1
|
Suzuki H, Hasegawa S, Fushimi S, Tagami K, Nishikawa M, Kondo Y, Yasuda H. Metformin prevents diabetes development in type 1 diabetes models via suppression of mTOR and STAT3 signaling in immune cells. Sci Rep 2025; 15:10641. [PMID: 40148472 PMCID: PMC11950226 DOI: 10.1038/s41598-025-93647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by T cell-mediated pancreatic β cell destruction. To evaluate the effects of metformin on immune cells in autoimmune diabetes, we administered metformin intraperitoneally to two T1D mouse models and analyzed autoimmune diabetes progression. In a cyclophosphamide (CY)-induced T1D model in male non-obese diabetic (NOD) mice, intraperitoneal administration of metformin significantly prevented autoimmune diabetes. Treatment with metformin showed a decrease in activated T cells, CD44hiCD62Llo effector memory cells, macrophages, and dendritic cells (DCs), and an increase in CD44hiCD62Lhi central memory cells, B cells, and regulatory T cells (Tregs) in splenocytes. Interestingly, metformin treatment showed a decrease in activated T cells, CD4+ effector memory T cells and Th1-type antigen-specific cells in PLN cells. IL-17 production was significantly suppressed in metformin-treated mice. TNF-α production from DCs in vitro was dose-dependently suppressed by metformin. Activity of mTOR signaling was significantly reduced in CD4+ T cells, CD8+ T cells, and B220+ B cells. In addition, activities of mTOR and STAT3 signaling in DCs were also reduced significantly. Furthermore, metformin treatment in female NOD mice, a spontaneous T1D model, significantly suppressed autoimmune diabetes onset as well and an increase in Tregs was observed. Our results suggest that metformin may suppress autoimmunity and have therapeutic potential in T1D progression as an immunomodulator.
Collapse
Affiliation(s)
- Haruka Suzuki
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shuji Hasegawa
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Sae Fushimi
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kanako Tagami
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Minaho Nishikawa
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Yuichi Kondo
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Hisafumi Yasuda
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
- Department of General Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
2
|
Martin TM, Burke SJ, Wasserfall CH, Collier JJ. Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmun Rev 2023; 22:103414. [PMID: 37619906 PMCID: PMC10543623 DOI: 10.1016/j.autrev.2023.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet β-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet β-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the β2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet β-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.
Collapse
Affiliation(s)
- Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
3
|
Amer AS, Othman AA, Dawood LM, El-Nouby KA, Gobert GN, Abou Rayia DM. The interaction of Schistosoma mansoni infection with diabetes mellitus and obesity in mice. Sci Rep 2023; 13:9417. [PMID: 37296126 PMCID: PMC10256771 DOI: 10.1038/s41598-023-36112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-β, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.
Collapse
Affiliation(s)
- Alaa S Amer
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Lamees M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Geoffrey N Gobert
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Zhao Y, Veysman B. Revisiting the Pathogenesis of Type 1 Diabetes: Importance of Neural Input to Pancreatic Islets and the Therapeutic Capability of Stem Cell Educator TM Therapy to Restore Their Integrity. Biomedicines 2023; 11:594. [PMID: 36831130 PMCID: PMC9952924 DOI: 10.3390/biomedicines11020594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with a shortage of islet β cells. To date, the etiology of T1D remains elusive. Increasing clinical evidence and animal studies demonstrate that autoimmune cells are directed against the nervous system of pancreatic islets, contributing to the development of T1D. Therefore, it highlights the necessity to explore novel clinical approaches to fundamentally correct the T1D autoimmunity not only focusing on islet β cells but also on protecting the islet nervous system. This allows the restoration of the integrity of islet innervation and the normal islet β-cell function. To address these issues, we developed a novel technology designated the Stem Cell Educator TM therapy, based on immune education by human cord-blood-derived multipotent stem cells (CB-SC). International amulticenter clinical trials demonstrated its clinical safety and efficacy to treat T1D and other autoimmune diseases. Stem Cell Educator TM therapy may have the potential to revolutionize the treatment of T1D, without the safety and ethical concerns associated with conventional immune and/or stem cell-based therapies.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | |
Collapse
|
5
|
Miyabayashi M, Onishi S, Yoshida T, Takemoto M. A case of doxorubicin and cyclophosphamide therapy-induced type 1 diabetes: a case report. J Med Case Rep 2023; 17:26. [PMID: 36703182 PMCID: PMC9881334 DOI: 10.1186/s13256-023-03755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Patients receiving immune checkpoint inhibitors have been reported to develop autoimmune endocrine diseases, including type 1 diabetes, although few drugs have been shown to induce type 1 diabetes. Additionally, it is important to note that drugs other than immune checkpoint inhibitors could lead to the development of type 1 diabetes. CASE PRESENTATION A 54-year-old Filipino female patient underwent surgery for left-sided breast cancer. Postoperative chemotherapy was initiated, including doxorubicin (Adriamycin) and cyclophosphamide therapy. The patient was brought to our hospital by ambulance after consciousness disturbance following three courses of doxorubicin and cyclophosphamide therapy and was hospitalized. Her blood glucose and hemoglobin A1c levels were 1661 mg/dL and 11.9%, respectively. The patient was diagnosed with diabetic ketoacidosis after arterial blood gas analysis indicated a blood pH of 7.120. Her insulin secretion was impaired, and her anti-glutamic acid decarboxylase antibody test result was significantly positive. CONCLUSIONS The present case shows that doxorubicin and cyclophosphamide therapy may cause unexpected adverse responses, such as type 1 diabetes, though rarely, and highlights the importance of careful patient follow-up. This report is the first to present a case of type 1 diabetes that suddenly developed after doxorubicin and cyclophosphamide treatment.
Collapse
Affiliation(s)
- Makoto Miyabayashi
- grid.411731.10000 0004 0531 3030International University of Health and Welfare, Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520 Japan
| | - Shunichiro Onishi
- grid.411731.10000 0004 0531 3030International University of Health and Welfare, Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520 Japan ,grid.411731.10000 0004 0531 3030Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686 Japan
| | - Tomohiko Yoshida
- grid.411731.10000 0004 0531 3030International University of Health and Welfare, Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520 Japan ,grid.411731.10000 0004 0531 3030Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686 Japan
| | - Minoru Takemoto
- grid.411731.10000 0004 0531 3030International University of Health and Welfare, Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520 Japan ,grid.411731.10000 0004 0531 3030Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686 Japan
| |
Collapse
|
6
|
CD4 + T cells drive an inflammatory, TNF-α/IFN-rich tumor microenvironment responsive to chemotherapy. Cell Rep 2022; 41:111874. [PMID: 36577370 DOI: 10.1016/j.celrep.2022.111874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/08/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.
Collapse
|
7
|
Revisited Cyclophosphamide in the Treatment of Lupus Nephritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8345737. [PMID: 35707391 PMCID: PMC9192236 DOI: 10.1155/2022/8345737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is the most common serious complication of systemic lupus erythematosus (SLE). The pathogenesis of LN is complex, and the majority causes of LN are the renal deposition of circulating or/and in situ-formed immune complexes. These immune complexes trigger glomerular and tubulointerstitial inflammation, which finally leads to proteinuria and loss of renal function. Despite the emergence of new biological agents, cyclophosphamide (CY), an alkylating agent, is still the first-line drug widely used to treat patients with severe LN. In this review, we outline the application history, molecular structure, and pharmacokinetics of CY in the treatment of LN. We also detail its latest known immunopharmacological mechanisms, with a focus on supplemental regulation and inhibition of CD4 and CD8 positive T cells, differences in the use of various guidelines, and the combination with other drugs. The side effects of CY are also mentioned in this review.
Collapse
|
8
|
Zeng Q, Song J, Wang D, Sun X, Xiao Y, Zhang H, Xiao Y, Zhou Z, Deng T. Identification of Sorafenib as a Treatment for Type 1 Diabetes. Front Immunol 2022; 13:740805. [PMID: 35242127 PMCID: PMC8886732 DOI: 10.3389/fimmu.2022.740805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Th1 cell activation is considered a key mediator of the pathogenesis of type 1 diabetes. Targeting IL-12-induced Th1 cell differentiation seems to be an effective way to block the development of type 1 diabetes. However, given the critical function of Th1 in the immune system, the potential side effects hinder the application of anti-Th1 therapy in the treatment of type 1 diabetes. To identify safe anti-Th1 treatment(s), we screened the FDA-approved tyrosine kinase inhibitor (TKI) drug library using an IL-12-induced Th1 differentiation cell model. We found that among the TKIs with little effect on T cell viability, sorafenib is the top contender for the inhibition of Th1 differentiation. Treatment of NOD mice with sorafenib significantly impeded the development of type 1 diabetes and ameliorated insulitis, which coincided with a specifically decreased accumulation of Th1 cell population in the pancreas but not in peripheral immune organs. Mechanistically, sorafenib indirectly inhibited janus kinase 2 (JAK2) activity and blocked IL-12-induced phosphorylations of JAK2 and signal transducer and activator of transcription 4 (STAT4). Since sorafenib is classified as an FDA-approved drug, it serves as a preliminary lead point for additional experimentation and may be a promising therapy for type 1 diabetes in humans.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalun Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Karacay C, Prietl B, Harer C, Ehall B, Haudum CW, Bounab K, Franz J, Eisenberg T, Madeo F, Kolb D, Hingerl K, Hausl M, Magnes C, Mautner SI, Kotzbeck P, Pieber TR. The effect of spermidine on autoimmunity and beta cell function in NOD mice. Sci Rep 2022; 12:4502. [PMID: 35296698 PMCID: PMC8927410 DOI: 10.1038/s41598-022-08168-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Spermidine is a natural polyamine which was shown to prolong lifespan of organisms and to improve cardiac and cognitive function. Spermidine was also reported to reduce inflammation and modulate T-cells. Autophagy is one of the mechanisms that spermidine exerts its effect. Autophagy is vital for β-cell homeostasis and autophagy deficiency was reported to lead to exacerbated diabetes in mice. The effect of spermidine in type 1 diabetes pathogenesis remains to be elucidated. Therefore, we examined the effect of spermidine treatment in non-obese diabetic (NOD) mice, a mouse model for type 1 diabetes. NOD mice were given untreated or spermidine-treated water ad libitum from 4 weeks of age until diabetes onset or 35 weeks of age. We found that treatment with 10 mM spermidine led to higher diabetes incidence in NOD mice despite unchanged pancreatic insulitis. Spermidine modulated tissue polyamine levels and elevated signs of autophagy in pancreas. Spermidine led to increased proportion of pro-inflammatory T-cells in pancreatic lymph nodes (pLN) in diabetic mice. Spermidine elevated the proportion of regulatory T-cells in early onset mice, whereas it reduced the proportion of regulatory T-cells in late onset mice. In summary spermidine treatment led to higher diabetes incidence and elevated proportion of T-cells in pLN.
Collapse
Affiliation(s)
- Ceren Karacay
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Prietl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Clemens Harer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Ehall
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Kaddour Bounab
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Joakim Franz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kerstin Hingerl
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Hausl
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Selma I Mautner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH COREMED - Cooperative Centre for Regenerative Medicine, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria.
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria.
| |
Collapse
|
11
|
Bastos TSB, Braga TT, Davanso MR. Vitamin D and Omega-3 Polyunsaturated Fatty Acids in Type 1 Diabetes modulation. Endocr Metab Immune Disord Drug Targets 2022; 22:815-833. [PMID: 34979894 DOI: 10.2174/1871530322666220103114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease that affects people globally. Usually developed during childhood, T1D is characterized by the destruction of pancreatic β-cells due to immune cell attack and the establishment of an inflammatory process. OBJECTIVE The study aimed to investigate the effects of vitamin D through its nuclear receptor and the ω-3 polyunsaturated fatty acids (PUFAs) through their lipid derivatives in T1D modulation. Both components exert anti-inflammatory activity and act directly on cells of the immune system, attenuating the destruction of insulin-producing cells. Furthermore, they lead to a better glycemic level, reducing the need for insulin and a normal immune state, such as C-peptide maintenance. METHOD Presently, our review highlights the significant studies that evaluated the supplementation of vitamin D and ω-3 PUFAs in humans and animal models in the modulation of T1D. CONCLUSION The data collected suggests that supplementation can provide potential benefits, mainly when done early in the diagnosis, since it reduces the need for insulin and the risk of complications generated by the disease.
Collapse
Affiliation(s)
| | - Tárcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba; Brazil
- Graduate Program in Biosciences and Biotechnology, Institute Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| | | |
Collapse
|
12
|
Glavas MM, Lee AY, Miao I, Yang F, Mojibian M, O'Dwyer SM, Kieffer TJ. Developmental Timing of High-Fat Diet Exposure Impacts Glucose Homeostasis in Mice in a Sex-Specific Manner. Diabetes 2021; 70:2771-2784. [PMID: 34544729 PMCID: PMC8660987 DOI: 10.2337/db21-0310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
We previously demonstrated that male, but not female, Swiss Webster mice are susceptible to diabetes, with incidence increased by early overnutrition and high-fat diet (HFD). In this study, we investigated how HFD in Swiss Webster males and females during preweaning, peripubertal, and postpubertal periods alters glucose homeostasis and diabetes susceptibility. In males, HFD throughout life resulted in the highest diabetes incidence. Notably, switching to chow postpuberty was protective against diabetes relative to switching to chow at weaning, despite the longer period of HFD exposure. Similarly, HFD throughout life in males resulted in less liver steatosis relative to mice with shorter duration of postpubertal HFD. Thus, HFD timing relative to weaning and puberty, not simply exposure length, contributes to metabolic outcomes. Females were protected from hyperglycemia regardless of length or timing of HFD. However, postpubertal HFD resulted in a high degree of hepatic steatosis and adipose fibrosis, but glucose regulation and insulin sensitivity remained unchanged. Interestingly, peri-insulitis was observed in the majority of females but was not correlated with impaired glucose regulation. Our findings reveal critical periods of HFD-induced glucose dysregulation with striking sex differences in Swiss Webster mice, highlighting the importance of careful consideration of HFD timing relative to critical developmental periods.
Collapse
Affiliation(s)
- Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ann Y Lee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Miao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fan Yang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Clark AL, Yan Z, Chen SX, Shi V, Kulkarni DH, Diwan A, Remedi MS. High-fat diet prevents the development of autoimmune diabetes in NOD mice. Diabetes Obes Metab 2021; 23:2455-2465. [PMID: 34212475 PMCID: PMC8490276 DOI: 10.1111/dom.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
AIMS Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.
Collapse
Affiliation(s)
- Amy L. Clark
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Zihan Yan
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Sophia X. Chen
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Victoria Shi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Devesha H. Kulkarni
- Department of Internal MedicineWashington University in St LouisSt LouisMissouriUSA
| | - Abhinav Diwan
- Department of Internal Medicine‐Cardiovascular DivisionWashington University in St LouisSt LouisMissouriUSA
- John Cochran VA Medical Center‐Cardiovascular DivisionSt LouisMissouriUSA
| | - Maria S. Remedi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
- Department of Cell Biology and PhysiologyWashington University in St LouisSt LouisMissouriUSA
| |
Collapse
|
14
|
Lee JS, Han P, Chaudhury R, Khan S, Bickerton S, McHugh MD, Park HB, Siefert AL, Rea G, Carballido JM, Horwitz DA, Criscione J, Perica K, Samstein R, Ragheb R, Kim D, Fahmy TM. Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat Biomed Eng 2021; 5:983-997. [PMID: 34616050 DOI: 10.1038/s41551-021-00791-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Oral formulations of insulin are typically designed to improve its intestinal absorption and increase its blood bioavailability. Here we show that polymerized ursodeoxycholic acid, selected from a panel of bile-acid polymers and formulated into nanoparticles for the oral delivery of insulin, restored blood-glucose levels in mice and pigs with established type 1 diabetes. The nanoparticles functioned as a protective insulin carrier and as a high-avidity bile-acid-receptor agonist, increased the intestinal absorption of insulin, polarized intestinal macrophages towards the M2 phenotype, and preferentially accumulated in the pancreas of the mice, binding to the islet-cell bile-acid membrane receptor TGR5 with high avidity and activating the secretion of glucagon-like peptide and of endogenous insulin. In the mice, the nanoparticles also reversed inflammation, restored metabolic functions and extended animal survival. When encapsulating rapamycin, they delayed the onset of diabetes in mice with chemically induced pancreatic inflammation. The metabolic and immunomodulatory functions of ingestible bile-acid-polymer nanocarriers may offer translational opportunities for the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jung Seok Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Patrick Han
- Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Rabib Chaudhury
- Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Shihan Khan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael D McHugh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hyun Bong Park
- Department of Chemistry, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Alyssa L Siefert
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | | | - David A Horwitz
- Medicine and Molecular Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason Criscione
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karlo Perica
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Robert Samstein
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ragy Ragheb
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Dongin Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA. .,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Principe DR, Chiec L, Mohindra NA, Munshi HG. Regulatory T-Cells as an Emerging Barrier to Immune Checkpoint Inhibition in Lung Cancer. Front Oncol 2021; 11:684098. [PMID: 34141625 PMCID: PMC8204014 DOI: 10.3389/fonc.2021.684098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm for lung cancer in recent years. These strategies consist of neutralizing antibodies against negative regulators of immune function, most notably cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), thereby impeding the ability of tumor cells to escape immune surveillance. Though ICIs have proven a significant advance in lung cancer therapy, overall survival rates remain low, and lung cancer continues to be the leading cause of cancer-related death in the United States. It is therefore imperative to better understand the barriers to the efficacy of ICIs, particularly additional mechanisms of immunosuppression within the lung cancer microenvironment. Recent evidence suggests that regulatory T-lymphocytes (Tregs) serve as a central mediator of immune function in lung cancer, suppressing sterilizing immunity and contributing to the clinical failure of ICIs. Here, we provide a comprehensive summary of the roles of Tregs in lung cancer pathobiology and therapy, as well as the potential means through which these immunosuppressive mechanisms can be overcome.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States.,Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lauren Chiec
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nisha A Mohindra
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
16
|
Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers (Basel) 2021; 13:cancers13092225. [PMID: 34066414 PMCID: PMC8124952 DOI: 10.3390/cancers13092225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary CAR-T cell therapy is a new approach to cancer treatment that is based on manipulating a patient’s own T cells such that they become able to seek and destroy cancer cells in a highly specific manner. This approach is showing remarkable efficacy in treating some types of blood cancers but so far has been much less effective against solid cancers. Here, we review the diverse effects of chemotherapy agents on circulating leukocyte populations and find that, despite some negative effects over the short term, chemotherapy can favourably modulate the immune systems of cancer patients over the longer term. Since blood is the starting material for CAR-T cell production, we propose that these effects could significantly influence the success of manufacturing, and anti-cancer activity, of CAR-T cells. Thus, if timed correctly, chemotherapy-induced changes to circulating immune cells could allow CAR-T cells to unleash more effective anti-tumour responses. Abstract Adoptive T-cell therapy using autologous T cells genetically modified to express cancer-specific chimeric antigen receptors (CAR) has emerged as a novel approach for cancer treatment. CAR-T cell therapy has been approved in several major jurisdictions for treating refractory or relapsed cases of B-cell precursor acute lymphoblastic leukaemia and diffuse large B-cell lymphoma. However, in solid cancer patients, several clinical studies of CAR-T cell therapy have demonstrated minimal therapeutic effects, thus encouraging interest in better integrating CAR-T cells with other treatments such as conventional cytotoxic chemotherapy. Increasing evidence shows that not only do chemotherapy drugs have tumoricidal effects, but also significantly modulate the immune system. Here, we discuss immunomodulatory effects of chemotherapy drugs on circulating leukocyte populations, including their ability to enhance cytotoxic effects and preserve the frequency of CD8+ T cells and to deplete immunosuppressive populations including regulatory T cells and myeloid-derived suppressor cells. By modulating the abundance and phenotype of leukocytes in the blood (the ‘raw material’ for CAR-T cell manufacturing), we propose that prior chemotherapy could facilitate production of the most effective CAR-T cell products. Further research is required to directly test this concept and identify strategies for the optimal integration of CAR-T cell therapies with cytotoxic chemotherapy for solid cancers.
Collapse
|
17
|
de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu AR, Kern TS, Ramakrishnan P. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021; 31:812-826. [PMID: 33442719 PMCID: PMC8351495 DOI: 10.1093/glycob/cwab001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.
Collapse
Affiliation(s)
- Tristan J de Jesus
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Joshua T Centore
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Ruchira A Agarwal
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Timothy S Kern
- Department of Ophthalmology, School of Medicine, University of California Irvine, 850 Health Sciences Road Irvine, CA 92697, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,Department of Biochemistry, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Gurgel Penaforte-Saboia J, Couri CEB, Vasconcelos Albuquerque N, Lauanna Lima Silva V, Bitar da Cunha Olegario N, Oliveira Fernandes V, Montenegro Junior RM. Emerging Roles of Dipeptidyl Peptidase-4 Inhibitors in Delaying the Progression of Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:565-573. [PMID: 33603422 PMCID: PMC7882449 DOI: 10.2147/dmso.s294742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from the immune cell-mediated destruction of functional pancreatic β-cells. In the presymptomatic period, T1DM is characterized by the presence of two or more autoantibodies against the islet cells in patients without glycemic decompensation. Therapeutic strategies that can modify the autoimmune process could slow the progression of T1DM. Dipeptidyl peptidase-4 (DPP-4) or CD26, a multifunctional serine protease with a dual function (regulatory protease and binding protein), can modulate inflammation and immune cell-mediated β-cell destruction. CD26 is involved in T-cell co-stimulation, migration, memory development, thymic maturation, and emigration patterns. DPP-4 degrades the peptide hormones GLP-1 and GIP. In addition to regulating glucose metabolism, DPP-4 exerts anti-apoptotic, regenerative, and proliferative effects to promote β-cell mass expansion. GLP-1 receptor signaling may regulate murine lymphocyte proliferation and maintenance of peripheral regulatory T-cells. In patients with T1DM, the serum DPP-4 activity is upregulated. Several studies have suggested that the upregulated DPP-4 activity is correlated with T1DM pathophysiology. DPP-4, which is preferentially expressed on the Th1 surface, can promote the polarization of Th1 immunity, a prerequisite for T1DM development. CD26 inhibition can suppress T-cell proliferation and Th1 cytokine production and stimulate tumor growth factor beta-1 (TGF-β1) secretion, which plays an important role in the regulation of autoimmunity in T1DM. Studies on humans or animal models of T1DM have suggested that DPP-4 inhibitors can improve β-cell function and attenuate autoimmunity in addition to decreasing insulin dependence. This review summarizes the emerging roles of DPP-4 inhibitors in potentially delaying the progression of T1DM.
Collapse
Affiliation(s)
- Jaquellyne Gurgel Penaforte-Saboia
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos Eduardo Barra Couri
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natasha Vasconcelos Albuquerque
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | | | - Natália Bitar da Cunha Olegario
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Virgínia Oliveira Fernandes
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
- Correspondence: Renan Magalhães Montenegro Junior Federal University of Ceará, Rua Coronel Nunes de Melo s/n, Fortaleza, 60430-270, Ceará, BrazilTel +55 8533668600Fax +55 85 3366-8619 Email
| |
Collapse
|
19
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
20
|
|
21
|
Cabello-Kindelan C, Mackey S, Sands A, Rodriguez J, Vazquez C, Pugliese A, Bayer AL. Immunomodulation Followed by Antigen-Specific T reg Infusion Controls Islet Autoimmunity. Diabetes 2020; 69:215-227. [PMID: 31712320 PMCID: PMC6971488 DOI: 10.2337/db19-0061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Optimal immune-based therapies for type 1 diabetes (T1D) should restore self-tolerance without inducing chronic immunosuppression. CD4+Foxp3+ regulatory T cells (Tregs) are a key cell population capable of facilitating durable immune tolerance. However, clinical trials with expanded Tregs in T1D and solid-organ transplant recipients are limited by poor Treg engraftment without host manipulation. We showed that Treg engraftment and therapeutic benefit in nonautoimmune models required ablative host conditioning. Here, we evaluated Treg engraftment and therapeutic efficacy in the nonobese diabetic (NOD) mouse model of autoimmune diabetes using nonablative, combinatorial regimens involving the anti-CD3 (αCD3), cyclophosphamide (CyP), and IAC (IL-2/JES6-1) antibody complex. We demonstrate that αCD3 alone induced substantial T-cell depletion, impacting both conventional T cells (Tconv) and Tregs, subsequently followed by more rapid rebound of Tregs Despite robust depletion of host Tconv and host Tregs, donor Tregs failed to engraft even with interleukin-2 (IL-2) support. A single dose of CyP after αCD3 depleted rebounding host Tregs and resulted in a 43-fold increase in donor Treg engraftment, yet polyclonal donor Tregs failed to reverse diabetes. However, infusion of autoantigen-specific Tregs after αCD3 alone resulted in robust Treg engraftment within the islets and induced remission in all mice. This novel combinatorial therapy promotes engraftment of autoantigen-specific donor Tregs and controls islet autoimmunity without long-term immunosuppression.
Collapse
Affiliation(s)
| | - Shane Mackey
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alexander Sands
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Jennifer Rodriguez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Claudia Vazquez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
22
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res 2019; 119:203-214. [PMID: 31845020 DOI: 10.1007/s00436-019-06511-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Infection with helminth parasites or the administration of their antigens can prevent or attenuate autoimmune diseases. To date, the specific molecules that prime the amelioration are only limited. In this study, recombinant Schistosoma japonicum cystatin (rSjcystatin) and fructose-1,6-bisphosphate aldolase (rSjFBPA) were administered to female NOD mice via intraperitoneal (i.p.) injection to characterize the immunological response by the recombinant proteins. We have shown that the administration of rSjcystatin or rSjFBPA significantly reduced the diabetes incidence and ameliorated the severity of type 1 diabetes mellitus (T1DM). Disease attenuation was associated with suppressed interferon-gamma (IFN-γ) production in autoreactive T cells and with a switch to the production of Th2 cytokines. Following rSjcystatin or rSjFBPA injection, regulatory T cells (Tregs) were remarkably increased, which was accompanied by increased expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β). Our study suggests that helminth-derived proteins may be useful in strategies to limit pathology by promoting the Th2 response and upregulating Tregs during the inflammatory tissue-damage process in T1DM.
Collapse
|
25
|
Holohan DR, Van Gool F, Bluestone JA. Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS One 2019; 14:e0217728. [PMID: 31647813 PMCID: PMC6812862 DOI: 10.1371/journal.pone.0217728] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive population that are identified based on the stable expression of the fate-determining transcription factor forkhead box P3 (Foxp3). Tregs can be divided into distinct subsets based on whether they developed in the thymus (tTregs) or in the periphery (pTregs). Whether there are unique functional roles that distinguish pTregs and tTregs remains largely unclear. To elucidate these functions, efforts have been made to specifically identify and modify individual Treg subsets. Deletion of the conserved non-coding sequence (CNS)1 in the Foxp3 locus leads to selective impairment of pTreg generation without disrupting tTreg generation in the C57BL/6J background. Using CRISPR-Cas9 genome editing technology, we removed the Foxp3 CNS1 region in the non-obese diabetic (NOD) mouse model of spontaneous type 1 diabetes mellitus (T1D) to determine if pTregs contribute to autoimmune regulation. Deletion of CNS1 impaired in vitro induction of Foxp3 in naïve NOD CD4+ T cells, but it did not alter Tregs in most lymphoid and non-lymphoid tissues analyzed except for the large intestine lamina propria, where a small but significant decrease in RORγt+ Tregs and corresponding increase in Helios+ Tregs was observed in NOD CNS1-/- mice. CNS1 deletion also did not alter the development of T1D or glucose tolerance despite increased pancreatic insulitis in pre-diabetic female NOD CNS1-/- mice. Furthermore, the proportions of autoreactive Tregs and conventional T cells (Tconvs) within pancreatic islets were unchanged. These results suggest that pTregs dependent on the Foxp3 CNS1 region are not the dominant regulatory population controlling T1D in the NOD mouse model.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Daniel R. Holohan
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jeffrey A. Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
26
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
27
|
Wei R, Gu L, Yang J, Yang K, Liu J, Le Y, Lang S, Wang H, Thai D, Yan H, Hong T. Antagonistic Glucagon Receptor Antibody Promotes α-Cell Proliferation and Increases β-Cell Mass in Diabetic Mice. iScience 2019; 16:326-339. [PMID: 31203188 PMCID: PMC6581654 DOI: 10.1016/j.isci.2019.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Under extreme conditions or by genetic modification, pancreatic α-cells can regenerate and be converted into β-cells. This regeneration holds substantial promise for cell replacement therapy in diabetic patients. The discovery of clinical therapeutic strategies to promote β-cell regeneration is crucial for translating these findings into clinical applications. In this study, we reported that treatment with REMD 2.59, a human glucagon receptor (GCGR) monoclonal antibody (mAb), lowered blood glucose without inducing hypoglycemia in normoglycemic, streptozotocin-induced type 1 diabetic (T1D) and non-obesity diabetic mice. Moreover, GCGR mAb treatment increased the plasma glucagon and active glucagon-like peptide-1 levels, induced pancreatic ductal ontogenic α-cell neogenesis, and promoted α-cell proliferation. Strikingly, the treatment also increased the β-cell mass in these two T1D models. Using α-cell lineage-tracing mice, we found that the neogenic β-cells were likely derived from α-cell conversion. Therefore, GCGR mAb-induced α- to β-cell conversion might represent a pre-clinical approach for improving diabetes therapy. GCGR mAb induced α-cell expansion by neogenesis and cell proliferation GCGR mAb increased the β-cell mass in type 1 diabetic mice GCGR mAb might promote α- to β-cell conversion in type 1 diabetic mice
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
28
|
Zhao P, Wang P, Dong S, Zhou Z, Cao Y, Yagita H, He X, Zheng SG, Fisher SJ, Fujinami RS, Chen M. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 2019; 3:292-305. [PMID: 30952980 PMCID: PMC6452906 DOI: 10.1038/s41551-019-0360-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)-an immune checkpoint factor expressed by activated T cells and B cells-is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
García-Sáenz M, Uribe-Cortés D, Ramírez-Rentería C, Ferreira-Hermosillo A. Difficult-to-diagnose diabetes in a patient treated with cyclophosphamide - the contradictory roles of immunosuppressant agents: a case report. J Med Case Rep 2018; 12:364. [PMID: 30526658 PMCID: PMC6287356 DOI: 10.1186/s13256-018-1925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background Cyclophosphamide may induce autoimmune diabetes through a decrease in suppressor T cells and increase of proinflammatory T helper type 1 response in animal models. In humans, this association is not as clear due to the presence of other risk factors for hyperglycemia, but it could be a precipitant for acute complications. Case presentation A 31-year-old Mestizo-Mexican woman with a history of systemic lupus erythematosus presented with severe diabetic ketoacidosis, shortly after initiating a multi-drug immunosuppressive therapy. She did not meet the diagnostic criteria for type 1 or type 2 diabetes and had no family history of hyperglycemic states. She persisted with hyperglycemia and high insulin requirements until the discontinuation of cyclophosphamide. After this episode, she recovered her endogenous insulin production and the antidiabetic agents were successfully withdrawn. After 1 year of follow up she is still normoglycemic. Conclusion Cyclophosphamide may be an additional risk factor for acute hyperglycemic crisis. Glucose monitoring could be recommended during and after this treatment.
Collapse
Affiliation(s)
- Manuel García-Sáenz
- Servicio de Endocrinología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Colonia Doctores, 06720, Mexico City, Mexico
| | - Daniel Uribe-Cortés
- Servicio de Endocrinología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Colonia Doctores, 06720, Mexico City, Mexico
| | - Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Endocrinología Experimental, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Colonia Doctores, 06720, Mexico City, Mexico
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Endocrinología Experimental, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Colonia Doctores, 06720, Mexico City, Mexico.
| |
Collapse
|
30
|
Carroll KR, Elfers EE, Stevens JJ, McNally JP, Hildeman DA, Jordan MB, Katz JD. Extending Remission and Reversing New-Onset Type 1 Diabetes by Targeted Ablation of Autoreactive T Cells. Diabetes 2018; 67:2319-2328. [PMID: 30104248 PMCID: PMC6198341 DOI: 10.2337/db18-0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/29/2018] [Indexed: 11/13/2022]
Abstract
Preserving endogenous insulin production is clinically advantageous and remains a vital unmet challenge in the treatment and reversal of type 1 diabetes. Although broad immunosuppression has had limited success in prolonging the so-called remission period, it comes at the cost of compromising beneficial immunity. Here, we used a novel strategy to specifically deplete the activated diabetogenic T cells that drive pathogenesis while preserving not only endogenous insulin production but also protective immunity. Effector T (Teff) cells, such as diabetogenic T cells, are naturally poised on the edge of apoptosis because of activation-induced DNA damage that stresses the p53 regulation of the cell cycle. We have found that using small molecular inhibitors that further potentiate p53 while inhibiting the G2/M cell cycle checkpoint control drives apoptosis of activated T cells in vivo. When delivered at the onset of disease, these inhibitors significantly reduce diabetogenic Teff cells, prolong remission, preserve functional islets, and protect islet allografts while leaving naive, memory, and regulatory T-cell populations functionally untouched. Thus, the targeted manipulation of p53 and cell cycle checkpoints represents a new therapeutic modality for the preservation of islet β-cells in new-onset type 1 diabetes or after islet transplant.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eileen E Elfers
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph J Stevens
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan P McNally
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David A Hildeman
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael B Jordan
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan D Katz
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Endocrinology, Diabetes Research Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
31
|
Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018; 154:62-68. [PMID: 29460448 PMCID: PMC5904691 DOI: 10.1111/imm.12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The power of T cells for cancer treatment has been demonstrated by the success of co-inhibitory receptor blockade and adoptive T-cell immunotherapies. These treatments are highly successful for certain cancers, but are often personalized, expensive and associated with harmful side effects. Other T-cell-modulating drugs may provide additional means of improving immune responses to tumours without these disadvantages. Conventional chemotherapeutic drugs are traditionally used to target cancers directly; however, it is clear that some also have significant immune-modulating effects that can be harnessed to target tumours. Cyclophosphamide is one such drug; used at lower doses than in mainstream chemotherapy, it can perturb immune homeostasis, tipping the balance towards generation of anti-tumour T-cell responses and control of cancer growth. This review discusses its growing reputation as an immune-modulator whose multiple effects synergize with the microbiota to tip the balance towards tumour immunity offering widespread benefits as a safe, and relatively inexpensive component of cancer immunotherapy.
Collapse
Affiliation(s)
- Ellyn Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Present address:
Faculty of Medicine Nursing and Health SciencesSchool of Biomedical SciencesMonash UniversityMelbourneAustralia
| | - Martin Scurr
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Campbell
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Andrew Godkin
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Awen Gallimore
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
32
|
Lin J, Chan WFN, Boon L, Anderson CC. Stability of Chimerism in Non-Obese Diabetic Mice Achieved By Rapid T Cell Depletion Is Associated With High Levels of Donor Cells Very Early After Transplant. Front Immunol 2018; 9:837. [PMID: 29740442 PMCID: PMC5928230 DOI: 10.3389/fimmu.2018.00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
Stable mixed hematopoietic chimerism is a robust method for inducing donor-specific tolerance with the potential to prevent rejection of donor islets in recipients with autoimmune type-1 diabetes. However, with reduced intensity conditioning, fully allogeneic chimerism in a tolerance resistant autoimmune-prone non-obese diabetic (NOD) recipient has rarely been successful. In this setting, successful multilineage chimerism has required either partial major histocompatability complex matching, mega doses of bone marrow, or conditioning approaches that are not currently clinically feasible. Irradiation free protocols with moderate bone marrow doses have not generated full tolerance; donor skin grafts were rejected. We tested whether more efficient recipient T cell depletion would generate a more robust tolerance. We show that a combination of donor-specific transfusion-cyclophosphamide and multiple T cell depleting antibodies could induce stable high levels of fully allogeneic chimerism in NOD recipients. Less effective T cell depletion was associated with instability of chimerism. Stable chimeras appeared fully donor-specific tolerant, with clonal deletion of allospecific T cells and acceptance of donor skin grafts, while recovering substantial immunocompetence. The loss of chimerism months after transplant was significantly associated with a lower level of chimerism and donor T cells within the first 2 weeks after transplant. Thus, rapid and robust recipient T cell depletion allows for stable high levels of fully allogeneic chimerism and robust donor-specific tolerance in the stringent NOD model while using a clinically feasible protocol. In addition, these findings open the possibility of identifying recipients whose chimerism will later fail, stratifying patients for early intervention.
Collapse
Affiliation(s)
- Jiaxin Lin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - William F N Chan
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | | | - Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
|
34
|
De Riva A, Wållberg M, Ronchi F, Coulson R, Sage A, Thorne L, Goodfellow I, McCoy KD, Azuma M, Cooke A, Busch R. Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS One 2017; 12:e0181964. [PMID: 28771521 PMCID: PMC5542673 DOI: 10.1371/journal.pone.0181964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D.
Collapse
Affiliation(s)
- Alessandra De Riva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ronchi
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Richard Coulson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Sage
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kathy D. McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
35
|
Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proc Natl Acad Sci U S A 2017; 114:E4782-E4791. [PMID: 28533414 DOI: 10.1073/pnas.1703683114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antigen-activated lymphocytes undergo extraordinarily rapid cell division in the course of immune responses. We hypothesized that this unique aspect of lymphocyte biology leads to unusual genomic stress in recently antigen-activated lymphocytes and that targeted manipulation of DNA damage-response (DDR) signaling pathways would allow for selective therapeutic targeting of pathological T cells in disease contexts. Consistent with these hypotheses, we found that activated mouse and human T cells display a pronounced DDR in vitro and in vivo. Upon screening a variety of small-molecule compounds, we found that potentiation of p53 (via inhibition of MDM2) or impairment of cell cycle checkpoints (via inhibition of CHK1/2 or WEE1) led to the selective elimination of activated, pathological T cells in vivo. The combination of these strategies [which we termed "p53 potentiation with checkpoint abrogation" (PPCA)] displayed therapeutic benefits in preclinical disease models of hemophagocytic lymphohistiocytosis and multiple sclerosis, which are driven by foreign antigens or self-antigens, respectively. PPCA therapy targeted pathological T cells but did not compromise naive, regulatory, or quiescent memory T-cell pools, and had a modest nonimmune toxicity profile. Thus, PPCA is a therapeutic modality for selective, antigen-specific immune modulation with significant translational potential for diverse immune-mediated diseases.
Collapse
|
36
|
Surendar J, Indulekha K, Hoerauf A, Hübner MP. Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol 2017; 39. [PMID: 27862000 DOI: 10.1111/pim.12401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
The incidence of both type 1 (T1D) and type 2 diabetes (T2D) is drastically increasing, and it is predicted that the global prevalence of diabetes will reach almost 600 million cases by 2035. Even though the pathogenesis of both types of diabetes is distinct, the immune system is actively involved in both forms of the disease. Genetic and environmental factors determine the risk to develop T1D. On the other hand, sedentary life style, surplus of food intake and other lifestyle changes contribute to the increase of T2D incidence. Improved sanitation with high-quality medical treatment is such an environmental factor that has led to a continuous reduction of infectious diseases including helminth infections over the past decades. Recently, a growing body of evidence has implicated a negative association between helminth infections and diabetes in humans as well as animal models. In this review, we discuss studies that have provided evidence for the beneficial impact of helminth infections on T1D and T2D. Possible mechanisms are presented by which helminths prevent T1D onset by mitigating pancreatic inflammation and confer protection against T2D by improving insulin sensitivity, alleviating inflammation, augmenting browning of adipose tissue and improving lipid metabolism and insulin signalling.
Collapse
Affiliation(s)
- J Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - K Indulekha
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Osada Y, Fujiyama T, Kamimura N, Kaji T, Nakae S, Sudo K, Ishiwata K, Kanazawa T. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Exp Parasitol 2017; 177:1-12. [PMID: 28363777 DOI: 10.1016/j.exppara.2017.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 02/05/2023]
Abstract
Schistosoma mansoni (Sm) is known to exert protective effects against various allergic and autoimmune disorders. It has been reported that this parasite protects NOD mice from spontaneous type 1 diabetes (T1D) and ameliorates streptozotocin (STZ)-induced T1D in wild-type mice. Here, we tried to clarify the anti-diabetic mechanisms of Sm in the latter model. Sm infection partially prevented the degradation of pancreatic islets and hyperglycemia in multiple low-dose (MLD) STZ-treated mice. Neither Treg cell depletion nor genetic absences of IL-10 and/or STAT6 abrogated the anti-hyperglycemic effects of Sm. Among M2 macrophage markers, Arg-1 and Ym1, but not Retnla, remained up-regulated in the pancreatic lymph nodes and in the spleens of STAT6/IL-10 double deficient (DKO) mice. Collectively, it is suggested that Sm exerts anti-diabetic effects on this experimental T1D model via Treg/IL-4/IL-13/IL-10-independent mechanisms. Augmented expressions of Arg-1 and Ym1 in the lymphoid organs adjacent to pancreas may be relevant to the anti-diabetic effects of Sm.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Tomohiro Fujiyama
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Naoto Kamimura
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Tsukushi Kaji
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
38
|
Rui J, Deng S, Arazi A, Perdigoto AL, Liu Z, Herold KC. β Cells that Resist Immunological Attack Develop during Progression of Autoimmune Diabetes in NOD Mice. Cell Metab 2017; 25:727-738. [PMID: 28190773 PMCID: PMC5342930 DOI: 10.1016/j.cmet.2017.01.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that involves immune-mediated destruction of β cells. How β cells respond to immune attack is unknown. We identified a population of β cells during the progression of T1D in non-obese diabetic (NOD) mice that survives immune attack. This population develops from normal β cells confronted with islet infiltrates. Pathways involving cell movement, growth and proliferation, immune responses, and cell death and survival are activated in these cells. There is reduced expression of β cell identity genes and diabetes antigens and increased immune inhibitory markers and stemness genes. This new subpopulation is resistant to killing when diabetes is precipitated with cyclophosphamide. Human β cells show similar changes when cultured with immune cells. These changes may account for the chronicity of the disease and the long-term survival of β cells in some patients.
Collapse
Affiliation(s)
- Jinxiu Rui
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Songyan Deng
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Zongzhi Liu
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Internal Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Tuorkey MJ. Therapeutic Potential ofNigella sativaOil Against Cyclophosphamide-Induced DNA Damage and Hepatotoxicity. Nutr Cancer 2017; 69:498-504. [DOI: 10.1080/01635581.2017.1285408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Muobarak J. Tuorkey
- Zoology Department, Division of Physiology, Faculty of Science, Damanhour University, Damanhour, Al-Behira, Egypt
| |
Collapse
|
40
|
Kuhn C, Besançon A, Lemoine S, You S, Marquet C, Candon S, Chatenoud L. Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. J Autoimmun 2016; 71:69-77. [DOI: 10.1016/j.jaut.2016.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 12/11/2022]
|
41
|
The autoimmunity-associated gene RGS1 affects the frequency of T follicular helper cells. Genes Immun 2016; 17:228-38. [PMID: 27029527 PMCID: PMC4892947 DOI: 10.1038/gene.2016.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
Abstract
RGS1 (regulator of G-protein signaling 1) has been associated with multiple autoimmune disorders including type I diabetes. RGS1 desensitizes the chemokine receptors CCR7 and CXCR4 that are critical to the localization of T and B cells in lymphoid organs. To explore how RGS1 variation contributes to autoimmunity, we generated Rgs1 knockdown (KD) mice in the nonobese diabetic (NOD) model for type I diabetes. We found that Rgs1 KD increased the size of germinal centers, but decreased the frequency of T follicular helper (TFH) cells. We show that loss of Rgs1 in T cells had both a T cell-intrinsic effect on migration and TFH cell frequency, and an indirect effect on B-cell migration and germinal center formation. Notably, several recent publications described an increase in circulating TFH cells in patients with type I diabetes, suggesting this cell population is involved in pathogenesis. Though Rgs1 KD was insufficient to alter diabetes frequency in the NOD model, our findings raise the possibility that RGS1 plays a role in autoimmunity owing to its function in TFH cells. This mechanistic link, although speculative at this time, would lend support to the notion that TFH cells are key participants in autoimmunity and could explain the association of RGS1 with several immune-mediated diseases.
Collapse
|
42
|
Jakubczik F, Jones K, Nichols J, Mansfield W, Cooke A, Holmes N. A SNP in the Immunoregulatory Molecule CTLA-4 Controls mRNA Splicing In Vivo but Does Not Alter Diabetes Susceptibility in the NOD Mouse. Diabetes 2016; 65:120-8. [PMID: 26450994 PMCID: PMC4693968 DOI: 10.2337/db15-1175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/01/2015] [Indexed: 11/13/2022]
Abstract
CTLA-4 is a critical "checkpoint" regulator in autoimmunity. Variation in CTLA-4 isoform expression has been linked to type 1 diabetes development in human and NOD mouse studies. In the NOD mouse, a causative link between increased expression of the minor isoform ligand-independent CTLA-4 and a reduction in diabetes has become widely accepted. Altered splicing of CTLA-4 has been attributed to a single nucleotide polymorphism (SNP) in Ctla4 exon2 (e2_77A/G). To investigate this link, we have used NOD embryonic stem (ES) cells to generate a novel NOD transgenic line with the 77A/G SNP. This strain phenocopies the increase in splicing toward the liCTLA4 isoform seen in B10 Idd5.1 mice. Crucially, the SNP does not alter the spontaneous incidence of diabetes, the incidence of cyclophosphamide-induced diabetes, or the activation of diabetogenic T-cell receptor transgenic CD4(+) T cells after adoptive transfer. Our results show that one or more of the many other linked genetic variants between the B10 and NOD genome are required for the diabetes protection conferred by Idd5.1. With the NOD mouse model closely mimicking the human disease, our data demonstrate that knock-in transgenic mice on the NOD background can test causative mutations relevant in human diabetes.
Collapse
Affiliation(s)
- Fabian Jakubczik
- Department of Pathology, University of Cambridge, Cambridge, U.K
| | - Ken Jones
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - William Mansfield
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, U.K
| | - Nick Holmes
- Department of Pathology, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
43
|
TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 2015; 5:14593. [PMID: 26459028 PMCID: PMC4602205 DOI: 10.1038/srep14593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/02/2015] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for the treatment of autoimmune diabetes in general.
Collapse
|
44
|
Ovcinnikovs V, Walker LSK. Regulatory T Cells in Autoimmune Diabetes: Mechanisms of Action and Translational Potential. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:245-77. [PMID: 26615100 DOI: 10.1016/bs.pmbts.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the discovery of specialized T cells with regulatory function, harnessing the power of these cells to ameliorate autoimmunity has been a major goal. Here we collate the evidence that regulatory T cells (Treg) can inhibit Type 1 diabetes in animal models and humans. We discuss the anatomical sites and molecular mechanisms of Treg suppressive function in the Type 1 diabetes setting, citing evidence that Treg can function in both the pancreatic lymph nodes and within the pancreatic lesion. Involvement of the CTLA-4 pathway, as well as TGF-β and IL-2 deprivation will be considered. Finally, we summarize current efforts to manipulate Treg therapeutically in individuals with Type 1 diabetes. The translation of this research area from bench to bedside is still in its infancy, but the remarkable therapeutic potential of successfully manipulating Treg populations is clear to see.
Collapse
Affiliation(s)
- Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, London, United Kingdom.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, London, United Kingdom
| |
Collapse
|
45
|
Méndez-Samperio P, de-la-Rosa-Arana JL. Prevention of Type 1 diabetes through parasite infection. Immunotherapy 2015; 7:595-8. [PMID: 26098783 DOI: 10.2217/imt.15.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala, México DF 11340, México
| | - Jorge Luis de-la-Rosa-Arana
- Laboratorio de Inmunoparasitología, Departamento de Investigaciones, Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, México
| |
Collapse
|
46
|
Saida Y, Watanabe S, Tanaka T, Baba J, Sato K, Shoji S, Igarashi N, Kondo R, Okajima M, Koshio J, Ichikawa K, Nozaki K, Ishikawa D, Koya T, Miura S, Tanaka J, Kagamu H, Yoshizawa H, Nakata K, Narita I. Critical Roles of Chemoresistant Effector and Regulatory T Cells in Antitumor Immunity after Lymphodepleting Chemotherapy. THE JOURNAL OF IMMUNOLOGY 2015; 195:726-35. [DOI: 10.4049/jimmunol.1401468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 05/05/2015] [Indexed: 11/19/2022]
|
47
|
Wang N, Rajasekaran N, Hou T, Macaubas C, Mellins ED. Immunological Basis for Rapid Progression of Diabetes in Older NOD Mouse Recipients Post BM-HSC Transplantation. PLoS One 2015; 10:e0128494. [PMID: 26020954 PMCID: PMC4447290 DOI: 10.1371/journal.pone.0128494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
Type I diabetes (T1D), mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC) transplantation. Older non-obese diabetic (NOD) mice recipients (3m, at disease-onset stage) receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage). FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg) and lower proportion of proliferating T conventional cells (Tcon) in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN), blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.
Collapse
MESH Headings
- Aging/immunology
- Aging/pathology
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Biomarkers/metabolism
- Blood Glucose/immunology
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/mortality
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Immunophenotyping
- Lymphocyte Count
- Mice
- Mice, Inbred NOD
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Nan Wang
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Narendiran Rajasekaran
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tieying Hou
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Claudia Macaubas
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth D. Mellins
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Nikolic I, Saksida T, Vujicic M, Stojanovic I, Stosic-Grujicic S. Anti-diabetic actions of carbon monoxide-releasing molecule (CORM)-A1: Immunomodulation and regeneration of islet beta cells. Immunol Lett 2015; 165:39-46. [PMID: 25839127 DOI: 10.1016/j.imlet.2015.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
Abstract
We have recently shown that carbon monoxide releasing molecule (CORM)-A1 prevents type 1 diabetes induced in C57BL/6 mice with multiple low doses of streptozotocin (MLDS) by shifting the Th1/Th17/M1 balance towards a Th2/M2 response. In the present work we tested the hypothesis that CORM-A1 might influence regulatory arm of the immune response, as well as beta cell regeneration. CORM-A1 (2 mg/kg/day) was administered for 10 days to mice induced with MLDS and/or depleted of low dose cyclophosphamide (CY)-sensitive FoxP3+ T regulatory (Treg) cells. Besides monitoring hyperglycaemia, ex vivo analysis of spleen, pancreatic lymph nodes (PLN) and pancreas was performed at the end of treatment. In CORM-A1-treated MLDS-induced mice the improvement of hyperglycaemia was observed only without depletion of CY-sensitive FoxP3+ Treg cells. This was accompanied by decreased levels of interleukin (IL)-12, IL-2 and early activation marker CD25 in the spleen and PLN and increased transforming growth factor (TGF)-β, resulting in reduced lymphocyte proliferation in both organs. In parallel, decreased transcript levels of IL-2, but increased mRNA expression of TGF-β, accompanied with up-regulation of Ki-67 protein expression was observed within pancreas. Together, the data suggested that besides the immunomodulatory potential, CORM-A1 probably induces beta cell regeneration.
Collapse
Affiliation(s)
- Ivana Nikolic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Milica Vujicic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Stanislava Stosic-Grujicic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
49
|
Kanakry CG, Ganguly S, Luznik L. Situational aldehyde dehydrogenase expression by regulatory T cells may explain the contextual duality of cyclophosphamide as both a pro-inflammatory and tolerogenic agent. Oncoimmunology 2015; 4:e974393. [PMID: 25949893 DOI: 10.4161/2162402x.2014.974393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
In two recent publications, we demonstrated that after allogeneic stimulation, regulatory T cells (Tregs) increase expression of aldehyde dehydrogenase (ALDH), the major in vivo mechanism of cyclophosphamide detoxification, thereby becoming cyclophosphamide resistant. Differential ALDH expression may explain why cyclophosphamide has pro- and anti-inflammatory effects that are temporally and contextually dependent.
Collapse
Affiliation(s)
- Christopher G Kanakry
- Sidney Kimmel Comprehensive Cancer Center; The Johns Hopkins University School of Medicine ; Baltimore, MD, USA
| | - Sudipto Ganguly
- Sidney Kimmel Comprehensive Cancer Center; The Johns Hopkins University School of Medicine ; Baltimore, MD, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center; The Johns Hopkins University School of Medicine ; Baltimore, MD, USA
| |
Collapse
|
50
|
Askenasy N. Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. Int Rev Immunol 2015; 34:523-37. [DOI: 10.3109/08830185.2015.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|