1003940] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. Despite the significant impact of fungal infections to human health our understanding of immunity to these pathogens remains incomplete. Human mycoses are associated with high morbidity and mortality, even with modern antifungal therapies. Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis (IA), a serious infection that develops in immunodeficient patients. In this study we employ a combination of cell ablation strategies to examine the role of CCR2+Ly6C+ inflammatory monocytes (CCR2+Mo) in innate responses against a pulmonary infection with A.fumigatus conidia. We find that CCR2+Mo and their derivative dendritic cells (Mo-DCs) are required for defense against IA and that mice lacking these cells succumb to infection with A.fumigatus. Our studies indicate that CCR2+Mo and Mo-DCs exert crucial innate antifungal defense by two main mechanisms: 1) CCR2+Mo and Mo-DCs are a significant source of inflammatory mediators that augment the killing capacity of neutrophils and 2) conidial uptake by CCR2+Mo is coincident with their differentiation into Mo-DCs that directly kill fungal conidia via partially NADPH oxidase-dependent mechanisms. In aggregate, our studies find a novel essential function for CCR2+Mo in innate defense against a pulmonary fungal pathogen by mediating indirect and direct containment of fungal cells at the portal of infection.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- Rutgers, Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Anupam Jhingran
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Orchi Dutta
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- Rutgers, Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Shinji Kasahara
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Robert Donnelly
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Peicheng Du
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Jeffrey Rosenfeld
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Ingrid Leiner
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, New York, United States of America
| | - Chiann-Chyi Chen
- Rutgers, Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, New Jersey, United States of America
| | - Yacov Ron
- Rutgers, Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, New Jersey, United States of America
| | - Tobias M. Hohl
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
- * E-mail: (TMH); (AR)
| | - Amariliz Rivera
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- * E-mail: (TMH); (AR)
| |
Collapse
|
21
|
Han L, Zhen YH, Liang AX, Zhang J, Riaz H, Xiong JJ, Guo AZ, Yang LG. Oral vaccination with inhibin DNA delivered using attenuated Salmonella choleraesuis for improving reproductive traits in mice. J Basic Microbiol 2013; 54:962-8. [PMID: 24123188 DOI: 10.1002/jobm.201300052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/29/2013] [Indexed: 01/11/2023]
Abstract
The objective of this study was to examine the efficacy and safety of a novel inhibin vaccine containing inhibin α (1-32) fragments in mice. A recombinant plasmid pVAX-asd-IS was constructed by inserting recombinant inhibin α (1-32) and the hepatitis B surface antigen S into the plasmid in which the asd gene, rather than the kanamycin gene, was a selection marker. Ninety Kuming mice were divided into six groups consisting of 15 mice each. First group was (C1) injected with 200 µl of PBS, second (C2) received 1 × 10(10) CFU of crp(-) /asd(-) C500/pVAX-asd and served as vector control, third did not receive any treatment (C3), while fourth, fifth, and sixth group received 1 × 10(10) , 1 × 10(9) , 1 × 10(8) CFU of the recombinant inhibin vaccine crp(-) /asd(-) C500/pVAX-asd-IS (group T1, T2, T3), respectively. Western blotting demonstrated that recombinant expressed inhibin protein possessed immune function and that this plasmid could replicate for up to 40 generations stably. Vaccination with this strain at a dose of 1 × 10(10) CFU/200 µl per mouse induced high anti-inhibin antibody levels, significantly increased large-follicle production in T1 group (p < 0.05) and average litter size (p > 0.05) compared with control groups. Integration studies showed no evidence of inhibin fusion gene integrated into mice's genome 2-month after immunization. These results suggest that the vaccine described in the present study may provide a safe method to improve reproductive traits in animals. A trend towards increased litter size and significant increase in large follicle population depict that this vaccine may have direct application in large animal industry.
Collapse
Affiliation(s)
- Li Han
- Laboratory of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; College of Animal Science and Technology and College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination. Proc Natl Acad Sci U S A 2011; 108:17414-9. [PMID: 21987815 DOI: 10.1073/pnas.1108945108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Successful priming of adaptive immune responses is crucially dependent on innate activation signals that convert resting antigen-presenting cells (APCs) into immunogenic ones. APCs expressing the relevant innate pattern recognition receptors can be directly activated by pathogen-associated molecular patterns (PAMPs) to become competent to prime T-cell responses. Alternatively, it has been suggested that APCs could be activated indirectly by proinflammatory mediators synthesized by PAMP-exposed cells. However, data obtained with CD4(+) T cells suggest that inflammatory signals often cannot substitute for direct pattern recognition in APC activation for the priming of T helper responses. To test whether the same is true for CD8(+) T cells, we studied cytotoxic T lymphocyte development in vitro and in mixed chimeric mice in which coexisting APCs can either present a preprocessed model antigen or directly recognize a given PAMP, but not both. We show that indirectly activated APCs promote antigen-specific proliferation of naïve CD8(+) T cells but fail to support their survival and cytotoxic T lymphocyte differentiation. Furthermore, CD8(+) T cells primed by indirectly activated APCs are unable to reject tumors. Thus, inflammation cannot substitute for direct recognition of single PAMPs in CD8(+) T-cell priming. These findings have important practical implications for vaccine design, indicating that adjuvants must be judiciously chosen to trigger the relevant pattern recognition receptors in APCs.
Collapse
|
23
|
Wick MJ. Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection. J Innate Immun 2011; 3:543-9. [PMID: 21912097 DOI: 10.1159/000330771] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
Infections with Salmonella enterica serovars remain a serious problem worldwide. While serovar Typhi causes significant morbidity and mortality that is restricted to humans, serovar Typhimurium causes gastroenteritidis in humans and can also infect other animals. As mice with the susceptible Nramp1 locus get systemic infection with serovar Typhimurium, murine infection models using this serovar have been widely used to decipher the immune mechanisms required to survive systemic Salmonella infection. This review summarizes recent studies in murine infection models that have advanced our understanding of the events that occur during the first days after oral Salmonella infection. The pathways of bacterial penetration across the intestinal epithelium, bacterial spread to draining (mesenteric) lymph nodes and dissemination to systemic tissues is discussed. The response of myeloid cell populations, including dendritic cells, inflammatory monocytes and neutrophils, during the early stage of infection is also discussed. Finally, the mechanisms driving recruitment of myeloid cells to infected intestinal lymphoid tissues and what is known about Toll-like receptor signaling pathways in innate immunity to Salmonella infection is also discussed.
Collapse
Affiliation(s)
- Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
24
|
Flores-Langarica A, Marshall JL, Bobat S, Mohr E, Hitchcock J, Ross EA, Coughlan RE, Khan M, Van Rooijen N, Henderson IR, Maclennan ICM, Cunningham AF. T-zone localized monocyte-derived dendritic cells promote Th1 priming to Salmonella. Eur J Immunol 2011; 41:2654-65. [PMID: 21630252 DOI: 10.1002/eji.201141440] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 12/24/2022]
Abstract
Control of intracellular Salmonella infection requires Th1 priming and IFN-γ production. Here, we show that efficient Th1 priming after Salmonella infection requires CD11c(+) CD11b(hi) F4/80(+) monocyte-derived dendritic cells (moDCs). In non-infected spleens, moDCs are absent from T-cell zones (T zones) of secondary lymphoid tissues, but by 24 h post-infection moDCs are readily discernible in these sites. The accumulation of moDCs is more dependent upon bacterial viability than bacterial virulence. Kinetic studies showed that moDCs were necessary to prime but not sustain Th1 responses, while ex vivo studies showed that antigen-experienced moDCs were sufficient to induce T-cell proliferation and IFN-γ production via a TNF-α-dependent mechanism. Importantly, moDCs and cDCs when co-cultured induced superior Th1 differentiation than either subset alone, and this activity was independent of TNF-α. Thus, optimal Th1 development to Salmonella requires the rapid accumulation of moDCs within T zones and their collaboration with cDCs.
Collapse
Affiliation(s)
- Adriana Flores-Langarica
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Plasmacytoid dendritic cells mature independently of MyD88 and IFN-αβR in response to Listeria and stimulate CD8 T cells. Immunol Lett 2011; 138:104-12. [DOI: 10.1016/j.imlet.2011.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 12/27/2022]
|
26
|
Ding X, Yang W, Shi X, Du P, Su L, Qin Z, Chen J, Deng H. TNF receptor 1 mediates dendritic cell maturation and CD8 T cell response through two distinct mechanisms. THE JOURNAL OF IMMUNOLOGY 2011; 187:1184-91. [PMID: 21709152 DOI: 10.4049/jimmunol.1002902] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-α and its two receptors (TNFR1 and 2) are known to stimulate dendritic cell (DC) maturation and T cell response. However, the specific receptor and mechanisms involved in vivo are still controversial. In this study, we show that in response to an attenuated mouse hepatitis virus infection, DCs fail to mobilize and up-regulate CD40, CD80, CD86, and MHC class I in TNFR1(-/-) mice as compared with the wild-type and TNFR2(-/-) mice. Correspondingly, virus-specific CD8 T cell response was dramatically diminished in TNFR1(-/-) mice. Adoptive transfer of TNFR1-expressing DCs into TNFR1(-/-) mice rescues CD8 T cell response. Interestingly, adoptive transfer of TNFR1-expressing naive T cells also restores DC mobilization and maturation and endogenous CD8 T cell response. These results show that TNFR1, not TNFR2, mediates TNF-α stimulation of DC maturation and T cell response to mouse hepatitis virus in vivo. They also suggest two mechanisms by which TNFR1 mediates TNF-α-driven DC maturation, as follows: a direct effect through TNFR1 expressed on immature DCs and an indirect effect through TNFR1 expressed on naive T cells.
Collapse
Affiliation(s)
- Xilai Ding
- CAS Key Laboratory of Infection and Immunity, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Salmonella enterica is a genetically broad species harboring isolates that display considerable antigenic heterogeneity and significant differences in virulence potential. Salmonella generally exhibit an invasive potential and they can survive for extended periods within cells of the immune system. They cause acute or chronic infections that can be local (e.g. gastroenteritis) or systemic (e.g. typhoid). In vivo Salmonella infections are complex with multiple arms of the immune system being engaged. Both humoral and cellular responses can be detected and characterized, but full protective immunity is not always induced, even following natural infection. The murine model has proven to be a fertile ground for exploring immune mechanisms and observations in the mouse have often, although not always, correlated with those in other infectable species, including humans. Host genetic studies have identified a number of mammalian genes that are central to controlling infection, operating both in innate and acquired immune pathways. Vaccines, both oral and parenteral, are available or under development, and these have been used with some success to explore immunity in both model systems and clinically in humans.
Collapse
Affiliation(s)
- Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | | | | | | |
Collapse
|
28
|
Magalhaes JG, Lee J, Geddes K, Rubino S, Philpott DJ, Girardin SE. Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur J Immunol 2011; 41:1445-55. [PMID: 21469090 DOI: 10.1002/eji.201040827] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/08/2010] [Accepted: 01/28/2011] [Indexed: 12/11/2022]
Abstract
Muramyl peptides are the building blocks of bacterial peptidoglycan, and their biological functions in mammals have been extensively studied. In particular, muramyl peptides trigger inflammation, contribute to host defense against microbial infections, and modulate the adaptive immune response to antigens. These bacterial molecules are detected by nucleotide oligomerization domain 1 (Nod1) and Nod2, and recent evidence suggests that muramyl dipeptide also activates NLRP3 and NLRP1 inflammasomes. Here, we investigated the role of Rip2, the adaptor for Nod1- and Nod2-dependent signaling, in multiple aspects of the host response to muramyl peptides in vivo, such as inflammatory cytokine secretion, activation and recruitment of macrophages and neutrophils to the site of injection, systemic activation of myeloid, T and B cells in the spleen, adjuvanticity and capacity to polarize the adaptive response to ovalbumin. Our results demonstrate that Rip2 was crucial for all the biological functions studied. We also identified CD11c(int) CD11b(+) inflammatory dendritic cells as a major myeloid cell population responding to Nod stimulation in vivo. Together, our results highlight the importance of Rip2 for Nod-dependent induction of innate and adaptive immunity.
Collapse
Affiliation(s)
- Joao G Magalhaes
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect Immun 2011; 79:1479-88. [PMID: 21263018 DOI: 10.1128/iai.01033-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enteric pathogens can cause relapsing infections in a proportion of treated patients, but greater understanding of this phenomenon is hindered by the lack of appropriate animal models. We report here a robust animal model of relapsing primary typhoid that initiates after apparently successful antibiotic treatment of susceptible mice. Four days of enrofloxacin treatment were sufficient to reduce bacterial loads below detectable levels in all major organs, and mice appeared otherwise healthy. However, any interruption of further antibiotic therapy allowed renewed fecal shedding and renewed bacterial growth in systemic tissues to occur, and mice eventually succumbed to relapsing infection. In vivo imaging of luminescent Salmonella identified the mesenteric lymph nodes (MLNs) as a major reservoir of relapsing infection. A magnetic-bead enrichment strategy isolated MLN-resident CD11b(+) Gr-1(-) monocytes associated with low numbers of persistent Salmonella. However, the removal of MLNs increased the severity of typhoid relapse, demonstrating that this organ serves as a protective filter to restrain the dissemination of bacteria during antibiotic therapy. Together, these data describe a robust animal model of typhoid relapse and identify an important intestinal phagocyte subset involved in protection against the systemic spread of enteric infection.
Collapse
|
30
|
Abstract
The last decade has witnessed increasing research on dissemination of bacterial pathogens in their hosts and on the processes that underlie bacterial spread and growth during organ colonization. Here, we discuss work on the mouse model of human typhoid fever caused by Salmonella enterica serovar Typhimurium. This has revealed the use of several routes of systemic dissemination that result in colonization and growth within the spleen and liver, the major sites of bacterial proliferation. We also highlight techniques that enable in vivo analysis of the infecting population at the spatiotemporal and single cell levels. These approaches have provided more detailed insights into the events underlying the dynamics of Salmonella replication, spread and clearance within host organs and tissues.
Collapse
Affiliation(s)
- Kathryn G Watson
- Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | | |
Collapse
|
31
|
Autenrieth SE, Linzer TR, Hiller C, Keller B, Warnke P, Köberle M, Bohn E, Biedermann T, Bühring HJ, Hämmerling GJ, Rammensee HG, Autenrieth IB. Immune evasion by Yersinia enterocolitica: differential targeting of dendritic cell subpopulations in vivo. PLoS Pathog 2010; 6:e1001212. [PMID: 21124820 PMCID: PMC2991265 DOI: 10.1371/journal.ppat.1001212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.
Collapse
Affiliation(s)
- Stella E Autenrieth
- Interfakultäres Institut für Zellbiologie, Universität Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, Martin W, De Groot AS. VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine 2010; 29:501-11. [PMID: 21055490 DOI: 10.1016/j.vaccine.2010.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/24/2010] [Indexed: 12/12/2022]
Abstract
The potential for smallpox to be disseminated in a bioterror attack has prompted development of new, safer smallpox vaccination strategies. We designed and evaluated immunogenicity and efficacy of a T-cell epitope vaccine based on conserved and antigenic vaccinia/variola sequences, identified using bioinformatics and immunological methods. Vaccination in HLA transgenic mice using a DNA-prime/peptide-boost strategy elicited significant T cell responses to multiple epitopes. No antibody response pre-challenge was observed, neither against whole vaccinia antigens nor vaccine epitope peptides. Remarkably, 100% of vaccinated mice survived lethal vaccinia challenge, demonstrating that protective immunity to vaccinia does not require B cell priming.
Collapse
|
33
|
Rydström A, Wick MJ. Salmonella inhibits monocyte differentiation into CD11c hi MHC-II hi cells in a MyD88-dependent fashion. J Leukoc Biol 2010; 87:823-32. [PMID: 20124491 DOI: 10.1189/jlb.0909615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocytes and DCs originate from a shared precursor in the bone marrow, and steady-state DCs in lymphoid organs develop directly from the precursor rather than via a monocyte intermediate. However, monocytes can differentiate into DCs in tissues such as the lung and gut mucosa and into macrophages in most tissues. As Ly6C hi monocytes accumulate in lymphoid organs during oral Salmonella infection, we investigated their ability to develop into potential DCs, identified as CD11c hi MHC-II hi cells, in infected hosts. Ly6C hi monocytes, isolated from the blood of Salmonella-infected mice, developed into CD11c hi MHC-II hi cells after culture with GM-CSF or Flt3L. In contrast, the same monocytes cultured in the presence of GM-CSF and heat-killed Salmonella did not differentiate into CD11c hi MHC-II hi cells. The bacteria-induced differentiation block was dependent on TLRs, as monocytes from MyD88-/- mice converted into CD11c hi MHC-II hi cells even in the presence of bacteria. We hypothesized that Salmonella-activated wild-type monocytes secreted mediators that inhibited differentiation of MyD88-/--derived monocytes. However, IL-6, IL-10, TNF-alpha, or IL-12p70 did not account for the inhibition. Finally, monocyte-derived CD11c hi MHC-II hi cells pulsed with OVA peptide or protein did not induce proliferation of antigen-specific CD4+ T cells but rather, suppressed the ability of DCs to activate CD4+ T cells. Overall, the data show that Ly6C hi monocytes from Salmonella-infected mice develop into CD11c hi MHC-II hi cells with poor antigen-presentation capacity when cultured ex vivo, and that monocyte exposure to Salmonella inhibits their differentiation into CD11c hi MHC-II hi cells in a MyD88-dependent fashion.
Collapse
Affiliation(s)
- Anna Rydström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
34
|
Tam MA, Wick MJ. MyD88 and interferon-alpha/beta are differentially required for dendritic cell maturation but dispensable for development of protective memory against Listeria. Immunology 2010; 128:429-38. [PMID: 20067542 DOI: 10.1111/j.1365-2567.2009.03128.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Signalling pathways mediated by MyD88 are important for sensing Toll-like receptor (TLR) ligands and directing an immune response. However, the influence of MyD88-derived cytokines and interferon (IFN)-alpha/beta, the latter being made by both MyD88-dependent and -independent pathways, in phenotypic and functional dendritic cell (DC) maturation during infection is poorly understood. Here we investigate the contribution of MyD88-dependent and -independent pathways to DC maturation, CD8 T-cell activation and the generation of protective memory against Listeria monocytogenes. We show that neither MyD88 deficiency alone nor MyD88/IFN-alphabetaR double deficiency alters Listeria-induced costimulatory molecule up-regulation on DCs in vivo. In contrast, DCs from infected IFN-alphabetaR(-/-) mice had higher CD80 and CD86 expression than wild-type DCs. We then examined the function of DCs matured in infected knockout mice. We found that DCs from Listeria-infected MyD88(-/-) and MyD88(-/-) IFN-alphabetaR(-/-) mice induced little or no IFN-gamma by CD8 T cells, respectively. In contrast, DCs from infected IFN-alphabetaR(-/-) mice had a greater capacity to induce IFN-gamma compared with DCs from infected wild-type mice. When the CD8 T-cell memory response was analysed, infected MyD88(-/-) and MyD88(-/- )IFN-alphabetaR(-/-) mice were found to have fewer bacteria-specific memory CD8 T cells than wild-type mice. However, the fraction of bacteria-specific CD8 T cells making IFN-gamma was similar in all mouse strains, and MyD88(-/-) and MyD88(-/- )IFN-alphabetaR(-/-) mice survived lethal challenge. Together the data suggest an inhibitory effect of IFN-alpha/beta on functional DC maturation during Listeria infection and reveal overlapping roles of MyD88-induced cytokines and IFN-alpha/beta in DC maturation and protective anti-Listeria immunity.
Collapse
Affiliation(s)
- Miguel A Tam
- Department of Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
35
|
Rydström A, Wick MJ. Monocyte and neutrophil recruitment during oral Salmonella infection is driven by MyD88-derived chemokines. Eur J Immunol 2010; 39:3019-30. [PMID: 19839009 DOI: 10.1002/eji.200939483] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral Salmonella infection recruits phagocytes to Peyer's patches (PP) and MLN. The chemokines induced in infected PP and MLN, the cellular sources during infection and the TLR signaling pathways involved in vivo are not known. Here, we show that CCL2, CXCL9 and CXCL2 mRNA are up-regulated in PP and MLN coincident with the first arrival of monocytes and neutrophils. Laser capture microdissection microscopy revealed that chemokine mRNA up-regulation was differently distributed in PP. Despite this, recruited monocytes and neutrophils formed inflammatory cell clusters throughout PP. Monocytes and neutrophils purified from infected mice preferentially produced CXCL2 and small amounts of CCL2, and neutrophils from infected mice migrated towards CXCL2 and CCL3. Furthermore, phagocyte recruitment to PP and MLN was intact in mice lacking TLR4 alone and when signaling through TLR4 and TLR5 was simultaneously absent; however, recruitment was compromised in MyD88(-/-) and more so in MyD88(-/-)TLR4(-/-) double knockout mice. Phagocyte release into the blood, however, was only marginally reduced in MyD88(-/-)TLR4(-/-) mice. Defective phagocyte recruitment to PP and MLN of MyD88(-/-)TLR4(-/-) mice was paralleled by low chemokine induction. These data provide insight into the chemokines and TLR signaling pathways that orchestrate the early phagocyte response to oral Salmonella infection.
Collapse
Affiliation(s)
- Anna Rydström
- Department of Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
36
|
Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X. Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge. Vaccine 2010; 28:2735-42. [PMID: 20105428 DOI: 10.1016/j.vaccine.2010.01.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/30/2009] [Accepted: 01/13/2010] [Indexed: 01/12/2023]
Abstract
We have previously reported that Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge. In this study, the Ts87 gene was cloned into an expression plasmid, pVAX1, and the recombinant Ts87 DNA was transformed into attenuated Salmonella typhimurium strain SL7207. Oral immunization of mice with Ts87 DNA delivered in S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-gamma) and Th2 (IL-5, 6, 10) responses in splenocytes of immunized mice upon stimulation with Ts87 antigen. An immunofluorescence assay performed with antisera revealed that the recombinant Ts87 protein was expressed in mesenteric lymph nodes of immunized mice. The mice immunized with Salmonella-delivered Ts87 DNA displayed a statistically significant 29.8% reduction in adult worm burden and a 34.2% reduction in muscle larvae following challenge with T. spiralis larvae, compared with mice immunized with empty Salmonella or a PBS control. Our results demonstrate that Ts87 DNA delivered by attenuated live S. typhimurium elicits a local IgA response and a balanced Th1/Th2 immune response and produces partial protection against T. spiralis infection in mice.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
37
|
Chalermsarp N, Azuma M. Identification of three distinct subsets of migrating dendritic cells from oral mucosa within the regional lymph nodes. Immunology 2009; 127:558-66. [PMID: 19604306 DOI: 10.1111/j.1365-2567.2008.03031.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To investigate the phenotypic and migrational properties of oral mucosal dendritic cells (OMDCs), fluorescein isothiocyanate (FITC) was painted onto mouse buccal mucosa and the expression patterns of functional molecules in FITC-bearing migrating DCs within the regional lymph nodes (RLNs) were analysed. We found three distinct subpopulations of migrating OMDCs within the RLNs: CD11c(hi) CD207(-) (F1), CD11c(int/lo) CD207(-) (F2) and CD11c(int/lo) CD207(+) (F3). The F1 DCs reached the RLNs earlier (after 24 hr) but diminished immediately. Additionally, F1 DCs expressed high levels of CD11b. The F2 DCs migrated continuously to the RLNs and maintained the highest ratio of all three fractions. The F3 DCs migrated slowly to the RLNs and demonstrated a late peak at 96 hr. In addition, F3 DCs showed the highest CD205 expression levels of all three subsets. All fractions of migrating OMDCs expressed CD80, CD86 and major histocompatibility complex class II at high levels, suggesting that all OMDCs are in a mature stage and have the potential for antigen presentation. All migrating OMDCs lacked CD8alpha expression. Taken together, our results indicate that the lack of CD207 is one factor that identifies submucosal DCs. Both F1 and F2 DCs lack CD207; F1 DCs are resident and F2 DCs are newly recruited following FITC application. The F3 DCs, which express CD207, are mucosal Langerhans cells that migrate later. The identification of OMDC subsets should facilitate further studies investigating the functional roles of each fraction.
Collapse
Affiliation(s)
- Narumon Chalermsarp
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
38
|
Etanercept impairs maturation of human monocyte-derived dendritic cells by inhibiting the autocrine TNFalpha-mediated signaling. Inflammation 2009; 32:146-50. [PMID: 19301111 DOI: 10.1007/s10753-009-9113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The success of anti-tumor necrosis factor alpha (TNFalpha) therapies has led to increased interest as to the mechanisms and consequences of TNFalpha blockade. The aim of the study was to examine the effects of TNFalpha blockade by etanercept on lipopolysaccharide (LPS) or peptidoglycan (PG)-induced maturation of human monocyte-derived dendritic cells (MDDCs). MDDCs grown from peripheral blood of healthy donors were stimulated by LPS or PG with/without the presence of etanercept. Concentrations of TNFalpha in cell supernatants were assessed by ELISA, while the cells were stained with monoclonal antibodies to CD83, CD80, CD86, CD11c, CD40, HLA-DR, and annexin-V and acquired using a flow cytometer. Etanercept significantly decreased the stimulated cell surface expression of HLA-DR, CD80, CD86, CD40 and CD83 on MDDCs in all examined samples. Etanercept in the same dose, but denatured to loss of specificity for TNFalpha, failed to change any of the aforementioned markers. In the presence of etanercept, concentrations of TNFalpha in cell supernatants were decreased by 53% on average, with a range of 25%-87%. Etanercept impaired the stimulated maturation of MDDCs by neutralizing the induced TNFalpha, produced by the same MDDCs after antigenic stimulation. The reported data confirms that TNFalpha blockade may have a direct effect on DCs, with a wide spectrum of potential secondary effects downstream. The data also suggests the presence of TNFalpha-mediated autocrine signaling, serving to accelerate or catalyze the maturation process of MDDCs.
Collapse
|
39
|
Kelsall B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol 2008; 1:460-9. [PMID: 19079213 PMCID: PMC4780321 DOI: 10.1038/mi.2008.61] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal immune responses must be tightly controlled, particularly in the intestine. As members of the mononuclear phagocyte family, dendritic cells (DCs) and macrophages are well represented in intestinal tissues and have developed unique functional niches. This review will focus on recent findings on antigen uptake and processing in the intestine and the role of DCs in the imprinting of homing receptors on T and B cells, the induction of immunoglobulin A B-cell responses, and the differentiation of regulatory T cells. It will also address the unique phenotype of intestinal macrophages and briefly what is known regarding the relationships between these cell types.
Collapse
Affiliation(s)
- Brian Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, 10/11N111, 10 Center Drive, NIAID NIH, Bethesda, MD 20892,
| |
Collapse
|
40
|
Abstract
Circulating blood monocytes supply peripheral tissues with macrophage and dendritic cell (DC) precursors and, in the setting of infection, also contribute directly to immune defense against microbial pathogens. In humans and mice, monocytes are divided into two major subsets that either specifically traffic into inflamed tissues or, in the absence of overt inflammation, constitutively maintain tissue macrophage/DC populations. Inflammatory monocytes respond rapidly to microbial stimuli by secreting cytokines and antimicrobial factors, express the CCR2 chemokine receptor, and traffic to sites of microbial infection in response to monocyte chemoattractant protein (MCP)-1 (CCL2) secretion. In murine models, CCR2-mediated monocyte recruitment is essential for defense against Listeria monocytogenes, Mycobacterium tuberculosis, Toxoplasma gondii, and Cryptococcus neoformans infection, implicating inflammatory monocytes in defense against bacterial, protozoal, and fungal pathogens. Recent studies indicate that inflammatory monocyte recruitment to sites of infection is complex, involving CCR2-mediated emigration of monocytes from the bone marrow into the bloodstream, followed by trafficking into infected tissues. The in vivo mechanisms that promote chemokine secretion, monocyte differentiation and trafficking, and finally monocyte-mediated microbial killing remain active and important areas of investigation.
Collapse
Affiliation(s)
- Natalya V Serbina
- Infectious Diseases Service, Department of Medicine, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
41
|
Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86:439-52. [DOI: 10.1038/icb.2008.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shalin H Naik
- Immunology Divison, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
42
|
Tam MA, Sundquist M, Wick MJ. MyD88 and IFN-alphabeta differentially control maturation of bystander but not Salmonella-associated dendritic cells or CD11cintCD11b+ cells during infection. Cell Microbiol 2008; 10:1517-29. [PMID: 18363877 DOI: 10.1111/j.1462-5822.2008.01144.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interface between dendritic cells (DCs) and T cells is critical to elicit effective immunity against pathogens. The maturation state of DCs determines the quality of the interaction and governs the type of response. DCs can be matured directly through activating Toll-like receptors (TLRs) or indirectly by cytokines. We explore the role of the TLR adaptor MyD88 on DC maturation during Salmonella infection. Using Salmonella expressing GFP, we also examine the phenotype and function of bacteria-associated DCs matured in the absence of bacteria-mediated TLR signalling. MyD88 was required for upregulation of CD80 on DCs during infection, whereas CD86 and CD40 were upregulated independently of MyD88, although requiring a higher bacterial burden in the MLN. MyD88-independent upregulation was mediated by IFN-alphabeta produced during infection. In infected MyD88(-/-)IFN-alphabetaR(-/-) mice, which lack most bacteria-driven TLR signalling, indirect DC maturation was abolished. In contrast, DCs containing Salmonella upregulated co-stimulatory molecules independently of MyD88 and IFN-alphabeta, revealing a pathway of phenotypic maturation active in infected DCs. However, despite high co-stimulatory molecule expression, Salmonella-containing DCs from MyD88(-/-) or MyD88(-/-)IFN-alphabetaR(-/-) mice had a compromised capacity to activate T cells. Thus, bacterial stimulation of TLRs influences DC function at multiple levels that modulates their capacity to direct antibacterial immunity.
Collapse
Affiliation(s)
- Miguel A Tam
- Department of Microbiology and Immunology, Göteborg University, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Gastrointestinal disease caused by Salmonella species leads to significant morbidity and mortality worldwide. The use of various animal models has greatly advanced understanding of Salmonella pathogenesis at intestinal and systemic sites. This review will emphasize recent advances in the understanding of intestinal Salmonella infections. RECENT FINDINGS Recent research has focused on bacterial products and the host pathogen recognition receptors involved in the activation of immune pathways. In particular, activation of Toll-like receptor 5 and Ipaf by Salmonella flagellin has been a major finding. The discovery of cryptopatches as novel lymphoid follicles and the characterization of intestinal dendritic cell populations have been examined in the context of Salmonella infections. The development and use of the streptomycin pretreated mouse model of enterocolitis has allowed researchers to probe the host factors contributing to intestinal immunopathology. Furthermore, the analysis of microbiota in Salmonella infections has provided new insights regarding the role of inflammation in gastrointestinal diseases. In addition, the contributions of specific Salmonella type 3-secreted effectors to the establishment and modulation of inflammation have been further refined. SUMMARY New advances in animal models have allowed researchers to further define the contribution of specific bacterial and host factors involved in Salmonella-induced enterocolitis.
Collapse
|
44
|
Siegemund S, Schütze N, Freudenberg MA, Lutz MB, Straubinger RK, Alber G. Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella Enteritidis. Immunobiology 2007; 212:739-50. [PMID: 18086375 DOI: 10.1016/j.imbio.2007.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Induction of the interleukin-12 (IL-12) cytokine family comprising IL-12, IL-23, IL-27, and IL-12p40 by intracellular pathogens is required for orchestration of cell-mediated immune responses. Macrophages (MPhi) have been shown to be a source of IL-12 following TLR4-dependent activation by Salmonella (S.). In this study another antigen-presenting cell type, the conventional dendritic cell (cDC), was analyzed and its cytokine responses compared with those of MPhi. We generated bone marrow-derived conventional dendritic cells (BMDC) and macrophages (BMMPhi) by incubating murine bone marrow cells with supernatants containing granulocyte/macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), respectively. Stimulation of BMDC and BMMPhi with S. enterica serovar Enteritidis (SE) or LPS resulted in the release of IL-12 and IL-23 by BMDC but not by BMMPhi. Furthermore, BMDC secreted approx. 20-fold more IL-12p40 and IL-27p28 than BMMPhi. However, BMDC and BMMPhi produced similar levels of IL-10. Using BMDC originating from wild-type (wt), TLR2(def) and TLR4(def) mice, we show that in BMDC the induction of IL-12, IL-23, and IL-27p28 by SE is dependent on TLR4, whereas low-level production of p40 is also mediated by pattern recognition receptors (PRR) other than TLR4. Interestingly, LPS- and SE-provoked responses of BMDC were remarkably similar indicating that LPS is the primary danger molecule of SE. Taken together, our results point to cDC rather than MPhi as the major producers of the IL-12 family members during in vitro infection with SE. The mechanisms of recognition of SE, however, appear to be the same for cDC and MPhi.
Collapse
Affiliation(s)
- Sabine Siegemund
- Institute of Immunology, College of Veterinary Medicine, An den Tierkliniken 11, 04103, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Chung Y, Chang JH, Kim BS, Lee JM, Kim HY, Kang CY. Anatomic location defines antigen presentation by dendritic cells to T cells in response to intravenous soluble antigens. Eur J Immunol 2007; 37:1453-62. [PMID: 17474148 DOI: 10.1002/eji.200636544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the spleen, exogenous antigen is preferentially presented by CD8alpha+CD11b- DC to CD8 T cells and by CD8alpha-CD11b+ DC to CD4 T cells. However, it is not yet clear whether the same rule applies to other secondary lymphoid organs. To address this issue, we first classified secondary lymphoid tissues into three categories based on the expression pattern of CD8alpha and CD11b in C57BL/6 and BALB/c mice: (a) spleen, (b) mesenteric lymph node (MLN) and (c) other peripheral lymph nodes (PLN). We then analyzed the OVA-specific T cell-stimulating capacity of each DC subset after intravenous injection with soluble OVA. Our results show that, regardless of tissue origin, CD8alpha-CD11b+ DC generally present OVA to CD4 T cells, a finding that held true as well for CD8alpha+CD11b+ DC in PLN. In striking contrast, CD8alpha+CD11b- DC in spleen, CD8alpha-CD11b+ DC in MLN and CD8alpha+CD11b+ DC in PLN mainly cross-present OVA to CD8 T cells in their respective tissues. Of note, CD8alpha-CD11b+ DC in MLN and CD8alpha+CD11b+ DC in PLN present OVA to both CD4 T and CD8 T cells. Therefore, the antigen-presenting capacity of each distinct DC subset is determined by its anatomic environment in combination with its surface phenotype.
Collapse
Affiliation(s)
- Yeonseok Chung
- Laboratory of Immunology, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Wick MJ. Monocyte and dendritic cell recruitment and activation during oral Salmonella infection. Immunol Lett 2007; 112:68-74. [PMID: 17720254 DOI: 10.1016/j.imlet.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 07/13/2007] [Accepted: 07/15/2007] [Indexed: 12/24/2022]
Abstract
Immunity to bacterial infection involves the joint effort of the innate and adaptive immune systems. The innate immune response is triggered when the body senses bacterial components, such as lipopolysaccharide, that alarm the body of the invader. An array of cell types function in the innate response. These cells are rapidly recruited to the infection site and activated to optimally perform their functions. The adaptive immune response follows the innate response, and one cell type in particular, dendritic cells (DCs), are the critical link between the innate and adaptive responses. This review will summarize recent data concerning the events that occur early during oral infection with the intracellular pathogen Salmonella, with emphasis on the phagocytic cells involved in combating the infection in the gut-associated lymphoid tissues. In particular, recent findings concerning the recruitment and activation of mononuclear phagocyte populations and dendritic cell subsets will be presented after an overview of the Salmonella infection model.
Collapse
Affiliation(s)
- Mary Jo Wick
- Department of Microbiology and Immunology, Göteborg University, Box 435, S-405 30 Göteborg, Sweden.
| |
Collapse
|
47
|
Rydström A, Wick MJ. Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:5789-801. [PMID: 17442963 DOI: 10.4049/jimmunol.178.9.5789] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutrophils, monocytes, and dendritic cells (DC) are phenotypically and functionally related phagocytes whose presence in infected tissues is critical to host survival. Their overlapping expression pattern of surface molecules, the differentiation capacity of monocytes, and the presence of monocyte subsets underscores the complexity of understanding the role of these cells during infection. In this study we use five- to seven-color flow cytometry to assess the phenotype and function of monocytes recruited to Peyer's patches (PP) and mesenteric lymph nodes (MLN) after oral Salmonella infection of mice. The data show that CD68(high)Gr-1(int) (intermediate) monocytes, along with CD68(int)Gr-1(high) neutrophils, rapidly accumulate in PP and MLN. The monocytes have increased MHC-II and costimulatory molecule expression and, in contrast to neutrophils and DC, produce inducible NO synthase. Although neutrophils and monocytes from infected mice produce TNF-alpha and IL-1beta upon ex vivo culture, DC do not. In addition, although recruited monocytes internalize Salmonella in vitro and in vivo they did not induce the proliferation of OT-II CD4(+) T cells after coincubation with Salmonella expressing OVA despite their ability to activate OT-II cells when pulsed with the OVA(323-339) peptide. We also show that recruited monocytes enter the PP of infected mice independently of the mucosal address in cell adhesion molecule-1 (MAdCAM-1). Finally, recruited but not resident monocytes increase in the blood of orally infected mice, and MHC-II up-regulation, but not TNF-alpha or iNOS production, occur already in the blood. These studies are the first to describe the accumulation and function of monocyte subsets in the blood and GALT during oral Salmonella infection.
Collapse
Affiliation(s)
- Anna Rydström
- Department of Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
48
|
Abstract
Salmonella enterica serovar Typhi causes typhoid fever, a serious life-threatening systemic infection. In mice, a similar disease is caused by Salmonella enterica serovar Typhimurium. During typhoid fever, soon after attachment to the mucosal surface of the gut, bacteria come into contact with the dendritic cells (DCs). The ability to sample antigens, process and present them to naïve and mature T cells, in the context of major histocompatibility complex molecules, makes DCs indispensable for mounting a specific and efficient immune response to invading pathogens. These bacteria, however, have evolved a number of mechanisms to interfere with or subvert DC functions. This review aims to describe how Salmonella clashes with dendritic cells at different stages of infection as well as the war strategies of these two opposing sides.
Collapse
Affiliation(s)
- Marta Biedzka-Sarek
- Department of Bacteriology and Immunology, Haartman Institute, 00014 University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
49
|
Johansson C, Ingman M, Jo Wick M. Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella. Microb Pathog 2006; 41:49-58. [PMID: 16782300 DOI: 10.1016/j.micpath.2006.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 01/22/2023]
Abstract
The present study characterizes immune cell populations in mice chronically infected with Salmonella. Mice were characterized as chronically infected based on persistently high titers of Salmonella-reactive immunoglobulins in the serum >6 months after a single oral dose of S. enterica serovar Typhimurium. These mice had a visibly enlarged spleen but not liver, while both organs harbored bacteria and had increased total cellularity up to 11 months post-infection. Flow cytometry analysis revealed significantly elevated numbers of neutrophils, dendritic cells (DC) and macrophages in the spleen of chronically infected mice. In contrast, no significant increase in the absolute number of T and B cells was apparent in the spleen and DX5+ cells, which includes NK cells, some NK T cells and possibly some activated T cells, appears to correlate with chronic Salmonella infection in the liver but not the spleen. In situ analyses revealed that CD8alpha+ DC and Gr-1+ cells (neutrophils) increased in the splenic red pulp of chronically infected mice. In addition, Gr-1+ cells, CD68+ cells and CD11c+ cells (DC), the latter lacking detectable staining for CD8alpha and CD4, accumulated around hepatic blood vessels and in the hepatic network in the liver of mice chronically harboring bacteria. These data provide insight into changes that occur within immune cell populations, most notably within splenic and hepatic phagocytic cell populations, that accompany chronic infection with the intracellular bacterium Salmonella.
Collapse
Affiliation(s)
- Cecilia Johansson
- Department of Cell and Molecular Biology, Section for Immunology, Lund University, 221 84 Lund, Sweden
| | | | | |
Collapse
|
50
|
Ben Nasr A, Haithcoat J, Masterson JE, Gunn JS, Eaves-Pyles T, Klimpel GR. Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukoc Biol 2006; 80:774-86. [PMID: 16857732 DOI: 10.1189/jlb.1205755] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Francisella tularensis is one of the most infectious human pathogens known. Although much has been learned about the immune response of mice using an attenuated live vaccine strain (LVS) derived from F. tularensis subspecies holarctica (Type B), little is known about the responses of human monocyte-derived immature dendritic cells (DC). Here, we show that optimal phagocytosis of LVS by DC is dependent on serum opsonization. We demonstrate that complement factor C3-derived opsonins and the major complement receptors expressed by DC, the integrins CR3 (CD11b/CD18) and CR4 (CD11c/CD18), play a critical role in this adhesion-mediated phagocytosis. LVS induced proinflammatory cytokine production and up-regulation of costimulatory surface proteins (CD40, CD86, and MHC Class II) on DC but resisted killing. Once taken up, LVS grew intracellularly, resulting in DC death. DC maturation and cytokine production were induced by direct contact/phagocytosis of LVS or interaction with soluble products of the bacteria, and enhanced activation was seen when LVS was pretreated with serum. Sonicated LVS and supernatants from LVS cultures were potent activators of DC, but LVS LPS failed to activate DC maturation or cytokine production. Serum-treated LVS rapidly induced (within 6 h) a number of cytokines including IL-10, a potent suppressor of macrophage functions and down-regulator of Th1-like responses and the Th1 response inducer IL-12. These results suggest that the simultaneous production of an activating (IL-12, IL-1beta, and TNF-alpha) and a suppressing (IL-10) cytokine profile could contribute to the immunopathogenesis of tularemia.
Collapse
Affiliation(s)
- Abdelhakim Ben Nasr
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|