1
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
2
|
Gao C, Xu YJ, Meng ZX, Gu S, Zhang L, Zheng L. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 2023; 60:2379-2396. [PMID: 36652050 DOI: 10.1007/s12035-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Zhi-Xiu Meng
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Shuang Gu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Abstract
ABSTRACT Gastric intestinal metaplasia (GIM) is a precancerous lesion of gastric cancer (GC) and is considered an irreversible point of progression for GC. Helicobacter pylori infection can cause GIM, but its eradication still does not reverse the process. Bile reflux is also a pathogenic factor in GIM and can continuously irritate the gastric mucosa, and bile acids in refluxed fluid have been widely reported to be associated with GIM. This paper reviews in detail the relationship between bile reflux and GIM and the mechanisms by which bile acids induce GIM.
Collapse
|
4
|
Nieuwenhuis S, Widomska J, Blom P, ‘t Hoen PBAC, van Engelen BGM, Glennon JC. Blood Transcriptome Profiling Links Immunity to Disease Severity in Myotonic Dystrophy Type 1 (DM1). Int J Mol Sci 2022; 23:3081. [PMID: 35328504 PMCID: PMC8954763 DOI: 10.3390/ijms23063081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Paul Blom
- VDL Enabling Technologies Group B.V., 5651 GH Eindhoven, The Netherlands;
| | - Peter-Bram A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
5
|
FOXD1 expression in head and neck squamous carcinoma: a study based on TCGA, GEO and meta-analysis. Biosci Rep 2021; 41:229252. [PMID: 34269372 PMCID: PMC8319493 DOI: 10.1042/bsr20210158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
Forkhead box D1 (FOXD1) is a new member of FOX transcription factor family. FOXD1 has demonstrated multi-level roles during normal development and several diseases' pathogenesis. However, litter is known about the role of FOXD1 in the progression of head and neck squamous cancer (HNSC). In the present study, we analyzed FOXD1 expression pattern using TCGA dataset, GEO datasets, HNSC cell lines and HNSC tissues. Then, we analyzed the correlation between FOXD1 expression and clinical characteristics, and evaluated the prognostic value of FOXD1 in HNSC. Moreover, we assessed the relationship between FOXD1 expression and tumor environment (TME) and immune cell infiltration using ESTIMATE and CIBERSORT algorithms. Finally, we predicted the FOXD1-related biological processes and signal pathways. FOXD1 was up-regulated in HNSC tissues in TCGA datasets, validated by GEO datasets, HNSC cell lines and HNSC tissues. FOXD1 expression was significantly associated with tumor site and HPV infection. Univariate and multivariate Cox regression analyses showed that FOXD1 expression was an independent prognostic factor. Moreover, we found that the proportions of naïve B cells, plasma cells, and resting dendritic cells were negatively correlated with FOXD1 expression, otherwise, the proportion of activated mast cells was positively correlated with FOXD1 expression using CIBERSORT algorithm. GSEA analyses revealed that FOXD1 was mainly involved in cancer-related signaling pathway and metabolism-related pathways. FOXD1 was a potential oncogene, and might represent an indicator for predicting overall survival of HNSC patients. Moreover, many cancer-related pathways and metabolism-related processes may be regulated by FOXD1.
Collapse
|
6
|
Wu Y, Zhu J, Liu H, Liu H. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation. Aging (Albany NY) 2021; 13:8895-8915. [PMID: 33714945 PMCID: PMC8034954 DOI: 10.18632/aging.202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Licochalcone A (LA), a flavonoid found in licorice, has anticancer, antioxidant, anti-inflammatory, and neuroprotective properties. Here, we explored the effect of injecting LA into the tail vein of middle-aged C57BL/6 mice on their cognitive ability as measured by the Morris water maze (MWM) test and cerebral blood flow (CBF). The related mechanisms were assessed via RNA-seq, and T (CD3e+) and B (CD45R/B220+) cells in the spleen and whole blood were quantified via flow cytometry. LA improved the cognitive ability, according to the MWM test results, and upregulated the CBF level of treated mice. The RNA-seq results indicate that LA affected the interleukin (IL)-17 signaling pathway, which is related to T- and B-cell proliferation, and the flow cytometry data suggest that LA promoted T- and B-cell proliferation in the spleen and whole blood. We also performed immune reconstruction via a tail vein injection of lymphocytes into B-NDG (NOD-PrkdcscidIl2rgtm1/Bcge) mice before treating them with LA. We tested cognitive ability by subjecting these animals to new object recognition tests and quantified the splenic and whole blood T and B cells. Cognitive ability improved after immune reconstruction and LA treatment, and LA promoted T- and B-cell proliferation in the spleen and whole blood. This study demonstrates that LA, by activating the IL-17 signaling pathway, promotes T- and B-cell proliferation in the spleen and whole blood of mice and improves cognitive ability. Thus, LA may have immune-modulating therapeutic potential for improving cognition.
Collapse
Affiliation(s)
- Yating Wu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830016, Xinjiang, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
7
|
Lasconi C, Pahl MC, Cousminer DL, Doege CA, Chesi A, Hodge KM, Leonard ME, Lu S, Johnson ME, Su C, Hammond RK, Pippin JA, Terry NA, Ghanem LR, Leibel RL, Wells AD, Grant SFA. Variant-to-Gene-Mapping Analyses Reveal a Role for the Hypothalamus in Genetic Susceptibility to Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2020; 11:667-682. [PMID: 33069917 PMCID: PMC7843407 DOI: 10.1016/j.jcmgh.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Claudia A Doege
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Chun Su
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - James A Pippin
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | | | | | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Department of Pathology, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Xist attenuates acute inflammatory response by female cells. Cell Mol Life Sci 2020; 78:299-316. [PMID: 32193609 DOI: 10.1007/s00018-020-03500-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.1 macrophages and human AML193 monocytes. In both cell types, cytoplasmic Xist colocalizes with the p65 subunit of NF-κB. This interaction was associated with reduced NF-κB nuclear migration, suggesting a novel mechanism to suppress acute inflammation. Further supporting this hypothesis, expression of 5' XIST in male cells significantly reduced IL-6 and NF-κB activity. Adoptive transfer of male splenocytes expressing Xist reduced acute paw swelling in male mice indicating that Xist can have a protective anti-inflammatory effect. These findings show that XIST has functions beyond X chromosome inactivation and suggest that XIST can contribute to sex-specific differences underlying inflammatory response by attenuating acute inflammation in women.
Collapse
|
9
|
Li T, Guo H, Li H, Jiang Y, Zhuang K, Lei C, Wu J, Zhou H, Zhu R, Zhao X, Lu Y, Shi C, Nie Y, Wu K, Yuan Z, Fan DM, Shi Y. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut 2019; 68:1751-1763. [PMID: 30635407 PMCID: PMC6839796 DOI: 10.1136/gutjnl-2017-315318] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Gastric intestinal metaplasia (IM) is common in the gastric epithelium of patients with chronic atrophic gastritis. CDX2 activation in IM is driven by reflux of bile acids and following chronic inflammation. But the mechanism underlying how bile acids activate CDX2 in gastric epithelium has not been fully explored. METHODS We performed microRNA (miRNA) and messenger RNA (mRNA) profiling using microarray in cells treated with bile acids. Data integration of the miRNA/mRNA profiles with gene ontology (GO) analysis and bioinformatics was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with miRNA mimics and inhibitors was used to evaluate their effects on the expression of candidate targets and functions. Immunohistochemistry and in situhybridisation were used to detect the expression of selected miRNAs and their targets in IM tissue microarrays. RESULTS We demonstrate a bile acids-triggered pathway involving upregulation of miR-92a-1-5p and suppression of its target FOXD1 in gastric cells. We first found that miR-92a-1-5p was increased in IM tissues and induced by bile acids. Moreover, miR-92a-1-5p was found to activate CDX2 and downstream intestinal markers by targeting FOXD1/FOXJ1 axis and modulating activation of nuclear factor kappa B (NF-κB) pathway. Furthermore, these effects were found to be clinical relevant, as high miR-92a-1-5p levels were correlated with low FOXD1 levels and high CDX2 levels in IM tissues. CONCLUSION These findings suggest a miR-92a-1-5p/FOXD1/NF-κB/CDX2 regulatory axis plays key roles in the generation of IM phenotype from gastric cells. Suppression of miR-92a-1-5p and restoration of FOXD1 may be a preventive approach for gastric IM in patients with bile regurgitation.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China,Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
| | - Hanqing Guo
- Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hong Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanzhi Jiang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Kun Zhuang
- Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chao Lei
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Haining Zhou
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ruixue Zhu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chongkai Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China,The High School affiliated to Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
| | - Dai-Ming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Ni P, Su Z. Deciphering epigenomic code for cell differentiation using deep learning. BMC Genomics 2019; 20:709. [PMID: 31510916 PMCID: PMC6739944 DOI: 10.1186/s12864-019-6072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background Although DNA sequence plays a crucial role in establishing the unique epigenome of a cell type, little is known about the sequence determinants that lead to the unique epigenomes of different cell types produced during cell differentiation. To fill this gap, we employed two types of deep convolutional neural networks (CNNs) constructed for each of differentially related cell types and for each of histone marks measured in the cells, to learn the sequence determinants of various histone modification patterns in each cell type. Results We applied our models to four differentially related human CD4+ T cell types and six histone marks measured in each cell type. The cell models can accurately predict the histone marks in each cell type, while the mark models can also accurately predict the cell types based on a single mark. Sequence motifs learned by both the cell or mark models are highly similar to known binding motifs of transcription factors known to play important roles in CD4+ T cell differentiation. Both the unique histone mark patterns in each cell type and the different patterns of the same histone mark in different cell types are determined by a set of motifs with unique combinations. Interestingly, the level of sharing motifs learned in the different cell models reflects the lineage relationships of the cells, while the level of sharing motifs learned in the different histone mark models reflects their functional relationships. These models can also enable the prediction of the importance of learned motifs and their interactions in determining specific histone mark patterns in the cell types. Conclusion Sequence determinants of various histone modification patterns in different cell types can be revealed by comparative analysis of motifs learned in the CNN models for multiple cell types and histone marks. The learned motifs are interpretable and may provide insights into the underlying molecular mechanisms of establishing the unique epigenomes in different cell types. Thus, our results support the hypothesis that DNA sequences ultimately determine the unique epigenomes of different cell types through their interactions with transcriptional factors, epigenome remodeling system and extracellular cues during cell differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-6072-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA.
| |
Collapse
|
11
|
Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nat Rev Immunol 2019; 18:703-715. [PMID: 30177790 DOI: 10.1038/s41577-018-0048-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences. Multiple molecular mechanisms also connect extracellular signals to the expression and functionality of specific FTFs and, in this way, fine-tune their activity. Through these diverse mechanisms, FTFs can function as context-dependent rheostats responding to diverse environmental stimuli. Focusing on the various mechanisms by which their functional activity is modulated, as well as on their mechanisms of action, we discuss how specific FTFs control lymphocyte function, allowing for the establishment and maintenance of immune homeostasis.
Collapse
|
12
|
Peng SL. Interactions of Fox proteins with inflammatory transcription-factor pathways. Expert Rev Clin Immunol 2014; 2:869-76. [DOI: 10.1586/1744666x.2.6.869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Abstract
The transcription factor FOXP3 is widely known for its role in the development and function of immunoregulatory T cells. However, it has been discovered recently that FOXP3 is also expressed in epithelial cells of the normal human breast, ovary and prostate. Aggressive cancer of these epithelial tissues often correlates with abnormal expression of FOXP3, which can be either absent or underexpressed at transcript or protein levels. It is becoming clear that this failure of normal FOXP3 expression can result in dysregulation of the expression of a range of oncogenes which have been implicated in the development and metastasis of cancer. Recent evidence suggests that FOXP3 might also regulate chemokine receptor expression, providing a possible explanation for the chemokine-driven, tissue-specific spread that is characteristic of many cancers. This review first summarises the general structure, function and properties of FOXP3. This is followed by an analysis of the tumour-suppressive properties of this transcription factor, with particular reference to the development and chemokine-mediated spread of human breast cancer. A final section focuses on potential applications of this new knowledge for therapeutic intervention.
Collapse
|
14
|
Kan L, Peng CY, McGuire TL, Kessler JA. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone 2013; 53:194-203. [PMID: 23262027 PMCID: PMC3793345 DOI: 10.1016/j.bone.2012.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/09/2012] [Indexed: 01/15/2023]
Abstract
Heterotopic ossification (HO), acquired or hereditary, is the formation of true bone outside the normal skeleton. Although the lineages of cells contributing to bone formation during normal development are well defined, the precise lineages of cells that contribute to HO are not clear. This study utilized Cre-lox based genetic lineage tracing to examine the contribution to HO of cells that expressed either FoxD1 or Glast. Both lineages contributed broadly to different normal tissues, and FoxD1-cre labeled cells contributed to normal bone formation. Despite the similarity in labeling patterns of normal tissues, and the significant contribution of FoxD1-cre labeled cells to normal bone, only Glast-creERT labeled progenitors contributed significantly to HO at all stages, suggesting that the cell populations that normally contribute to physiological bone formation, such as the Foxd1-cre labeled cells, may not participate in pathological HO. Further, identification of Glast-expressing cells as precursors that give rise to HO should help with the molecular targeting of this population both for the prevention and for the treatment of HO.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
15
|
Flounder (Paralichthys olivaceus) FoxD1 and its regulation on the expression of myogenic regulatory factor, MyoD. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
2-Benzamido-N-(1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivatives as potent inhibitors of CK1δ/ε. Amino Acids 2012; 43:1577-91. [PMID: 22331384 PMCID: PMC3448056 DOI: 10.1007/s00726-012-1234-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/25/2012] [Indexed: 01/05/2023]
Abstract
In this study we identified two heterocyclic compounds (5 and 6) as potent and specific inhibitors of CK1δ (IC50 = 0.040 and 0.042 μM, respectively). Whereas compound 5 exhibited fivefold higher affinity towards CK1δ than to CK1ε (IC50 CK1ε = 0.199 μM), compound 6 also inhibited CK1ε (IC50 = 0.0326 μM) in the same range as CK1δ. Selected compound 5 was screened over 442 kinases identifying 5 as a highly potent and selective inhibitor of CK1δ. X-ray analysis of 5 bound to CK1δ demonstrated its binding mode. In addition, characterization of 5 and 6 in a cell biological approach revealed the ability of both compounds to inhibit proliferation of tumor cell lines in a dose and cell line specific manner. In summary, our optimizations lead to the development of new highly selective CK1δ and ε specific inhibitors with biological activity.
Collapse
|
17
|
FOXJ2 expression in rat spinal cord after injury and its role in inflammation. J Mol Neurosci 2012; 47:158-65. [PMID: 22246994 DOI: 10.1007/s12031-011-9704-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/30/2011] [Indexed: 02/06/2023]
Abstract
Foxj2 (forkhead box J2), a novel member of the forkhead/HNF3 family, binds DNA with a dual sequence specificity. It may play a role in maintenance and survival of developing and adult neurons. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a spinal cord injury (SCI) model in adult Sprague-Dawley rats and investigated the dynamic changes of Foxj2 expression in the spinal cord. Western blot analysis revealed that Foxj2 was present in normal spinal cord. It gradually increased, reached a peak at day 5 after SCI, and then declined during the following days. Double immunofluorescence staining revealed wide expression of Foxj2, which is detected in neurons and astrocytes. After injury, Foxj2 expression was increased predominantly in astrocytes, which highly expressed proliferating cell nuclear antigen, a marker for proliferating cells. And knockdown of Foxj2 in cultured primary astrocytes by siRNA showed that Foxj2 played an important role in lipopolysaccharide-induced inflammatory responses. These results suggested that Foxj2 may be involved in the pathophysiology of SCI, and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
18
|
Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012; 39:6219-25. [PMID: 22231906 DOI: 10.1007/s11033-011-1441-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/26/2011] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated, demyelinating and neurodegenerative disease of the central nervous system. After traumatic brain injury, it is the leading cause of neurology disability in young adults. Considerable advances have been made in identifying genes involved in MS but the genetic and phenotypic complexity associated with this disease significantly hinders any progress. A novel class of small RNA molecules, microRNAs (miRNAs) has acquired much attention because they regulate the expression of up to 30% of protein-coding genes and may play a pivotal role in the development of many, if not all, complex diseases. Seven published studies investigated miRNAs from peripheral blood mononuclear cells, CD4+, CD8+ T cell, B lymphocytes, peripheral blood leukocytes, whole blood and brain astrocytes with MS risk. The absence of MS studies investigating plasma miRNA prompted the current investigation of identifying a circulating miRNA signature in MS. We conducted a microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four MS individuals and four sex-aged and ethnicity matched healthy controls. We identified six plasma miRNA (miR-614, miR-572, miR-648, miR-1826, miR-422a and miR-22) that were significantly up-regulated and one plasma miRNA (miR-1979) that was significantly down-regulated in MS individuals. Both miR-422a and miR-22 have previously been implicated in MS. The present study is the first to show a circulating miRNA signature involved in MS that could serve as a potential prognostic and diagnostic biomarker for MS.
Collapse
|
19
|
Bower NI, Johnston IA. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon. Physiol Genomics 2010; 42A:114-30. [PMID: 20663983 DOI: 10.1152/physiolgenomics.00065.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A genomics approach was used to identify nutritionally regulated genes involved in growth of fast skeletal muscle in Atlantic salmon (Salmo salar L.). Forward and reverse subtractive cDNA libraries were prepared comparing fish with zero growth rates to fish growing rapidly. We produced 7,420 ESTs and assembled them into nonredundant clusters prior to annotation. Contigs representing 40 potentially unrecognized nutritionally responsive candidate genes were identified. Twenty-three of the subtractive library candidates were also differentially regulated by nutritional state in an independent fasting-refeeding experiment and their expression placed in the context of 26 genes with established roles in muscle growth regulation. The expression of these genes was also determined during the maturation of a primary myocyte culture, identifying 13 candidates from the subtractive cDNA libraries with putative roles in the myogenic program. During early stages of refeeding DNAJA4, HSPA1B, HSP90A, and CHAC1 expression increased, indicating activation of unfolded protein response pathways. Four genes were considered inhibitory to myogenesis based on their in vivo and in vitro expression profiles (CEBPD, ASB2, HSP30, novel transcript GE623928). Other genes showed increased expression with feeding and highest in vitro expression during the proliferative phase of the culture (FOXD1, DRG1) or as cells differentiated (SMYD1, RTN1, MID1IP1, HSP90A, novel transcript GE617747). The genes identified were associated with chromatin modification (SMYD1, RTN1), microtubule stabilization (MID1IP1), cell cycle regulation (FOXD1, CEBPD, DRG1), and negative regulation of signaling (ASB2) and may play a role in the stimulation of myogenesis during the transition from a catabolic to anabolic state in skeletal muscle.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom.
| | | |
Collapse
|
20
|
Forkhead transcription factors in chronic inflammation. Int J Biochem Cell Biol 2009; 42:482-5. [PMID: 19850149 DOI: 10.1016/j.biocel.2009.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/13/2009] [Indexed: 01/10/2023]
Abstract
Forkhead (Fox) transcription factors have been increasingly recognized to play key roles in immune homeostasis, especially Foxp3 for its role in the development and function of regulatory T cells, and Foxo family members for their regulatory role in T and B lymphocytes as well as other leukocytes. Although these transcription factors positively regulate the expression of multiple target genes, a unique functional attribute of these genes is the maintenance of leukocyte homeostasis, such as the preservation of the naïve or quiescent T cell state and prevention of autoimmunity. As a result, many chronic inflammatory processes appear to reflect a relative loss of activity of one of these transcription factors, raising the possibility that therapeutic approaches which confer gain-of-function Fox activity may be beneficial. On the other hand, however, some of the Fox family members also appear to promote and/or maintain chronic inflammation by preserving inflammatory leukocyte survival and/or otherwise promoting the expression of inflammatory target genes, at least in some cell types such as neutrophils. Therefore, although the role of Fox in inflammatory disorders remains complex and incompletely understood, the continued study of these factors provides new insight into the initiation, maintenance, and propagation of inflammation.
Collapse
|
21
|
Bolzer K, Käser T, Saalmüller A, Hammer SE. Molecular characterisation of porcine Forkhead-box p3 (Foxp3). Vet Immunol Immunopathol 2009; 132:275-81. [PMID: 19545910 DOI: 10.1016/j.vetimm.2009.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
In swine the phenotypical identification of regulatory T cells (Tregs) was limited so far to the surface expression of CD4 and CD25. However, with the discovery of the Treg-specific transcription factor forkhead-box p3 (Foxp3) in mice and humans a powerful marker for the identification of Tregs is available. Recently, we published data on a murine anti-mouse/rat Foxp3 antibody (FJK-16s) showing cross-reactivity with the putative porcine Foxp3 protein in lymphoid cells but the final proof for the specific cross-reactivity of this antibody was missing. By performing RACE-experiments, we have sequenced the entire porcine Foxp3 cDNA which is 1296 nucleotides in length and codes for a polypeptide of 432 amino acids. The porcine Foxp3 nucleotide and amino acid sequences show high homology to all known orthologues from other mammals, with the greatest homology with the bovine sequence. To demonstrate the specificity of the FJK-16s antibody for the porcine Foxp3 protein, HEK293T cells were transfected with porcine Foxp3 containing the FJK-16s-specific binding region and the expression of the epitope was identified by immuno-staining. In conclusion, this study represents the final proof for the specificity of the murine FJK-16s antibody for the porcine Foxp3 homologue and therefore strengthens future work on porcine Tregs.
Collapse
Affiliation(s)
- Kerstin Bolzer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Kowtharapu BS, Vincent FC, Bubis A, Verleysdonk S. Lentiviral transfection of ependymal primary cultures facilitates the characterisation of kinocilia-specific promoters. Neurochem Res 2009; 34:1380-92. [PMID: 19191024 DOI: 10.1007/s11064-009-9918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2009] [Indexed: 11/28/2022]
Abstract
Ependymal primary cultures (EPCs) are an established model for studying ependymal cell biochemistry and the biology of kinocilia-bearing cells. However, the difficulty in causing them to express transgenes at high efficiency has been an important drawback of the system. Indeed plasmid-based transfection attempts remain at an efficiency below 1% and fail to elicit reporter gene expression, namely green fluorescent protein (GFP) synthesis, in any of the kinocilia-bearing cells of the cultures. Human immunodeficiency virus pseudotyped with the vesicular stomatitis virus envelope glycoprotein (HIV/VSV-G) and encoding GFP under the control of the ubiquitously recognised promoter of elongation factor 1 alpha (EF1alpha) also does not cause transgene expression in the kinocilia-bearing cells of an EPC when applied at multiplicities of infection (MOIs) of up to 40 and destroys the culture when the MOI is increased further. In contrast, HIV/VSV-G encoding GFP under the control of a promoter specifically active in kinocilia-bearing cells leads to transgene expression in up to 79% of the kinociliated cells of an EPC when applied at an MOI of 20. This has permitted the initial characterisation of the promoter for the gene specifically transcribed in kinocilia-bearing cells, wdr16. The results have identified two regions of 100 nucleotides length each, which are critical for promoter activity and contain putative binding sites for the transcription factors Foxd1, Sox17 and Spz1. It appears that wdr16 is controlled by a bidirectional promoter also responsible for regulating the syntaxin 8 gene.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Interfaculty Institute for Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
23
|
Aamar E, Dawid IB. Isolation and expression analysis of foxj1 and foxj1.2 in zebrafish embryos. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 52:985-91. [PMID: 18956329 DOI: 10.1387/ijdb.072477ea] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this report, we present the isolation and identification of a zebrafish homolog of the winged helix\forkhead transcription factor Foxj1. Foxj1 was identified in other species but not in zebrafish. Foxj1 was shown in mice to be required in ciliogenesis and left-right asymmetry establishment. Here we present a spatio-temporal expression pattern of zebrafish foxj1, showing that this gene is expressed in dorsal forerunner cells, Kupffers vesicle, the floor plate, pronephric ducts and kidney. This expression pattern is overlapping but different from that of the foxj1.2, the closest related gene in zebrafish. Foxj1 in zebrafish appears to have similar functions as those reported in other species connected to ciliogenesis and left-right asymmetry.
Collapse
Affiliation(s)
- Emil Aamar
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
24
|
The C proteins of human parainfluenza virus type 1 (HPIV1) control the transcription of a broad array of cellular genes that would otherwise respond to HPIV1 infection. J Virol 2008; 83:1892-910. [PMID: 19052086 DOI: 10.1128/jvi.01373-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human parainfluenza virus type 1 (HPIV1) is an important respiratory pathogen in children and the most common cause of viral croup. We performed a microarray-based analysis of gene expression kinetics to examine how wild-type (wt) HPIV1 infection altered gene expression in human respiratory epithelial cells and what role beta interferon played in this response. We similarly evaluated HPIV1-P(C-), a highly attenuated and apoptosis-inducing virus that does not express any of the four C proteins, and HPIV1-C(F170S), a less attenuated mutant that contains a single point mutation in C and, like wt HPIV1, does not efficiently induce apoptosis, to examine the role of the C proteins in controlling host gene expression. We also used these data to investigate whether the phenotypic differences between the two C mutants could be explained at the transcriptional level. Mutation or deletion of the C proteins of HPIV1 permitted the activation of over 2,000 cellular genes that otherwise would be repressed by HPIV1 infection. Thus, the C proteins profoundly suppress the response of human respiratory cells to HPIV1 infection. Cellular pathways targeted by the HPIV1 C proteins were identified and their transcriptional control was analyzed using bioinformatics. Transcription factor binding sites for IRF and NF-kappaB were overrepresented in some of the C protein-targeted pathways, but other pathways were dominated by less-known factors, such as forkhead transcription factor FOXD1. Surprisingly, the host responses to the P(C-) and C(F170S) mutants were very similar, and only subtle differences in the expression kinetics of caspase 3 and TRAIL receptor 2 were observed. Thus, changes in host cell transcription did not reflect the striking phenotypic differences observed between these two viruses.
Collapse
|
25
|
Wu CA, Peluso JJ, Shanley JD, Puddington L, Thrall RS. Murine cytomegalovirus influences Foxj1 expression, ciliogenesis, and mucus plugging in mice with allergic airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:714-24. [PMID: 18258850 DOI: 10.2353/ajpath.2008.070462] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have followed throughout time the development of allergic airway disease (AAD) in both uninfected mice and mice infected intranasally with murine cytomegalovirus (MCMV). Histological evaluation of lung tissue from uninfected mice with AAD demonstrated mucus plugging after 14 and 21 days of ovalbumin-aerosol challenge, with resolution of mucus plugging occurring by 42 days. In MCMV/AAD mice, mucus plugging was observed after 7 days of ovalbumin-aerosol challenge and remained present at 42 days. The level of interleukin-13 in bronchoalveolar lavage fluid from MCMV/AAD mice was decreased compared with AAD mice and was accompanied by increased levels of interferon-gamma. Levels of Muc5A/C, Muc5B, or Muc2 mucin mRNA in the lungs of MCMV/AAD mice were not elevated compared with AAD mice. MCMV was able to infect the airway epithelium, resulting in decreased expression of Foxj1, a transcription factor critical for ciliogenesis, and a loss of ciliated epithelial cells. In addition, an increase in the number of epithelial cells staining positive for periodic acid-Schiff was observed in MCMV/AAD airways. Together, these findings suggest that MCMV infection of the airway epithelium enhances goblet cell metaplasia and diminishes efficient mucociliary clearance in mice with AAD, resulting in increased mucus plugging.
Collapse
Affiliation(s)
- Carol A Wu
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1319, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The RAS gene product is normally a membrane-localized G protein (N-Ras, K-Ras and H-Ras) of 21 kDa classically described as a molecular off/on switch. It is inactive when bound to guanosine diphosphate and active when bound to GTP. When mutated, the gene produces an abnormal protein resistant to GTP hydrolysis by GTPase, resulting in a constitutively active GTP-bound protein that stimulates a critical network of signal transduction pathways that lead to cellular proliferation, survival and differentiation. At least three downstream effector pathways have been described, including Raf/MEK/ERK, PI3K/AKT and RalGDS, but they are not completely understood. Ras pathways are also important downstream effectors of several receptor tyrosine kinases localized in the cell membrane, most notably the BCR-ABL fusion protein seen in patients with Philadelphia chromosome positive chronic myelogenous leukemia. An important consideration in designing strategies to block Ras stimulatory effect is that Ras proteins are synthesized in the cytosol, but require post-translational modifications and attachment to anchor proteins or membrane binding sites in the cell membrane to be biologically active. Farnesyl transferase inhibitors (FTIs) are probably the best-studied class of Ras inhibitors in hematologic malignancies. They block the enzyme farnesyl-transferase (FTase), which is essential for post-translational modification. However, it has been observed that the Ras proteins also can be geranylgeranylated in the presence of FTIs, thus allowing membrane localization and activation, which limits their effectiveness. It is now hypothesized that their mechanism of action may be through FTase inhibition involving other signal transduction pathways. S-trans, trans-farnesylthiosalicylic acid, which was first designed as a prenylated protein methyltransferase inhibitor, has shown in vitro activity against all activated Ras proteins by dislodging them from their membrane-anchoring sites. Here, Ras biology, its signaling pathways and its implications as a therapeutic target in hematologic malignancies are reviewed.
Collapse
Affiliation(s)
- Yesid Alvarado
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Box 428, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
27
|
Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, Ziegler SF. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. THE JOURNAL OF IMMUNOLOGY 2006; 177:3133-42. [PMID: 16920951 DOI: 10.4049/jimmunol.177.5.3133] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foxp3 has been shown to be both necessary and sufficient for the development and function of naturally arising CD4+ CD25+ regulatory T cells in mice. Mutation of Foxp3 in Scurfy mice and FOXP3 in humans with IPEX results in fatal, early onset autoimmune disease and demonstrates the critical role of FOXP3 in maintaining immune homeostasis. The FOXP3 protein encodes several functional domains, including a C2H2 zinc finger, a leucine zipper, and a winged-helix/forkhead (FKH) domain. We have shown previously that FOXP3 functions as a transcriptional repressor and inhibits activation-induced IL-2 gene transcription. To characterize the role of each predicted functional domain on the in vivo activity of FOXP3, we have evaluated the location of point mutations identified in a large cohort of patients with the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) and found them to cluster primarily within the FKH domain and the leucine zipper, but also present within the poorly defined N-terminal portion of the protein. The molecular functions of each of the IPEX-targeted domains were investigated. We show that FOXP3 is constitutively localized to the nucleus and this localization requires sequences at both the amino and C-terminal ends of its FKH domain. Moreover, FOXP3 was found to homodimerize through its leucine zipper. We also identify a novel functional domain within the N-terminal half of FOXP3, which is required for FOXP3-mediated repression of transcription from both a constitutively active and a NF-AT-inducible promoter. Furthermore, we demonstrate that IPEX mutations in these domains correlate with deficiencies in FOXP3 repressor function, corroborating their in vivo relevance.
Collapse
Affiliation(s)
- Jared E Lopes
- Benaroya Research Institute, Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|