1
|
Toribio D, Morokuma J, Pellino D, Hardt M, Zoukhri D. Quantitative Changes in the Proteome of Chronically Inflamed Lacrimal Glands From a Sjögren's Disease Animal Model. Invest Ophthalmol Vis Sci 2025; 66:44. [PMID: 40244610 PMCID: PMC12013672 DOI: 10.1167/iovs.66.4.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The lacrimal gland (LG) is the major source of aqueous tears, and insufficient LG secretion leads to aqueous-deficient dry eye (ADDE) disease. To provide a foundational description of LG's protein expression patterns, we prepared protein extracts of LGs from a wild-type and an ADDE mouse model and analyzed the proteome by quantitative mass spectrometry. Methods LGs were isolated from an ADDE mouse model, male non-obese diabetic (NOD) mice and control wild-type BALB/c mice (n = 6 each). Protein samples were prepared in urea-based lysis buffer and protein concentrations determined by the BCA method. The equivalent of 200 µg protein were tryptically digested and analyzed by nanoflow liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins were identified and quantified using the PEAKS X bioinformatics suite. Downstream differential protein expression analysis was performed using the MS-DAP R package. Selected significantly differentially expressed and detected proteins were subjected to spatial expression analysis using immunohistochemistry. Results Cumulatively, the LC-MS/MS-based proteomics analyses of the murine LG samples identified a total of 31,932 peptide sequences resulting in 2617 protein identifications at a 1% false discovery rate at the peptide and protein level. Principal component analysis (PCA) and hierarchical cluster analysis revealed a separation of NOD and BALB/c samples. Overall, protein diversity was consistently higher in NOD samples. After applying global peptide filter criteria and peptide-to-protein rollup, 1750 remaining proteins were subjected to differential expression analysis using the MSqRob algorithm, which identified 580 proteins with statistically significant expression differences. Data are available via ProteomeXchange with identifier PXD060937. At the cellular level, the up- and downregulation of select proteins were confirmed by immunohistochemistry. Conclusions Our data suggest that chronic inflammation leads to significant alterations in the LG proteome. Ongoing studies aim to identify potentially unique, inflammation-induced proteins that could be amenable to pharmacological modulation.
Collapse
Affiliation(s)
- Danny Toribio
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Junji Morokuma
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Dante Pellino
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Markus Hardt
- Center for Salivary Diagnostics, ADA Forsyth Institute, Cambridge, Massachusetts, United States
- Department of Inflammation and Immunology, ADA Forsyth Institute, Cambridge, Massachusetts, United States
| | - Driss Zoukhri
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
3
|
Furutani M, Suganuma M, Akiyama S, Mitsumori R, Takemura M, Matsui Y, Satake S, Nakano Y, Niida S, Ozaki K, Hosoyama T, Shigemizu D. RNA-Sequencing Analysis Identification of Potential Biomarkers for Diagnosis of Sarcopenia. J Gerontol A Biol Sci Med Sci 2023; 78:1991-1998. [PMID: 37347997 DOI: 10.1093/gerona/glad150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 06/24/2023] Open
Abstract
Sarcopenia is a geriatric disease associated with increased mortality and disability. Early diagnosis and intervention are required to prevent it. This study investigated biomarkers for sarcopenia by using a combination of comprehensive clinical data and messenger RNA-sequencing (RNA-seq) analysis obtained from peripheral blood mononuclear cells. We enrolled a total of 114 older adults aged 66-94 years (52 sarcopenia diagnosed according to the Asian Working Group for Sarcopenia 2019 consensus and 62 normal older people). We used clinical data which were not included diagnosis criteria of sarcopenia, and stride length showed significance by logistic regression analysis (Bonferroni corrected p = .012, odds ratio = 0.14, 95% confidence interval [CI]: 0.05-0.40). RNA-seq analysis detected 6 differential expressed genes (FAR1, GNL2, HERC5, MRPL47, NUBP2, and S100A11). We also performed gene-set enrichment analysis and detected 2 functional modules (ie, hub genes, MYH9, and FLNA). By using any combination of the 9 candidates and basic information (age and sex), risk-prediction models were constructed. The best model by using a combination of stride length, HERC5, S100A11, and FLNA, achieved a high area under the curve (AUC) of 0.91 in a validation cohort (95% CI: 0.78-0.95). The quantitative PCR results of the 3 genes were consistent with the trend observed in the RNA-seq results. When BMI was added, the model achieved a high AUC of 0.95 (95% CI: 0.84-0.99). We have discovered potential biomarkers for the diagnosis of sarcopenia. Further refinement may lead to their future practical use in clinical use.
Collapse
Affiliation(s)
- Motoki Furutani
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Risa Mitsumori
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Marie Takemura
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shosuke Satake
- Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tohru Hosoyama
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, AichiJapan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
4
|
Fanelli G, Romano M, Lombardi G, Sacks SH. Soluble Collectin 11 (CL-11) Acts as an Immunosuppressive Molecule Potentially Used by Stem Cell-Derived Retinal Epithelial Cells to Modulate T Cell Response. Cells 2023; 12:1805. [PMID: 37443840 PMCID: PMC10341155 DOI: 10.3390/cells12131805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal pigment epithelium (RPE) cell allotransplantation is seen as a possible solution to retinal diseases. However, the RPE-complement system triggered by the binding of collectin-11 (CL-11) is a potential barrier for RPE transplantation as the complement-mediated inflammatory response may promote T cell recognition. To address this, we investigated the role of CL-11 on T cell immuno-response. We confirmed that RPE cells up-regulated MHC class I and expressed MHC class II molecules in an inflammatory setting. Co-cultures of RPE cells with T cells led to the inhibition of T cell proliferation. We found that CL-11 was partially responsible for this effect as T cell binding of CL-11 inhibited T cell proliferation in association with the downregulation of CD28. We also found that the suppressive action of CL-11 was abrogated in the presence of the RGD peptide given to block the T cell binding of CL-11 by its collagen-like domain. Because RPE cells can bind and secrete CL-11 under stress conditions, we postulate that soluble CL-11 contributes to the immunosuppressive properties of RPE cells. The investigation of this dual biological activity of CL-11, namely as a trigger of the complement cascade and a modulator of T cell responses, may provide additional clues about the mechanisms that orchestrate the immunogenic properties of RPE cells.
Collapse
Affiliation(s)
- Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London SE1 9RT, UK; (M.R.); (G.L.); (S.H.S.)
| | | | | | | |
Collapse
|
5
|
Cardiovascular, Brain, and Lung Involvement in a Newborn With a Novel FLNA Mutation: A Case Report and Literature Review. Adv Neonatal Care 2022; 22:125-131. [PMID: 33852449 DOI: 10.1097/anc.0000000000000878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Filamin A (FLNA) is an intracellular actin-binding protein, encoded by the FLNA gene, with a wide tissue expression. It is involved in several cellular functions, and extracellular matrix structuring. FLNA gene alterations lead to diseases with a wide phenotypic spectrum, such as brain periventricular nodular heterotopia (PVNH), cardiovascular abnormalities, skeletal dysplasia, and lung involvement. CLINICAL FINDINGS We present the case of a female infant who showed at birth aortic valve stenosis and PVNH, and subsequently developed interstitial lung disease with severe pulmonary hypertension. PRIMARY DIAGNOSIS The association of aortic valve dysplasia, left ventricular outflow obstruction, persistent patent ductus arteriosus, and brain heterotopic gray matter suggested a possible FLNA gene alteration. A novel heterozygous intronic variant in the FLNA gene (NM_001110556.1), c.4304-1G >A, was detected. INTERVENTIONS In consideration of valve morphology and severity of stenosis, the neonate was scheduled for a transcatheter aortic valvuloplasty. At 3 months of life, she developed hypoxemic respiratory failure with evidence of severe pulmonary hypertension. Inhaled nitric oxide (iNO) and milrinone on continuous infusion were started. Because of a partial response to iNO, an intravenous continuous infusion of sildenafil was introduced. OUTCOMES In consideration of severe clinical course and fatal outcome, the new FLNA gene mutation described in our patient seems to be associated with a loss of function of FLNA. PRACTICE RECOMMENDATIONS Lung and brain involvement, in association with left ventricular outflow obstruction and persistent patency of ductus arteriosus, should be considered highly suggestive of FLNA gene alterations, in a female newborn.
Collapse
|
6
|
Kim N, Yi E, Kwon SJ, Park HJ, Kwon HJ, Kim HS. Filamin A Is Required for NK Cell Cytotoxicity at the Expense of Cytokine Production via Synaptic Filamentous Actin Modulation. Front Immunol 2022; 12:792334. [PMID: 35058930 PMCID: PMC8764188 DOI: 10.3389/fimmu.2021.792334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that efficiently eliminate malignant and virus-infected cells without prior activation via the directed and focused release of lytic granule contents for target cell lysis. This cytolytic process is tightly regulated at discrete checkpoint stages to ensure the selective killing of diseased target cells and is highly dependent on the coordinated regulation of cytoskeletal components. The actin-binding protein filamin crosslinks cortical actin filaments into orthogonal networks and links actin filament webs to cellular membranes to modulate cell migration, adhesion, and signaling. However, its role in the regulation of NK cell functions remains poorly understood. Here, we show that filamin A (FLNa), a filamin isoform with preferential expression in leukocytes, is recruited to the NK cell lytic synapse and is required for NK cell cytotoxicity through the modulation of conjugate formation with target cells, synaptic filamentous actin (F-actin) accumulation, and cytotoxic degranulation, but not granule polarization. Interestingly, we also find that the loss of FLNa augments the target cell-induced expression of IFN-γ and TNF-α by NK cells, correlating with enhanced activation signals such as Ca2+ mobilization, ERK, and NF-κB, and a delayed down-modulation of the NKG2D receptor. Thus, our results identify FLNa as a new regulator of NK cell effector functions during their decision to kill target cells through a balanced regulation of NK cell cytotoxicity vs cytokine production. Moreover, this study implicates the cross-linking/bundling of F-actin mediated by FLNa as a necessary process coordinating optimal NK effector functions.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung-Joon Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Patarat R, Riku S, Kunadirek P, Chuaypen N, Tangkijvanich P, Mutirangura A, Puttipanyalears C. The expression of FLNA and CLU in PBMCs as a novel screening marker for hepatocellular carcinoma. Sci Rep 2021; 11:14838. [PMID: 34290294 PMCID: PMC8295309 DOI: 10.1038/s41598-021-94330-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Early detection improves survival and increases curative probability in hepatocellular carcinoma (HCC). Peripheral blood mononuclear cells (PBMCs) can provide an inexpensive, less-invasive and highly accurate method. The objective of this study is to find the potential marker for HCC screening, utilizing gene expression of the PBMCs. Data from the NCBI GEO database of gene expression in HCC patients and healthy donor's PBMCs was collected. As a result, GSE 49515 and GSE 58208 were found. Using both, a statistical significance test was conducted in each gene expression of each data set which resulted in 187 genes. We randomized three selected genes (FLNA, CAP1, and CLU) from the significant p-value group (p-values < 0.001). Then, a total of 76 healthy donors, 153 HCC, 20 hepatic fibrosis, 20 non-alcoholic fatty liver were collected. Quantitative RT-PCR (qRT-PCR) was performed in cDNA from all blood samples from the qRT-PCR, The Cycle threshold (Ct) value of FLNA, CLU, CAP1 of HCC group (28.47 ± 4.43, 28.01 ± 3.75, 29.64 ± 3.90) were lower than healthy group (34.23 ± 3.54, 32.90 ± 4.15, 32.18 ± 5.02) (p-values < 0.0001). The accuracy, sensitivity and specificity of these genes as a screening tool were: FLNA (80.8%, 88.0%, 65.8%), CLU (63.4%, 93.3%, 31.3%), CAP1 (67.2%, 83.3%, 39.1%). The tests were performed in two and three gene combinations. Results demonstrated high accuracy of 86.2%, sensitivity of 85% and specificity of 88.4% in the FLNA and CLU combination. Furthermore, after analyzed using hepatic fibrosis and non-alcoholic fatty liver as a control, the FLNA and CLU combination is shown to have accuracy of 76.9%, sensitivity of 77.6% and specificity of 75%. Also, we founded that our gene combination performs better than the current gold standard for HCC screening. We concluded that FLNA and CLU combination have high potential for being HCC novel markers. Combined with current tumor markers, further research of the gene’s expression might help identify more potential markers and improve diagnosis methods.
Collapse
Affiliation(s)
- Rathasapa Patarat
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shoji Riku
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Pattapon Kunadirek
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Charoenchai Puttipanyalears
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
9
|
Filamin A Mutations: A New Cause of Unexplained Emphysema in Adults? Chest 2021; 159:e131-e135. [PMID: 33678279 DOI: 10.1016/j.chest.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Emphysema is a chronic respiratory disorder characterized by destruction of alveoli, usually due to cigarette smoking or exposure to noxious particles or gases. Dysfunction of proteins that are involved in lung development and maintenance, such as alpha-1 antitrypsin, also contributes to emphysema. Filamin A (FLNA) is an actin-binding protein involved in cytoskeleton reorganization. Mutations in the FLNA gene classically lead to abnormal neuronal migration and connective and vascular tissue anomalies. Pulmonary manifestations consist of a wide range of pulmonary disorders that occur during infancy. We report the first familial case of emphysema in non- and very low-smoking adults who carry a loss-of-function mutation of the FLNA gene. The identification of this new risk factor for emphysema encourages (1) screening, prevention and monitoring of pulmonary disorders in patients with FLNA mutation and (2) screening for FLNA mutation in patients with early-onset emphysema that is associated with low-smoking or vascular or connective tissue anomalies.
Collapse
|
10
|
Li XP, Zhang J. A live attenuated Edwardsiella tarda vaccine induces immunological expression pattern in Japanese flounder (Paralichthys olivaceus) in the early phase of immunization. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108872. [PMID: 32814144 DOI: 10.1016/j.cbpc.2020.108872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
A previous study showed that an attenuated Edwardsiella tarda strain, TXhfq, as a live vaccine could elicit protective immune effects in fish against E. tarda infection. In the current study, in order to clarify the molecular mechanism of fish immune response at the early stage after TXhfq vaccination, RNA-Seq technology was used to compare the transcriptomes of skin, intestine, and spleen between bath-vaccinated and unvaccinated Japanese flounder (Paralichthys olivaceus). An average of 46.6 million clean reads per library was obtained, ~88.04% of which were successfully mapped to the reference genome, and approximately 24,600 genes were detected in each sample. A total of 565, 878, and 1258 differential expression genes (DEGs) were found in skin, intestine, and spleen, respectively, including 1263 up-regulated genes and 1438 down-regulated genes. The DEGs exhibited different characteristics in each tissue. One hundred and sixteen DEGs belonging to six immune related categories were scrutinized, i.e., inflammatory factors, cytokines, complement and coagulation system, mucins, phagocytosis, and antigen processing and presentation. A protein-protein interaction network was constructed to get the interaction network between immune genes during the early stage of immunization. The top six hub genes highly regulated by TXhfq formed complicated interaction relationship with each other, which were involved in immune processes, notably inflammation and phagocytosis. Our results provide valuable information for the understanding of the immune mechanism underlying the protection of live attenuated vaccines in fish.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Yonker LM, Hawley MH, Kinane TB. Do mesenchymal stromal cell infusions advance the understanding and treatment options of FLNA-associated pulmonary disease? Pediatr Pulmonol 2020; 55:270-271. [PMID: 31746552 DOI: 10.1002/ppul.24570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Siokis A, Robert PA, Demetriou P, Dustin ML, Meyer-Hermann M. F-Actin-Driven CD28-CD80 Localization in the Immune Synapse. Cell Rep 2019; 24:1151-1162. [PMID: 30067972 DOI: 10.1016/j.celrep.2018.06.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022] Open
Abstract
During immunological synapse (IS) formation, T cell receptor (TCR) signaling complexes, integrins, and costimulatory molecules exhibit a particular spatial localization. Here, we develop an agent-based model for the IS formation based on TCR peptide-bound major histocompatibility complex (pMHC) and leukocyte-function-associated antigen 1 (LFA-1) intracellular activation molecule 1 (ICAM-1) dynamics, including CD28 binding to a costimulatory ligand, coupling of molecules to the centripetal actin flow, and size-based segregation (SBS). A radial gradient of LFA-1 in the peripheral supramolecular activation cluster (pSMAC) toward the central supramolecular activation cluster (cSMAC) emerged as a combined consequence of actin binding and diffusion and modified the positioning of other molecules. The simulations predict a mechanism of CD28 movement, according to which CD28-CD80 complexes passively follow TCR-pMHC microclusters. However, the characteristic CD28-CD80 localization in a ring pattern around the cSMAC only emerges with a particular CD28-actin coupling strength that induces a centripetal motion. These results have implications for the understanding of T cell activation and fate decisions.
Collapse
Affiliation(s)
- Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany.
| | - Philippos Demetriou
- Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - Michael L Dustin
- Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK; Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| |
Collapse
|
13
|
Pelizzo G, Collura M, Puglisi A, Pappalardo MP, Agolini E, Novelli A, Piccione M, Cacace C, Bussani R, Corsello G, Calcaterra V. Congenital emphysematous lung disease associated with a novel Filamin A mutation. Case report and literature review. BMC Pediatr 2019; 19:86. [PMID: 30922288 PMCID: PMC6440113 DOI: 10.1186/s12887-019-1460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Progressive lung involvement in Filamin A (FLNA)-related cerebral periventricular nodular heterotopia (PVNH) has been reported in a limited number of cases. CASE PRESENTATION We report a new pathogenic FLNA gene variant (c.7391_7403del; p.Val2464Alafs*5) in a male infant who developed progressive lung disease with emphysematous lesions and interstitial involvement. Following lobar resection, chronic respiratory failure ensued necessitating continuous mechanical ventilation and tracheostomy. Cerebral periventricular nodular heterotopia was also present. CONCLUSIONS We report a novel variant of the FLNA gene, associated with a severe lung disorder and PNVH. The lung disorder led to respiratory failure during infancy and these pulmonary complications may be the first sign of this disorder. Early recognition with thoracic imaging is important to guide genetic testing, neuroimaging and to define optimal timing of potential therapies, such as lung transplant in progressive lung disease.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "G. di Cristina", ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini, 1, 90134, Palermo, Italy.
| | - Mirella Collura
- Cystic Fibrosis and Respiratory Pediatric Center, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Aurora Puglisi
- Pediatric Anesthesiology and Intensive Care Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Maria Pia Pappalardo
- Pediatric Radiology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Caterina Cacace
- Neonatal Intensive Care Unit, Hospital "Barone Romeo" Patti, ASP Messina, Messina, Italy
| | - Rossana Bussani
- Institute of Pathological Anatomy, Trieste University Hospital, Trieste, Italy
| | - Giovanni Corsello
- Pediatrics and Neonatal Intensive Therapy Unit, Mother and Child Department, University of Palermo, Palermo, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
14
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
15
|
Park H, Park MS, Ki CS, Cho J, Lee J, Kim J, Ahn K. A case of FLNAgene mutation with respiratory insufficiency and periventricular heterotopia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.3.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hwanhee Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Seung Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joongbum Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
16
|
Demirel N, Ochoa R, Dishop MK, Holm T, Gershan W, Brottman G. Respiratory distress in a 2-month-old infant: Is the primary cause cardiac, pulmonary or both? Respir Med Case Rep 2018; 25:61-65. [PMID: 30003023 PMCID: PMC6039757 DOI: 10.1016/j.rmcr.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
A 2-month-old female with worsening cough, respiratory distress and an abnormal chest X-ray was referred to our institution for further evaluation of suspected scimitar syndrome. She was found to have normal pulmonary venous drainage with a large patent ductus arteriosus and severe pulmonary arterial hypertension. Chest CT was suggestive of interstitial lung disease. Wedge lung biopsy revealed alveolar simplification and patchy pulmonary interstitial glycogenosis. A definitive diagnosis of Filamin A deficiency was made with genetic studies. The patient is currently showing clinical improvement on systemic glucocorticoid therapy.
Collapse
Affiliation(s)
- Nadir Demirel
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Roberto Ochoa
- Department of Medicine, Universidad de Ciencias Médicas, San José, Costa Rica
| | - Megan K Dishop
- Pathology and Laboratory Medicine, Phoenix Children's, Phoenix, AZ, USA
| | - Tara Holm
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - William Gershan
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gail Brottman
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Savinko T, Guenther C, Uotila LM, Llort Asens M, Yao S, Tojkander S, Fagerholm SC. Filamin A Is Required for Optimal T Cell Integrin-Mediated Force Transmission, Flow Adhesion, and T Cell Trafficking. THE JOURNAL OF IMMUNOLOGY 2018; 200:3109-3116. [PMID: 29581355 DOI: 10.4049/jimmunol.1700913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
T cells traffic from the bloodstream into tissues to perform their functions in the immune system and are therefore subjected to a range of different mechanical forces. Integrins are essential for T cell trafficking into the tissues, as they mediate firm adhesion between the T cell and the endothelium under shear flow conditions. In addition, integrins are important for the formation of the contact between the T cell and the APC required for T cell activation. The actin-binding protein filamin A (FlnA) provides an important link between the integrin and the actin cytoskeleton. FlnA has been reported to function as an integrin inhibitor by competing with talin. However, its role in regulating integrin-dependent immune functions in vivo is currently poorly understood. In this study, we have investigated the role of FlnA in T cells, using T cell-specific FlnA knockout mice. We report that FlnA is required for the formation of strong integrin-ligand bonds under shear flow and for the generation of integrin-mediated T cell traction forces on ligand-coated hydrogels. Consequently, absence of FlnA leads to a reduction in T cell adhesion to integrin ligands under conditions of shear flow, as well as reduced T cell trafficking into lymph nodes and sites of skin inflammation. In addition, FlnA is not needed for T cell activation in vivo, which occurs in shear-free conditions in lymphoid organs. Our results therefore reveal a role of FlnA in integrin force transmission and T cell trafficking in vivo.
Collapse
Affiliation(s)
- Terhi Savinko
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Carla Guenther
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Liisa M Uotila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Marc Llort Asens
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Sean Yao
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Susanna C Fagerholm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; .,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| |
Collapse
|
18
|
Zumerle S, Molon B, Viola A. Membrane Rafts in T Cell Activation: A Spotlight on CD28 Costimulation. Front Immunol 2017; 8:1467. [PMID: 29163534 PMCID: PMC5675840 DOI: 10.3389/fimmu.2017.01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Spatiotemporal compartmentalization of signaling pathways and second messengers is pivotal for cell biology and membrane rafts are, therefore, required for several lymphocyte functions. On the other hand, T cells have the specific necessity of tuning signaling amplification depending on the context in which the antigen is presented. In this review, we discuss of membrane rafts in the context of T cell signaling, focusing on CD28-mediated costimulation.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Pediatric Research Institute "Citta della Speranza", Padova, Italy
| |
Collapse
|
19
|
Shelmerdine SC, Semple T, Wallis C, Aurora P, Moledina S, Ashworth MT, Owens CM. Filamin A (FLNA) mutation-A newcomer to the childhood interstitial lung disease (ChILD) classification. Pediatr Pulmonol 2017; 52:1306-1315. [PMID: 28898549 DOI: 10.1002/ppul.23695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
AIM Interstitial lung disease (ILD) in infants represents a rare and heterogenous group of disorders, distinct from those occurring in adults. In recent years a new entity within this category is being recognized, namely filamin A (FLNA) mutation related lung disease. Our aims are to describe the clinical and radiological course of patients with this disease entity to aid clinicians in the prognostic counseling and management of similar patients they may encounter. METHOD A retrospective case note review was conducted of all patients treated at our institution (a specialist tertiary referral childrens' center) for genetically confirmed FLNA mutation related lung disease. The clinical presentation, evolution, management and radiological features were recorded and a medical literature review of Medline indexed articles was conducted. RESULTS We present a case series of four patients with interstitial lung disease and genetically confirmed abnormalities within the FLNA gene. Their imaging findings all reveal a pattern of predominantly upper lobe overinflation, coarse pulmonary lobular septal thickening and diffuse patchy atelectasis. The clinical outcomes of our patients have been variable ranging from infant death, lobar resection and need for supplemental oxygen and bronchodilators. CONCLUSION The progressive nature of the pulmonary aspect of this disorder and need for early aggressive supportive treatment make identification crucial to patient management and prognostic counseling.
Collapse
Affiliation(s)
| | - Thomas Semple
- Department of Clinical Radiology, The Royal Brompton Hospital, London, UK
| | - Colin Wallis
- Department of Respiratory Paediatrics, Great Ormond Street Hospital, London, UK
| | - Paul Aurora
- Department of Respiratory Paediatrics, Great Ormond Street Hospital, London, UK
| | - Shahin Moledina
- National Paediatric Pulmonary Hypertension Service UK, Great Ormond Street Hospital, London, UK
| | | | - Catherine M Owens
- Department of Clinical Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
20
|
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 2016; 7:186. [PMID: 27242793 PMCID: PMC4865508 DOI: 10.3389/fimmu.2016.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.
Collapse
Affiliation(s)
- Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| |
Collapse
|
21
|
Eltahir S, Ahmad KS, Al-Balawi MM, Bukhamsien H, Al-Mobaireek K, Alotaibi W, Al-Shamrani A. Lung disease associated with filamin A gene mutation: a case report. J Med Case Rep 2016; 10:97. [PMID: 27091362 PMCID: PMC4836084 DOI: 10.1186/s13256-016-0871-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding filamin A (FLNA) lead to diseases with high phenotypic diversity including periventricular nodular heterotopia, skeletal dysplasia, otopalatodigital spectrum disorders, cardiovascular abnormalities, and coagulopathy. FLNA mutations were recently found to be associated with lung disease. In this study, we report a novel FLNA gene associated with significant lung disease and unique angiogenesis. CASE PRESENTATION Here, we describe a 1-year-old Saudi female child with respiratory distress at birth. The child then had recurrent lower respiratory tract infections, bilateral lung emphysema with basal atelectasis, bronchospasm, pulmonary artery hypertension, and oxygen and mechanical ventilation dependency. Molecular testing showed a new pathogenic variant of one copy of c.3153dupC in exon 21 in the FLNA gene. CONCLUSIONS Our data support previous reports in the literature that associate FLNA gene mutation and lung disease.
Collapse
Affiliation(s)
- Safa Eltahir
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid S Ahmad
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Mohammed M Al-Balawi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Hussien Bukhamsien
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid Al-Mobaireek
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Wadha Alotaibi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | | |
Collapse
|
22
|
Abstract
The term “immune synapse” was originally coined to highlight the similarities between the synaptic contacts between neurons in the central nervous system and the cognate, antigen-dependent interactions between T cells and antigen-presenting cells. Here, instead of offering a comprehensive molecular catalogue of molecules involved in the establishment, stabilization, function, and resolution of the immune synapse, we follow a spatiotemporal timeline that begins at the initiation of exploratory contacts between the T cell and the antigen-presenting cell and ends with the termination of the contact. We focus on specific aspects that distinguish synapses established by cytotoxic and T helper cells as well as unresolved issues and controversies regarding the formation of this intercellular structure.
Collapse
Affiliation(s)
- Alvaro Ortega-Carrion
- Immunology Section, Department of Medicine, Universidad Autonoma de Madrid School of Medicine, Madrid, Spain
| | - Miguel Vicente-Manzanares
- Immunology Section, Department of Medicine, Universidad Autonoma de Madrid School of Medicine, Madrid, Spain
| |
Collapse
|
23
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
24
|
Hayashi K, Ouchi M, Endou H, Anzai N. HOXB9 acts as a negative regulator of activated human T cells in response to amino acid deficiency. Immunol Cell Biol 2016; 94:612-7. [PMID: 26926958 DOI: 10.1038/icb.2016.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 12/11/2022]
Abstract
T-cell activation is an energy expenditure process and should be properly controlled in accordance with the availability of nutrients such as amino acids to eliminate wasteful energy consumption. However, the details of response to amino acids insufficiency in activated T cells remain largely unknown. Here we show that homeobox B9 (HOXB9), a member of the homeobox gene family that is known as a morphogenesis regulator, acts as a suppressor of activated human T cells to address amino acid starvation. The expression of HOXB9 was triggered by amino acid deprivation as well as functional inhibition of L-type amino acid transporter 1 (also known as SLC7A5) via activating transcription factor 4 in activated T cells. HOXB9 interfered the activities of NF-κB, nuclear factor of activated T-cells (NFAT) and AP-1 but not retinoic acid receptor-related orphan receptor, resulting in attenuation of the production of selective cytokines in activated T cells. Thus, the morphogenetic gene plays an unexpected role in the regulation of cellular metabolism with changes in the nutrition status in human T cells.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | | | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
25
|
Kallikourdis M, Trovato AE, Roselli G, Muscolini M, Porciello N, Tuosto L, Viola A. Phosphatidylinositol 4-Phosphate 5-Kinase β Controls Recruitment of Lipid Rafts into the Immunological Synapse. THE JOURNAL OF IMMUNOLOGY 2016; 196:1955-63. [PMID: 26773155 DOI: 10.4049/jimmunol.1501788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kβ to T cell activation and show that CD28 induces the recruitment of PIP5Kβ to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kβ are pivotal for the PIP5Kβ regulatory functions in response to CD28 stimulation.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University, Rozzano, Milan 20089, Italy; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Anna Elisa Trovato
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Michela Muscolini
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Nicla Porciello
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Loretta Tuosto
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua and Venetian Institute of Molecular Medicine, 35131 Padua, Italy
| |
Collapse
|
26
|
Huranova M, Stepanek O. Role of actin cytoskeleton at multiple levels of T cell activation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
28
|
TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation. Nat Immunol 2015; 16:1195-203. [PMID: 26390157 DOI: 10.1038/ni.3259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxβ as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation.
Collapse
|
29
|
Goldberg S, Glogauer J, Grynpas MD, Glogauer M. Deletion of filamin A in monocytes protects cortical and trabecular bone from post-menopausal changes in bone microarchitecture. Calcif Tissue Int 2015; 97:113-24. [PMID: 25894069 DOI: 10.1007/s00223-015-9994-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/01/2015] [Indexed: 02/05/2023]
Abstract
The objective of the study was to determine the in vivo role of Filamin A (FLNA) in osteoclast generation and function, through the assessment of trabecular bone morphology, bone turnover, and the resulting changes in mechanical properties of the skeleton in mice with targeted deletion of FLNA in pre-osteoclasts. Using a conditional targeted knockdown of FLNA in osteoclasts, we assessed bone characteristics in vivo including micro-computed tomography (micro-ct), histomorphometric analyses, and bone mechanical properties. These parameters were assessed in female mice at 5 months of age, in an aging protocol (comparing 5-month-old and 11-month-old mice) and an osteoporosis protocol [ovariectomized (OVX) at 5 months of age and then sacrificed at 6 and 11 months of age]. In vivo bone densitometry, mechanical and histomorphometric analyses revealed a mild osteoporotic phenotype in the FLNA-null 5-month and aging groups. The WT and FLNA-KO bones did not appear to age differently. However, the volumetric bone mineral density decrease associated with OVX in WT is absent in FLNA-KO-OVX groups. The skeleton in the FLNA-KO-OVX group does not differ from the FLNA-KO group both in mechanical and structural properties as shown by mechanical testing of femora and vertebrae and histomorphometry of vertebrae. Additionally, FLNA-KO femora are tougher and more ductile than WT femora. The result of this study indicates that while FLNA-KO bones are weaker than WT bones, they do not age differently and are protected from estrogen-mediated post-menopausal osteoporosis.
Collapse
Affiliation(s)
- S Goldberg
- Matrix Dynamics Group- Faculty of Dentistry, Fitzgerald Building 150 College Street, Toronto, ON, M5S3E2, Canada,
| | | | | | | |
Collapse
|
30
|
Nassef Kadry Naguib Roufaiel M, Wells JW, Steptoe RJ. Impaired T-Cell Function in B-Cell Lymphoma: A Direct Consequence of Events at the Immunological Synapse? Front Immunol 2015; 6:258. [PMID: 26082776 PMCID: PMC4451642 DOI: 10.3389/fimmu.2015.00258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
Tumors can escape immune destruction through the development of antigen loss variants and loss of antigen processing/presentation pathways, thereby rendering them invisible to T cells. Alternatively, mechanisms of peripheral T-cell tolerance that would normally be important for protection from the development of autoimmunity may also be co-opted to (i) generate an immuno-inhibitory tumor environment, (ii) promote development of regulatory cell populations, or (iii) cell-intrinsically inactivate tumor-specific T cells. Emerging evidence suggests that T-cell function is impaired in hematological malignancies, which may manifest from cognate interactions between T cells and the tumor. The immunological synapse forms the cognate T-cell and antigen-presenting cell interaction and is the site where key signalling events, including those delivered by co-inhibitory receptors, that determine the fate of T cells occur. Here, we review evidence that events at the immune synapse between T cells and malignant B cells and alterations in immune synapse function may contribute to loss of T-cell function in B-cell malignancies.
Collapse
Affiliation(s)
- Marian Nassef Kadry Naguib Roufaiel
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| |
Collapse
|
31
|
Acerbi E, Zelante T, Narang V, Stella F. Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation. BMC Bioinformatics 2014; 15:387. [PMID: 25495206 PMCID: PMC4267461 DOI: 10.1186/s12859-014-0387-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Background Dynamic aspects of gene regulatory networks are typically investigated by measuring system variables at multiple time points. Current state-of-the-art computational approaches for reconstructing gene networks directly build on such data, making a strong assumption that the system evolves in a synchronous fashion at fixed points in time. However, nowadays omics data are being generated with increasing time course granularity. Thus, modellers now have the possibility to represent the system as evolving in continuous time and to improve the models’ expressiveness. Results Continuous time Bayesian networks are proposed as a new approach for gene network reconstruction from time course expression data. Their performance was compared to two state-of-the-art methods: dynamic Bayesian networks and Granger causality analysis. On simulated data, the methods comparison was carried out for networks of increasing size, for measurements taken at different time granularity densities and for measurements unevenly spaced over time. Continuous time Bayesian networks outperformed the other methods in terms of the accuracy of regulatory interactions learnt from data for all network sizes. Furthermore, their performance degraded smoothly as the size of the network increased. Continuous time Bayesian networks were significantly better than dynamic Bayesian networks for all time granularities tested and better than Granger causality for dense time series. Both continuous time Bayesian networks and Granger causality performed robustly for unevenly spaced time series, with no significant loss of performance compared to the evenly spaced case, while the same did not hold true for dynamic Bayesian networks. The comparison included the IRMA experimental datasets which confirmed the effectiveness of the proposed method. Continuous time Bayesian networks were then applied to elucidate the regulatory mechanisms controlling murine T helper 17 (Th17) cell differentiation and were found to be effective in discovering well-known regulatory mechanisms, as well as new plausible biological insights. Conclusions Continuous time Bayesian networks were effective on networks of both small and large size and were particularly feasible when the measurements were not evenly distributed over time. Reconstruction of the murine Th17 cell differentiation network using continuous time Bayesian networks revealed several autocrine loops, suggesting that Th17 cells may be auto regulating their own differentiation process.
Collapse
Affiliation(s)
- Enzo Acerbi
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Immunos Building, Level 4 138648, Singapore.
| | | | | | | |
Collapse
|
32
|
Bandaru S, Zhou AX, Rouhi P, Zhang Y, Bergo MO, Cao Y, Akyürek LM. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis 2014; 3:e119. [PMID: 25244493 PMCID: PMC4183982 DOI: 10.1038/oncsis.2014.33] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Filamins regulate cell locomotion and associate with diverse signaling molecules. We have recently found that targeting filamin A (FLNA) reduces RAS-induced lung adenocarcinomas. In this study, we explored the role of another major filamin isoform, filamin B (FLNB), in tumor development. In contrast to FLNA, we report that targeting FLNB enhances RAS-induced tumor growth and metastasis which is associated with higher matrix metallopeptidase-9 (MMP-9) and extracellular signal-regulated kinase (ERK) activity. Flnb deficiency in mouse embryonic fibroblasts results in increased proteolytic activity of MMP-9 and cell invasion mediated by the RAS/ERK pathway. Similarly, silencing FLNB in multiple human cancer cells increases the proteolytic activity of MMP-9 and tumor cell invasion. Furthermore, we observed that Flnb-deficient RAS-induced tumors display more capillary structures that is correlated with increased vascular endothelial growth factor-A (VEGF-A) secretion. Inhibition of ERK activation blocks phorbol myristate acetate-induced MMP-9 activity and VEGF-A secretion in vitro. In addition, silencing FLNB in human ovarian cancer cells increases secretion of VEGF-A that induces endothelial cells to form more vascular structures in vitro. We conclude that FLNB suppresses tumor growth and metastasis by regulating the activity of MMP-9 and secretion of VEGF-A which is mediated by the RAS/ERK pathway.
Collapse
Affiliation(s)
- S Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - A-X Zhou
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - P Rouhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Y Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - M O Bergo
- The Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden
| | - Y Cao
- 1] Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden [2] Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - L M Akyürek
- 1] Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden [2] Department of Clinical Pathology and Genetics, The Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
33
|
Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4080-5. [PMID: 24038088 DOI: 10.4049/jimmunol.1300923] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of T cells accompanies remarkable enhancement of metabolism. Sufficient and continuous nutrient supply is therefore important to support immune reaction in T cells. However, the mechanism of the promotion of nutrient incorporation in activated T cells has not been elucidated. In this study, we show that L-type amino acid transporter 1 (LAT1) is a major transporter for essential amino acids into activated human T cells. CD3/CD28 stimulation in primary human T cells triggered dramatic induction of LAT1 expression mediated by NF-κB and AP-1. Functional disturbance of LAT1 by a specific inhibitor and by small interfering RNA in human T cells suppressed essential amino acid uptake and induced a stress response mediated by DNA damage-inducible transcript 3 to attenuate cytokine production via inhibition of NF-κB and NFAT activities. These results uncover the previously unknown mechanism by which T cells accelerate essential amino acid uptake upon activation and adapt to essential amino acid starvation. Our results also raise the possibility for application of an LAT1 inhibitor as a new drug for therapy of disease caused by exaggerated immune response.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
34
|
Smith L, Litman P, Kohli E, Amick J, Page RC, Misra S, Liedtke CM. RACK1 interacts with filamin-A to regulate plasma membrane levels of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol 2013; 305:C111-20. [PMID: 23636454 PMCID: PMC3725521 DOI: 10.1152/ajpcell.00026.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/25/2013] [Indexed: 01/27/2023]
Abstract
Mutations in cystic fibrosis transmembrane regulator (CFTR), a chloride channel in the apical membranes of secretory epithelial cells, underlie the fatal genetic disorder cystic fibrosis. Certain CFTR mutations, including the common mutation ΔF508-CFTR, result in greatly decreased levels of active CFTR at the apical membrane. Direct interactions between CFTR and the cytoskeletal adaptors filamin-A (FlnA) and Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) stabilize the expression and localization of CFTR at the plasma membrane. The scaffold protein receptor for activated C kinase 1 (RACK1) also stabilizes CFTR surface expression; however, RACK1 does not interact directly with CFTR and its mechanism of action is unknown. In the present study, we report that RACK1 interacts directly with FlnA in vitro and in a Calu-3 airway epithelial cell line. We mapped the interaction between RACK1 and FlnA to the WD4 and WD6 repeats of RACK1 and to a segment of the large rod domain of FlnA, consisting of immunoglobulin-like repeats 8-15. Disruption of the RACK1-FlnA interaction causes a reduction in CFTR surface levels. Our results suggest that a novel RACK1-FlnA interaction is an important regulator of CFTR surface localization.
Collapse
Affiliation(s)
- Laura Smith
- Willard Alan Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kong KF, Altman A. In and out of the bull's eye: protein kinase Cs in the immunological synapse. Trends Immunol 2013; 34:234-42. [PMID: 23428395 DOI: 10.1016/j.it.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/29/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023]
Abstract
The immunological synapse (IS) formed between immune cells and antigen-presenting cells (APCs) provides a platform for signaling. Protein kinase C (PKC)θ localizes in the T cell IS within the central supramolecular activation cluster (cSMAC), where it associates with CD28 and mediates T cell receptor (TCR)/CD28 signals leading to effector T (Teff) cell activation. In regulatory T (Treg) cells, PKCθ is sequestered away from the IS, and inhibits suppressive function. Other PKCs localizing in the IS mediate additional functions in various immune cells. Further work is needed to identify mechanisms underlying PKC recruitment or exclusion at the IS, potential redundancy among IS-localized PKCs, and the relevance of PKC localization for IS dynamics and lymphocyte activation.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Kim JY, Kim JH, Park BL, Pasaje CFA, Bae JS, Park JS, Jang AS, Uh ST, Kim YH, Kim MK, Choi IS, Cho SH, Choi BW, Park CS, Shin HD. Association Analysis Between FILIP1 Polymorphisms and Aspirin Hypersensitivity in Korean Asthmatics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 5:34-41. [PMID: 23277876 PMCID: PMC3529227 DOI: 10.4168/aair.2013.5.1.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/04/2012] [Accepted: 05/21/2012] [Indexed: 11/20/2022]
Abstract
PURPOSE Aspirin exacerbated respiratory disease (AERD) results in a severe asthma attack after aspirin ingestion in asthmatics. The filamin A interacting protein 1 (FILIP1) may play a crucial role in AERD pathogenesis by mediating T cell activation and membrane rearrangement. We investigated the association of FILIP1 variations with AERD and the fall rate of forced expiratory volume in one second (FEV1). METHODS A total of 34 common FILIP1 single nucleotide polymorphisms (SNPs) were genotyped in 592 Korean asthmatic subjects that included 163 AERD patients and 429 aspirin-tolerant asthma (ATA) controls. RESULTS This study found that 5 SNPs (P=0.006-0.01) and 2 haplotypes (P=0.01-0.03) of FILIP1 showed nominal signals; however, corrections for the multiple testing revealed no significant associations with the development of AERD (P(corr)>0.05). In addition, association analysis of the genetic variants with the fall rate of FEV1, an important diagnostic marker of AERD, revealed no significant evidence (P(corr)>0.05). CONCLUSIONS Although further replications and functional evaluations are needed, our preliminary findings suggest that genetic variants of FILIP1 might be not associated with the onset of AERD.
Collapse
Affiliation(s)
- Jason Yongha Kim
- Department of Life Science, College of Natural Sciences, Sogang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gordón-Alonso M, Sala-Valdés M, Rocha-Perugini V, Pérez-Hernández D, López-Martín S, Ursa A, Alvarez S, Kolesnikova TV, Vázquez J, Sánchez-Madrid F, Yáñez-Mó M. EWI-2 association with α-actinin regulates T cell immune synapses and HIV viral infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:689-700. [PMID: 22689882 DOI: 10.4049/jimmunol.1103708] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EWI motif-containing protein 2 (EWI-2) is a member of the Ig superfamily that links tetraspanin-enriched microdomains to the actin cytoskeleton. We found that EWI-2 colocalizes with CD3 and CD81 at the central supramolecular activation cluster of the T cell immune synapse. Silencing of the endogenous expression or overexpression of a cytoplasmic truncated mutant of EWI-2 in T cells increases IL-2 secretion upon Ag stimulation. Mass spectrometry experiments of pull-downs with the C-term intracellular domain of EWI-2 revealed the specific association of EWI-2 with the actin-binding protein α-actinin; this association was regulated by PIP2. α-Actinin regulates the immune synapse formation and is required for efficient T cell activation. We extended these observations to virological synapses induced by HIV and found that silencing of either EWI-2 or α-actinin-4 increased cell infectivity. Our data suggest that the EWI-2-α-actinin complex is involved in the regulation of the actin cytoskeleton at T cell immune and virological synapses, providing a link between membrane microdomains and the formation of polarized membrane structures involved in T cell recognition.
Collapse
|
38
|
Muscolini M, Sajeva A, Caristi S, Tuosto L. A novel association between filamin A and NF-κB inducing kinase couples CD28 to inhibitor of NF-κB kinase α and NF-κB activation. Immunol Lett 2011; 136:203-12. [PMID: 21277899 DOI: 10.1016/j.imlet.2011.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 12/13/2022]
Abstract
CD28 costimulatory molecule plays a critical role in the activation of NF-κB. Indeed, while stimulation of T cells with either professional APCs or anti-TCR plus anti-CD28 antibodies efficiently activates NF-κB, TCR alone fails to do that. Moreover, CD28 stimulation by B7 in the absence of TCR may activate IκB kinase α (IKKα) and a non-canonical NF-κB2-like pathway, in human primary CD4(+) T cells. Despite its functional relevance in NF-κB activation, the molecules connecting autonomous CD28-mediated signals to IKKα and NF-κB activation remain still unknown. In searching for specific upstream activators linking CD28 to the IKKα/NF-κB cascade, we identify a novel constitutive association between filamin A (FLNa) and the NF-κB inducing kinase (NIK), in both Jurkat and human primary T cells. Following CD28 engagement by B7, in the absence of TCR, FLNa-associated NIK is activated and induces IKKα kinase activity. Both proline (P(208)YAP(211)P(212)) and tyrosine residues (Y(206)QPY(209)APP) within the C-terminal proline-rich motif of CD28 are involved in the recruitment of FLNa/NIK complexes to the membrane as well as in the activation of NIK and IKKα.
Collapse
Affiliation(s)
- Michela Muscolini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | | | | | |
Collapse
|
39
|
Lung disease in FLNA mutation: Confirmatory report. Eur J Med Genet 2011; 54:299-300. [DOI: 10.1016/j.ejmg.2010.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
|
40
|
Jeon YM, Son BS, Lee MY. Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J Appl Toxicol 2011; 31:45-52. [PMID: 20658469 DOI: 10.1002/jat.1566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to airborne PM₁₀, particulate matter with a median aerodynamic diameter of less than 10 µm, is known to be associated with a number of adverse health effects. To gain a better understanding of the cytotoxic mechanism and to develop protein biomarker candidates for PM₁₀-induced toxicity, proteomic analyses were performed in human lung epithelial cells. Two-dimensional gel electrophoresis (2-DE) was followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to analyze the proteins differentially expressed by exposure to PM₁₀. Analysis of 2-DE gels revealed more than 1270 protein spots in the cells, of which 36 showed changes of more than 2-fold on exposure to PM₁₀ (up-regulation, n = 6; down-regulation, n = 30). The glycolytic enzyme pyruvate kinase, which also plays a role in tumor metabolism, showed a marked increase in expression, whereas the cytoskeleton-related vinculin and anti-inflammatory annexin 1 showed marked decreases in expression.
Collapse
Affiliation(s)
- Yu Mi Jeon
- Department of Medical Biotechnology, SoonChunHyang University, Asan, Chungnam 336-600, Republic of Korea
| | | | | |
Collapse
|
41
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
42
|
Masurel-Paulet A, Haan E, Thompson EM, Goizet C, Thauvin-Robinet C, Tai A, Kennedy D, Smith G, Khong TY, Solé G, Guerineau E, Coupry I, Huet F, Robertson S, Faivre L. Lung disease associated with periventricular nodular heterotopia and an FLNA mutation. Eur J Med Genet 2011; 54:25-8. [DOI: 10.1016/j.ejmg.2010.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
|
43
|
Filamin A mediates interactions between cytoskeletal proteins that control cell adhesion. FEBS Lett 2010; 585:18-22. [PMID: 21095189 DOI: 10.1016/j.febslet.2010.11.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 11/22/2022]
Abstract
Cell adhesion, spreading and migration on extracellular matrices are regulated by complex processes that involve the cytoskeleton and a large array of adhesion receptors, including the β1 integrin. Filamin A is a large, multi-domain, homodimeric actin binding protein that contributes to the mechanical stability of cells and interacts with several proteins that regulate cell adhesion including β1 integrin and several protein kinases. Here we review current data on the structure, mechanical properties and intracellular signaling functions of filamin that regulate cell adhesion. We also consider new data showing that interactions of filamin A with intermediate filaments and protein kinase C enable tight regulation of β1 integrin function and consequently early events in cell adhesion and migration on extracellular matrix proteins.
Collapse
|
44
|
Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin CH, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T. A human MAP kinase interactome. Nat Methods 2010; 7:801-5. [PMID: 20936779 PMCID: PMC2967489 DOI: 10.1038/nmeth.1506] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitogen Activated Protein Kinase (MAPK) pathways form the backbone of signal transduction within the mammalian cell. Here, we apply a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. A core network of 641 interactions is supported by multiple lines of evidence including conservation with yeast. Using siRNA knockdowns, we reveal that a significant number of novel interactors can modulate MAPK mediated signaling. We uncover the Na-H exchanger NHE1 as a scaffold for a novel set of MAPKs, link HSP90 chaperones to MAPK pathways, and identify MUC12 as the human analogue to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions along with the accompanying clone libraries. It illustrates a methodology for probing signaling networks based on functional refinement of experimentally-derived protein interaction maps.
Collapse
Affiliation(s)
- Sourav Bandyopadhyay
- Departments of Medicine and Bioengineering, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Riha P, Rudd CE. CD28 co-signaling in the adaptive immune response. SELF NONSELF 2010; 1:231-240. [PMID: 21487479 DOI: 10.4161/self.1.3.12968] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity.
Collapse
Affiliation(s)
- Pavel Riha
- Cell Signaling Section; Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
46
|
Abstract
CD28 costimulation regulates a wide range of cellular processes, from proliferation and survival to promoting the differentiation of specialized T-cell subsets. Since first being identified over 20 years ago, CD28 has remained a subject of intense study because of its profound consequences on T cell function and its potential for therapeutic manipulation. In this review we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing on PI-3 kinase-dependent and -independent pathways and how these are linked to specific cellular outcomes. Recent studies using gene targeted knockin mice have clarified the relative importance of these motifs on in vivo immune responses; however, much remains to be elucidated. Understanding the mechanism behind costimulation holds great potential for development of new clinically relevant reagents, a fact beginning to be realized with the advent of drugs that prevent CD28 ligation and signaling.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
47
|
Vang KB, Yang J, Pagán AJ, Li LX, Wang J, Green JM, Beg AA, Farrar MA. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. THE JOURNAL OF IMMUNOLOGY 2010; 184:4074-7. [PMID: 20228198 DOI: 10.4049/jimmunol.0903933] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regulatory T cell (Treg) development proceeds via a two-step process in which naive CD4(+) thymocytes are first converted into CD4(+)CD25(+)CD122(+)GITR(+)Foxp3(-) Treg progenitors, followed by a second step in which IL-2 converts these Treg progenitors into CD4(+)Foxp3(+) Tregs. The costimulatory molecule CD28 is required for efficient Treg development. However, the stage at which CD28 affects Treg development remains undefined. In this article, we demonstrate that Cd28(-/-) mice lack Treg progenitors. Furthermore, the P(187)YAP motif in the cytoplasmic tail of CD28, which links CD28 to Lck activation, is required for this process. In contrast, the Y(170)MNM motif, which links CD28 to PI3K activation, is not required for Treg progenitor development. Finally, the CD28/Lck pathway was shown to activate the NF-kappaB family of transcription factors. We demonstrate that c-Rel, but not NF-kappaB1, promotes the development of Treg progenitors. Thus, a CD28/c-Rel-dependent pathway is involved in initiating Treg development.
Collapse
Affiliation(s)
- Kieng B Vang
- Department of Laboratory Medicine and Pathology, The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Abstract
T cell activation begins with the interaction between an antigen-specific T cell and an antigen-presenting cell (APC). This interaction results in the formation of the immunological synapse, which had been considered to be responsible for antigen recognition and T cell activation. Recent advances in imaging analysis have provided new insights into T cell activation. The T cell receptor (TCR) microclusters, TCRs, kinases, and adaptors are generated upon antigen recognition at the interfaces between the T cells and the APCs and serve as a fundamental signaling unit for T cell activation. CD28-mediated costimulation is also found to be regulated by the formation of microclusters. Therefore, the dynamic regulations of TCR and CD28 microcluster formation, migration, and interaction are the key events for the initiation of T cell-mediated immune responses. Comprehensive analyses of the composition and characteristics of the TCR microcluster have identified its dynamic features. This review will outline new discoveries of the microclusters and its related concept in T cell activation.
Collapse
|
50
|
Weckbecker G, Pally C, Beerli C, Burkhart C, Wieczorek G, Metzler B, Morris RE, Wagner J, Bruns C. Effects of the novel protein kinase C inhibitor AEB071 (Sotrastaurin) on rat cardiac allograft survival using single agent treatment or combination therapy with cyclosporine, everolimus or FTY720. Transpl Int 2009; 23:543-52. [PMID: 20003043 DOI: 10.1111/j.1432-2277.2009.01015.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NVP-AEB071 (AEB, sotrastaurin), an oral inhibitor of protein kinase C (PKC), effectively blocks T-cell activation. The immunosuppressive effects of oral AEB were demonstrated in a rat local graft versus host (GvH) reaction and rat cardiac transplantation models. T-cell activation was suppressed by 95% in blood from AEB-treated rats, with a positive correlation between T-cell inhibition and AEB blood concentration. In GvH studies, AEB inhibited lymph node swelling dose-dependently (3-30 mg/kg). BN and DA cardiac allografts were acutely rejected within 6-10 days post-transplantation in untreated LEW rats. AEB at 10 and 30 mg/kg b.i.d. prolonged BN graft survival to a mean survival time of 15 and >28 days, and DA grafts to 6.5 and 17.5 days, respectively. In the DA to LEW model, combining a nonefficacious dose of AEB (10 mg/kg b.i.d.) with a nonefficacious dose of cyclosporine, everolimus or FTY720 led to prolonged median survival times (26 days, >68 days and >68 days, respectively). Pharmacokinetic monitoring excluded drug-drug interactions, suggesting synergy. In conclusion, these studies are the first to demonstrate that AEB prolongs rat heart allograft survival safely as monotherapy and in combination with nonefficacious doses of cyclosporine, everolimus or FTY720. Thus, AEB may have the potential to offer an alternative to calcineurin inhibitor-based therapies.
Collapse
Affiliation(s)
- Gisbert Weckbecker
- Novartis Institutes for BioMedical Research, Autoimmunity and Transplantation Disease Area, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|