1
|
Xi C, Li W, Xu Z, Xie J, Gao X, Feng D, Tian Y, Song S. Effects of Heat Treatment on Physicochemical Properties of Moringa oleifera Lam. Leaf Protein. Int J Mol Sci 2025; 26:1647. [PMID: 40004111 PMCID: PMC11855925 DOI: 10.3390/ijms26041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
M. oleifera leaves represent a novel and nutritious food. Prior research has demonstrated that M. oleifera leaves can elicit allergic responses in BALB/c mice. Based on these findings, further studies were conducted to investigate the effects of heat treatment on the allergenicity, particle size, zeta potential, total sulfhydryl (TSH) content, hydrophilicity and hydrophobicity, ultraviolet spectrum, and intrinsic fluorescence spectrum of M. oleifera leaf protein. Additionally, in vitro digestion experiments were carried out to gain further insights into the protein's behavior under these conditions. The experiment simulated the alterations in M. oleifera leaf protein during the processes of cooking and digestion. The findings of this experiment can provide certain guidance for the processing of M. oleifera leaf products. The hydrophilicity, hydrophobicity, transmembrane region, antigen index, calcium binding site, spatial structure, and homology of M. oleifera leaf fructose 1,6 bisphosphate aldolase (FBA) were simulated and calculated based on the amino acid sequence of the 36 kDa allergen. These parameters collectively serve to indicate the allergenic activity of the peptide. The findings of the analysis align with the outcomes of the sensitization experiments, suggesting that the FBA of M. oleifera leaves is indeed consistent. In conjunction with the heat treatment experiments, this research can inform the preparation of M. oleifera leaf foods and provide a foundation for further investigation into M. oleifera leaf allergens.
Collapse
Affiliation(s)
- Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Zhiguo Xu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Dan Feng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Liu Q, Sui Z, Feng N, Huang Y, Li Y, Ahmed I, Ruethers T, Liang H, Li Z, Lopata AL, Sun L. Characterization, Epitope Confirmation, and Cross-Reactivity Analysis of Parvalbumin from Lateolabrax maculatus by Multiomics Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20077-20090. [PMID: 39198262 DOI: 10.1021/acs.jafc.4c03944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Spotted seabass (Lateolabrax maculatus) is the second largest maricultural fish species in China and is the main trigger of food-related allergic reactions. Nevertheless, studies on the allergens of L. maculatus are limited. This study aimed to characterize pan-allergen parvalbumin from L. maculatus. Two proteins of about 11 kDa were purified and confirmed as parvalbumins by mass spectrometry. The IgG- and IgE-binding activities were evaluated through an immunoblotting assay. The molecular characteristics of β-parvalbumin were investigated by combining proteomics, genomics, and immunoinformatics approaches. The results indicated that β-parvalbumin consists of 109 amino acids with a molecular weight of 11.5 kDa and is the major allergen displaying strong IgE-binding capacity. In silico analysis and a dot blotting assay confirmed seven linear B cell epitopes distributed mainly on α-helixes and the calcium-binding loops. In addition, the cross-reactivity among 26 commonly consumed fish species was analyzed. The in-house generated anti-L. maculatus parvalbumin polyclonal antibody recognized 100% of the 26 fish species, demonstrating cross-reactivity and better binding capacity than the anticod parvalbumin antibody. Together, this study provides an efficient protocol to characterize allergens with multiomics methods and supports parvalbumin from L. maculatus as a candidate for fish allergen determination and allergy diagnosis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zengying Sui
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nuan Feng
- Department of Nutrition, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 387380 Singapore
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 387380 Singapore
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Yang Y, He X, Li F, He S, Liu M, Li M, Xia F, Su W, Liu G. Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope. Compr Rev Food Sci Food Saf 2024; 23:e13340. [PMID: 38778570 DOI: 10.1111/1541-4337.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.
Collapse
Affiliation(s)
- Yang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Shaogui He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Wenjin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Jiang X, Rao Q. Immunodetection of finfish residues on food contact surfaces. Food Chem 2023; 426:136502. [PMID: 37302313 DOI: 10.1016/j.foodchem.2023.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Finfish is one of the major allergenic foods, whose declaration is required on packages. Undeclared allergenic residues are mainly derived from allergen cross-contact. Swabbing of food contact surfaces helps to detect allergen cross-contamination. This study aimed to establish a competitive enzyme-linked immunosorbent assay (cELISA) to quantify the major finfish allergen, parvalbumin, from swab samples. First, parvalbumin from four finfish species was purified. Its conformation was investigated under reducing, non-reducing and native conditions. Second, one anti-finfish parvalbumin monoclonal antibody (mAb) was characterized. This mAb had a calcium-dependent epitope which was highly conserved in finfish species. Third, one cELISA was established with a working range between 0.59 ppm and 150 ppm. It showed a good recovery of swab samples on food-grade stainless steel and plastic surfaces. Overall, this cELISA could detect a trace amount of finfish parvalbumins on cross-contact surfaces, which is suitable for allergen surveillance in the food industry.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
Rainyte J, Zvirblis G, Zaveckas M, Kucinskaite-Kodze I, Silimavicius L, Petraityte-Burneikiene R. Immunological comparison of recombinant shrimp allergen Pen m 4, produced in Pichia pastoris and Escherichia coli. J Biotechnol 2023; 369:1-13. [PMID: 37164269 DOI: 10.1016/j.jbiotec.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Shellfish are a leading cause of allergies worldwide, affecting about one-tenth of the general population. The sarcoplasmic calcium-binding protein, also known as allergen Pen m 4, is an important factor in shrimp allergies. Our objective was to assess the most effective techniques for producing a recombinant Pen m 4 protein as a potential tool for diagnosing shrimp allergies. In this study, for the first time, we produced a functional recombinant Pen m 4 protein in a eukaryotic system, Pichia pastoris, and analyzed it against Escherichia coli-produced equivalents in enzyme-linked immunosorbent and reverse-phase protein microarray assays. A dual tag system based on the maltose-binding protein was successfully used to increase the yield of Pen m 4 by 1.3 to 2.3-fold in both bacteria and yeast, respectively. Immunological characterization showed that N-glycosylation is neither crucial for the folding of Pen m 4 nor its recognition by specific IgE. However, the Ca2+-depletion assay indicated a dependence on calcium ion presence in blood samples. Results demonstrate how a comparative analysis can elucidate essential allergen manufacturing points. In conclusion, E. coli-produced Pen m 4 protein fused with the maltose-binding protein should be the preferred option for further studies in Penaeus monodon allergy diagnostics.
Collapse
Affiliation(s)
- Juta Rainyte
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Gintautas Zvirblis
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Mindaugas Zaveckas
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Indre Kucinskaite-Kodze
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Laimis Silimavicius
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania; Imunodiagnostika Ltd., Moletu str. 16, 14260 Vilnius, Lithuania.
| | - Rasa Petraityte-Burneikiene
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Huang Y, Li Z, Wu Y, Li Y, Pramod S, Chen G, Zhu W, Zhang Z, Wang H, Lin H. Comparative analysis of allergenicity and predicted linear epitopes in α and β parvalbumin from turbot (Scophthalmus maximus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2313-2324. [PMID: 36606403 DOI: 10.1002/jsfa.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parvalbumin (PV) can be subdivided into two phylogenetic lineages, αPV and βPV. The bony fish βPV is considered a major fish allergen. However, there is no available report on the immunological property and epitope mapping of bony fish αPV. RESULTS To characterize the allergenic property of bony fish αPV and investigate the difference in allergenic property of bony fish αPV and βPV, turbot (Scophthalmus maximus) αPV and βPV were identified by mass spectrometry and were expressed in Escherichia coli system in this study. Spectra analysis and three-dimensional (3D) modeling showed the similar structure between αPV and βPV. However, αPV exhibited lower immunoglobulin E/immunoglobulin G (IgE/IgG) binding capacity than βPV. Three identified βPV epitopes possessed higher IgE reactivity and more hydrophobic residues than three identified αPV epitopes. In addition, less similarity in sequence homology of αPV epitopes was observed with allergen sequences in database. CONCLUSION These finding expanded information on fish PV epitopes and substantiated the difference in allergenicity and epitope mapping between fish αPV and βPV, which will improve the epitope-based detection tools of PV and diagnostic of PV induced fish allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
- Department of Research and Development, HOB Biotech Group Corp., Ltd, Suzhou, P. R. China
| | - Siddanakoppalu Pramod
- Department of Studies and Research in Biochemistry, Davangere University, Davangere, India
| | - Guanzhi Chen
- Department of Dermatology, Affiliated Hospital of Medical College Qingdao University, Qingdao, P. R. China
| | - Wenjia Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
7
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
8
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Sližienė A, Plečkaitytė M, Rudokas V, Juškaitė K, Žvirblis G, Žvirblienė A. Cross-reactive monoclonal antibodies against fish parvalbumins as a tool for studying antigenic similarity of different parvalbumins and analysis of fish extracts. Mol Immunol 2023; 154:80-95. [PMID: 36621061 DOI: 10.1016/j.molimm.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Fish parvalbumins are heat-stable calcium-binding proteins that are highly cross-reactive in causing allergy symptoms in fish-sensitized patients. The reactivities of parvalbumin-specific monoclonal or polyclonal antibodies with parvalbumins of different fish species allowed their application for development of various immunoassays for allergen identification in fish samples. In this study, monoclonal antibodies (MAbs) were generated against two parvalbumins - natural Atlantic cod parvalbumin and recombinant common carp β-parvalbumin expressed in E. coli. Large collections of recombinant parvalbumins and natural allergen extracts of different fish species and other animals were used to identify the specificities of these MAbs using ELISA, Western blot, and dot blot. MAbs demonstrated different patterns of cross-reactivities with recombinant parvalbumins. Their binding affinities were affected by the addition and removal of Ca2+ ions. Moreover, all MAbs showed a broad reactivity with the target antigens in natural fish, chicken, and pork extracts. The ability of two MAbs (clones 7B2 and 3F6) to identify and isolate native parvalbumins from allergen extracts was confirmed by Western blot. Epitope mapping using recombinant fragments of Atlantic cod parvalbumin (Gad m 1) and common carp parvalbumin (Cyp c 1) revealed that 4 out of 5 MAbs recognize parvalbumin regions that contain calcium binding sites. In conclusion, the generated broadly reactive well-characterized MAbs against fish β-parvalbumins could be applied for investigation of parvalbumins of fish and other animals and their detection in allergen extracts.
Collapse
Affiliation(s)
- Aistė Sližienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Vytautas Rudokas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Karolina Juškaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Gintautas Žvirblis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
10
|
Schrama D, Czolk R, Raposo de Magalhães C, Kuehn A, Rodrigues PM. Fish Allergenicity Modulation Using Tailored Enriched Diets—Where Are We? Front Physiol 2022; 13:897168. [PMID: 35694394 PMCID: PMC9174421 DOI: 10.3389/fphys.2022.897168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of β-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
- *Correspondence: Pedro M. Rodrigues,
| |
Collapse
|
11
|
Hasan-Abad AM, Mohammadi M, Mirzaei H, Mehrabi M, Motedayyen H, Arefnezhad R. Impact of oligomerization on the allergenicity of allergens. Clin Mol Allergy 2022; 20:5. [PMID: 35488339 PMCID: PMC9052586 DOI: 10.1186/s12948-022-00172-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Type I hypersensitivity (allergic reaction) is an unsuitable or overreactive immune response to an allergen due to cross-link immunoglobulin E (IgE) antibodies bound to its high-affinity IgE receptors (FcεRIs) on effector cells. It is needless to say that at least two epitopes on allergens are required to the successful and effective cross-linking. There are some reports pointing to small proteins with only one IgE epitope could cross-link FcεRI-bound IgE through homo-oligomerization which provides two same IgE epitopes. Therefore, oligomerization of allergens plays an indisputable role in the allergenic feature and stability of allergens. In this regard, we review the signaling capacity of the B cell receptor (BCR) complex and cross-linking of FcεRI which results in the synthesis of allergen-specific IgE. This review also discusses the protein-protein interactions involved in the oligomerization of allergens and provide some explanations about the oligomerization of some well-known allergens, such as calcium-binding allergens, Alt a 1, Bet v 1, Der p 1, Per a3, and Fel d 1, along with the effects of their concentrations on dimerization.
Collapse
Affiliation(s)
- Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mohammadi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Li MS, Xia F, Liu QM, Chen YY, Yun X, Liu M, Chen GX, Wang L, Cao MJ, Liu GM. Hypoallergenic derivatives of Scylla paramamosain heat-stable allergens alleviated food allergy symptoms in Balb/c mice. Food Funct 2022; 13:11518-11531. [DOI: 10.1039/d2fo02184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Derivatives of Scylla paramamosain heat-stable allergens TM and MLC could alleviate food allergy symptoms in mice, also ability to induce blocking IgG antibodies, which offer a promising new strategy in immunotherapy for crab-allergic subjects.
Collapse
Affiliation(s)
- Meng-Si Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Yi-Yu Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Li Wang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
13
|
Chen YY, Li MS, Liu M, Yun X, Huan F, Liu QM, Cao MJ, Chen GX, Lai D, Liu GM. Linear Epitopes Play an Important Role in the Immunoglobulin G (IgG)/Immunoglobulin E (IgE)-Binding Capacity of Scy p 4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12870-12879. [PMID: 34689550 DOI: 10.1021/acs.jafc.1c05464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sarcoplasmic calcium-binding protein is a stable allergen in Scylla paramamosain and named Scy p 4. To explore the importance of linear epitopes in the immunoglobulin G (IgG)/immunoglobulin E (IgE)-binding capacity of Scy p 4, chemical denaturants were used to destroy the structure. Scy p 4 was reduced with dithiothreitol and subsequently alkylated with iodoacetamide (IAA). Furthermore, the structural analysis indicated that IAA-Scy p 4 was an unstructured protein. The inhibition enzyme-linked immunosorbent assay showed that IAA-Scy p 4 could inhibit the binding of Scy p 4 to sensitize serum, with inhibition rates reached 55%. Moreover, the linear mimotopes of Scy p 4 were predicted in silico. Three linear epitopes were verified by serological tests and named L-Scy p 4-1 (AA76-91), L-Scy p 4-2 (AA111-125), and L-Scy p 4-3 (AA137-146). Overall, these data provide an understanding of the relationship between the structure and allergenicity about Scy p 4, and the identified linear epitopes can be used for diagnosis and food processing of shellfish allergy.
Collapse
Affiliation(s)
- Yi-Yu Chen
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Meng Liu
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361102, People's Republic of China
| | - Xiao Yun
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Fei Huan
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, People's Republic of China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
14
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Mayorga C, Palomares F, Cañas JA, Pérez-Sánchez N, Núñez R, Torres MJ, Gómez F. New Insights in Therapy for Food Allergy. Foods 2021; 10:foods10051037. [PMID: 34068667 PMCID: PMC8151532 DOI: 10.3390/foods10051037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Food allergy is an increasing problem worldwide, with strict avoidance being classically the only available reliable treatment. The main objective of this review is to cover the latest information about the tools available for the diagnosis and treatment of food allergies. In recent years, many efforts have been made to better understand the humoral and cellular mechanisms involved in food allergy and to improve the strategies for diagnosis and treatment. This review illustrates IgE-mediated food hypersensitivity and provides a current description of the diagnostic strategies and advances in different treatments. Specific immunotherapy, including different routes of administration and new therapeutic approaches, such as hypoallergens and nanoparticles, are discussed in detail. Other treatments, such as biologics and microbiota, are also described. Therefore, we conclude that although important efforts have been made in improving therapies for food allergies, including innovative approaches mainly focusing on efficacy and safety, there is an urgent need to develop a set of basic and clinical results to help in the diagnosis and treatment of food allergies.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Correspondence: ; Tel.: +34-951-290-224
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - Natalia Pérez-Sánchez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - María José Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Medicine Department, Universidad de Málaga-UMA, 29071 Málaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| |
Collapse
|
16
|
Herman RA, Hou Z, Mirsky H, Nelson ME, Mathesius CA, Roper JM. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Res 2021; 30:201-206. [PMID: 33761048 PMCID: PMC8026442 DOI: 10.1007/s11248-021-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Zhenglin Hou
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Jason M Roper
- Corteva Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
17
|
Structural Analysis of Avian Encephalomyelitis Virus Polyprotein for Development of Multi Epitopes Vaccine Using Immunoinformatics Approach. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian Encephalomyelitis (AE) is the disease caused by avian encephalomyelitis virus (AEV). The disease mainly affects young birds nervous system worldwide causing high morbidity and variable mortality rate in chicks and noticed egg dropping and hatchability in mature hens. Vaccination is the only way to control AEV infection since there is no treatment yet to the avian encephalomyelitis. This study aimed to use immunoinformatics approaches to predict multi epitopes vaccine from the AEV polyprotein that could elicit both B and T cells. The vaccine construct comprises 482 amino acids obtained from epitopes predicted against B and T cells by IEDB server, adjuvant, linkers and 6-His-tag. The chimeric vaccine was potentially antigenic and nonallergic and demonstrated thermostability and hydrophilicity in protparam server. The solubility of the vaccine was measured in comparison to E. coli proteins. The stability was also assessed by disulfide bonds engineering to reduce the high mobility regions in the designed vaccine. Furthermore molecular dynamics simulation further strengthen stability of the predicted vaccine. Tertiary structure of the vaccine construct after prediction, refinement was used for molecular docking with chicken alleles BF2*2101 and BF2*0401 and the docking process demonstrated favourable binding energy score of -337.47 kcal/mol and -326.87 kcal/mol, respectively. Molecular cloning demonstrated the potential clonability of the chimeric vaccine in pET28a(+) vector. This could guarantee the efficient translation and expression of the vaccine within suitable expression vector.
Collapse
|
18
|
Buyuktiryaki B, Masini M, Mori F, Barni S, Liccioli G, Sarti L, Lodi L, Giovannini M, du Toit G, Lopata AL, Marques-Mejias MA. IgE-Mediated Fish Allergy in Children. ACTA ACUST UNITED AC 2021; 57:medicina57010076. [PMID: 33477460 PMCID: PMC7830012 DOI: 10.3390/medicina57010076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Fish allergy constitutes a severe problem worldwide. Its prevalence has been calculated as high as 7% in paediatric populations, and in many cases, it persists into adulthood with life-threatening signs and symptoms. The following review focuses on the epidemiology of Immunoglobulin E (IgE)-mediated fish allergy, its pathogenesis, clinical manifestations, and a thorough approach to diagnosis and management in the paediatric population. The traditional approach for managing fish allergy is avoidance and rescue medication for accidental exposures. Food avoidance poses many obstacles and is not easily maintained. In the specific case of fish, food is also not the only source of allergens; aerosolisation of fish proteins when cooking is a common source of highly allergenic parvalbumin, and elimination diets cannot prevent these contacts. Novel management approaches based on immunomodulation are a promising strategy for the future of these patients.
Collapse
Affiliation(s)
- Betul Buyuktiryaki
- Division of Pediatric Allergy, Koc University Hospital, 34010 Istanbul, Turkey;
| | - Marzio Masini
- Department of Pediatrics, Sapienza University of Rome, 00185 Rome, Italy;
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lorenzo Lodi
- Department of Health Sciences, Division of Immunology, Section of Pediatrics, University of Florence and Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Correspondence:
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE5 9NU, UK
| | - Andreas Ludwig Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Maria Andreina Marques-Mejias
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
19
|
Chen YY, Li MS, Yun X, Xia F, Hu MJ, Jin T, Cao MJ, Lai D, Chen G, Liu GM. Site-Directed Mutations of Calcium-Binding Sites Contribute to Reducing the Immunoreactivity of the EF-Hand Sarcoplasmic Calcium-Binding Protein in Scylla paramamosain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:428-436. [PMID: 33377774 DOI: 10.1021/acs.jafc.0c05733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to reduce the immunoreactivity of sarcoplasmic calcium-binding protein (SCP), site-directed mutations were used to replace key amino acids in the conformational epitopes and calcium-binding sites. The mutant SCPs (mSCPs) were expressed in Escherichia coli, and their immunoreactivities were analyzed using iELISA and basophil activation assays. Furthermore, the structural changes of mSCPs were determined from the circular dichroism spectra. The iELISA results showed that mSCPs could effectively inhibit the binding of wild-type SCP (wtSCP) to sensitive serum, with inhibition rates that reached 90%. Moreover, mSCPs could downregulate the expression levels of CD63 and CD203c on the basophil surface. Compared with wtSCP, the peak values were significantly changed, and the calcium binding ability was impaired, which explained the decline in immunoreactivities of the mSCPs. All of the data confirmed that this approach was effective in reducing the immunoreactivity of SCP and could be applied to other shellfish allergens.
Collapse
Affiliation(s)
- Yi-Yu Chen
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Jun Hu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
20
|
Sharp MF, Taki AC, Ruethers T, Stephen JN, Daly NL, Lopata AL, Kamath SD. IgE and IgG 4 epitopes revealed on the major fish allergen Lat c 1. Mol Immunol 2021; 131:155-163. [PMID: 33423763 DOI: 10.1016/j.molimm.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The IgE- and IgG4-binding patterns of the major fish allergen parvalbumins are not clearly understood. IgE antibody-binding to parvalbumin from Asian seabass, Lat c 1.01, is implicated in up to 90 % of allergic reactions, although the region of IgE or IgG4 epitopes are unknown. In the present study, we characterized the specific IgE- and IgG4-binding regions of Lat c 1.01 using serum from pediatric and adult patients with clinically-confirmed fish allergy. METHODS A comparative investigation of patient IgE- and IgG4-binding to recombinant Lat c 1.01 was performed by immunoblotting and indirect ELISA using serum from 15 children and eight adults with clinically confirmed IgE-mediated reactions to fish. The IgE- and IgG4-binding regions of Lat c 1.01 were determined by inhibition ELISA using seven overlapping peptides spanning the entire 102 amino acid sequence. Elucidated IgE-binding regions were modelled and compared to known antibody-binding regions of parvalbumins from five other fish species. RESULTS Ninety five percent (22/23) patients demonstrated IgE-binding to rLat c 1.01, while fewer patients (10/15 children and 7/8 adults) demonstrated robust IgG4 binding when determined by immunoblots. IgE-binding for both cohorts was significantly higher compared to IgG4-binding by ELISA. All patients in this study presented individual IgE and IgG4 epitope-recognition profiles. In addition to these patient-specific antibody binding sites, general IgE epitopes were also identified at the C- and N-terminal regions of this major fish allergen. CONCLUSIONS AND CLINICAL RELEVANCE Our findings demonstrate two specific IgE epitopes on parvalbumin from Asian seabass, while IgG4 binding is much lower and patient specific. This study highlights the importance of advancement in epitope analysis regardless of the age group for diagnostics and immunotherapies for fish allergy.
Collapse
Affiliation(s)
- Michael F Sharp
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Juan N Stephen
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
22
|
Yu C, Gao X, Lin H, Xu L, Ahmed I, Khan MU, Xu M, Chen Y, Li Z. Purification, Characterization, and Three-Dimensional Structure Prediction of Paramyosin, a Novel Allergen of Rapana venosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14632-14642. [PMID: 33175512 DOI: 10.1021/acs.jafc.0c04418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Paramyosin (PM) is an important structural protein in molluscan muscles. However, as an important allergen, there is a little information on PM in the molluscs. In this study, a 99 kDa molecular weight allergen protein was purified from Rapana venosa and confirmed as PM by mass spectrometry. The results of immunoglobulin E (IgE)-binding activity and physicochemical characterization showed that R. venosa PM could react with a specific IgE of the sera from sea snail-allergic patients, and the IgE-binding activity could be reduced by thermal treatment. The full-length cDNA of R. venosa PM was cloned, which encodes 859 amino acid residues, and it has a higher homology among molluscan species. According to the circular dichroism results, Fourier transform infrared, and 2D and 3D structure analysis, both PM and tropomyosin are conserved proteins, which are mainly composed of the α-helix structure. These results are significant for better understanding the anaphylactic reactions in sea snail-allergic patients and allergy diagnosis.
Collapse
Affiliation(s)
- Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266071, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Mengyao Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
23
|
Dasanayaka BP, Li Z, Pramod SN, Chen Y, Khan MU, Lin H. A review on food processing and preparation methods for altering fish allergenicity. Crit Rev Food Sci Nutr 2020; 62:1951-1970. [PMID: 33307772 DOI: 10.1080/10408398.2020.1848791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
People eat many varieties of food to satiate their hunger. Among them, a few numbers of food cause overreaction of the body's immune system, and fish holds a permanent position on that list. Processing methods, including one treatment or a combination, can have different effects on the allergenic potential of food proteins. An important point to note, however, is that not all of these methods can eliminate the potential for protein allergy. Thus, it is essential to understand the risk involved with the consumption of processed fish and its derivatives. Fish could be prepared in various ways before come to the dining plate. It has shown some of these methods can effectively manipulate the allergenicity owing to the alterations occurred in the protein conformation. This article provides an overview of the impact of fish processing methods (thermal and non-thermal) on the allergenic potential of fish along with possible causative structural modification provokes allergen stability. The article begins with current trends related to fish consumption, proceeds with the prevalence and underlying mechanism of fish allergy. Properties of clinically relevant fish proteins, projected IgE epitopes of PV, cross-reactivity of fish allergens are also addressed in this context to understand and compare the behavioral patterns of PV profiles of different species on processing methods.
Collapse
Affiliation(s)
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | | | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, P.R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| |
Collapse
|
24
|
Zhang H, Liao H, Lu Y, Hu Y, Yang H, Cao S, Qi X. Effects of high hydrostatic pressure on the structural characteristics of parvalbumin of cultured large yellow croaker (
Larimichthys crocea
). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huien Zhang
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province Ningbo China
| | - Huiqi Liao
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
| | - Yibei Lu
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
| | - Yuanhui Hu
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
| | - Hua Yang
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province Ningbo China
| | - Shaoqian Cao
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province Ningbo China
| | - Xiangyang Qi
- Faculty of Biological and Environmental Science Zhejiang Wanli University Ningbo China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province Ningbo China
| |
Collapse
|
25
|
Sani MZ, Bargahi A, Momenzadeh N, Dehghani P, Moghadam MV, Maleki SJ, Nabipour I, Shirkani A, Akhtari J, Hesamizadeh K, Heidari S, Omrani F, Akbarzadeh S, Mohammadi M. Genetically engineered fusion of allergen and viral-like particle induces a more effective allergen-specific immune response than a combination of them. Appl Microbiol Biotechnol 2020; 105:77-91. [PMID: 33215260 DOI: 10.1007/s00253-020-11012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Chimeric virus-like particles (VLPs) were developed as a candidate for allergen-specific immunotherapy. In this study, hepatitis B core antigen (HBcAg) that genetically fused to Chenopodium album polcalcin (Che a 3)-derived peptide was expressed in E. coli BL21, purified, and VLP formation was evaluated using native agarose gel electrophoresis (NAGE) and transmission electron microscopy (TEM). Chimeric HBc VLPs were characterized in terms of their reactivity to IgE, the induction of blocking IgG and allergen-specific IgE, basophil-activating capacity, and Th1-type immune responses. Results from IgE reactivity and basophil activation test showed that chimeric HBc VLPs lack IgE-binding capacity and basophil degranulation activity. Although chimeric HBc VLPs induced the highest level of efficient polcalcin-specific IgG antibody in comparison to those induced by recombinant Che a 3 (rChe a 3) mixed either with HBc VLPs or alum, they triggered the lowest level of polcalcin-specific IgE in mice following immunization. Furthermore, in comparison to the other antigens, chimeric HBc VLPs produced a polcalcin-specific Th1 cell response. Taken together, genetically fusion of allergen derivatives to HBc VLPs, in comparison to a mix of them, may be a more effective way to induce appropriate immune responses in allergen-specific immunotherapy. KEY POINTS: • The insertion of allergen-derived peptide into major insertion region (MIR) of hepatitis B virus core (HBc) antigen resulted in nanoparticles displaying allergen-derived peptide upon its expression in prokaryotic host. • The resultant VLPs (chimeric HBc VLPs) did not exhibit IgE reactivity with allergic patients' sera and were not able to degranulate basophils. • Chimeric HBc VLPs dramatically improved protective IgG antibody response compared with those induced by allergen mixed either with HBc VLPs or alum. • Chimeric HBc VLPs induced Th1 responses that were counterparts of Th2 responses (allergic). • Chimeric HBc VLPs increased IgG2a/ IgG1 ratio and the level of IFN-γ compared to those induced by allergen mixed with either HBc VLPs or alum. Graphical Abstract.
Collapse
Affiliation(s)
- Maryam Zamani Sani
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshar Bargahi
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Niloofar Momenzadeh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Parva Dehghani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Maryam Vakili Moghadam
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila June Maleki
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA, USA
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Javad Akhtari
- Toxoplasmosis Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khashayar Hesamizadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Omrani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Samad Akbarzadeh
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran.
| |
Collapse
|
26
|
Holzhauser T, Schuler F, Dudek S, Kaul S, Vieths S, Mahler V. [Recombinant allergens, peptides, and virus-like particles for allergy immunotherapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1412-1423. [PMID: 33095280 PMCID: PMC7648003 DOI: 10.1007/s00103-020-03231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022]
Abstract
Currently, extract-based therapeutic allergens from natural allergen sources (e.g., house dust mites, tree and grass pollen) are used for allergen-specific immunotherapy (AIT), the only causative therapy that can exhibit positive disease-modifying effects by tolerance induction and prevention of disease progression. Due to variations in the natural composition of the starting materials and different manufacturing processes, there are variations in protein content, allergen composition, and allergenic activity of similar products, which poses specific challenges for their standardization. The identification of the nucleotide sequences of allergenic proteins led to the development of molecular AIT approaches. This allows for the application of exclusively relevant structures as chemically synthesized peptides, recombinant single allergens, or molecules with hypoallergenic properties that potentially allow for an up-dosing with higher allergen-doses without allergic side effects leading more quickly to effective cumulative doses. Further modifications of AIT preparations to improve allergenic and immunogenic properties may be achieved, e.g., by including the use of virus-like particles (VLPs). To date, the herein described therapeutic approaches have been tested in clinical trials only. This article provides an overview of published molecular approaches for allergy treatment used in clinical AIT studies. Their added value and challenges compared to established therapeutic allergens are discussed. The aim of these approaches is to develop highly effective and well-tolerated AIT preparations with improved patient acceptance and adherence.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| | - Frank Schuler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Simone Dudek
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Susanne Kaul
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Vera Mahler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| |
Collapse
|
27
|
Dona DW, Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int J Mol Sci 2020; 21:E5010. [PMID: 32708567 PMCID: PMC7404024 DOI: 10.3390/ijms21145010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hypersensitivity or an allergy to chicken egg proteins is a predominant symptomatic condition affecting 1 in 20 children in Australia; however, an effective form of therapy has not yet been found. This occurs as the immune system of the allergic individual overreacts when in contact with egg allergens (egg proteins), triggering a complex immune response. The subsequent instantaneous inflammatory immune response is characterized by the excessive production of immunoglobulin E (IgE) antibody against the allergen, T-cell mediators and inflammation. Current allergen-specific approaches to egg allergy diagnosis and treatment lack consistency and therefore pose safety concerns among anaphylactic patients. Immunotherapy has thus far been found to be the most efficient way to treat and relieve symptoms, this includes oral immunotherapy (OIT) and sublingual immunotherapy (SLIT). A major limitation in immunotherapy, however, is the difficulty in preparing effective and safe extracts from natural allergen sources. Advances in molecular techniques allow for the production of safe and standardized recombinant and hypoallergenic egg variants by targeting the IgE-binding epitopes responsible for clinical allergic symptoms. Site-directed mutagenesis can be performed to create such safe hypoallergens for their potential use in future methods of immunotherapy, providing a feasible standardized therapeutic approach to target egg allergies safely.
Collapse
Affiliation(s)
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong 3216 VIC, Australia;
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
29
|
Larsen JM, Bang-Berthelsen CH, Qvortrup K, Sancho AI, Hansen AH, Andersen KIH, Thacker SSN, Eiwegger T, Upton J, Bøgh KL. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 2020; 40:881-894. [PMID: 32515236 DOI: 10.1080/07388551.2020.1772194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergen-specific immunotherapy (IT) is emerging as a viable avenue for the treatment of food allergies. Clinical trials currently investigate raw or slightly processed foods as therapeutic agents, as trials using food-grade agents can be performed without the strict regulations to which conventional drugs are subjected. However, this limits the ability of standardization and may affect clinical trial outcomes and reproducibility. Herein, we provide an overview of methods used in the production of immunotherapeutic agents for the treatment of food allergies, including processed foods, allergen extracts, recombinant allergens, and synthetic peptides, as well as the physical and chemical processes for the reduction of protein allergenicity. Commercial interests currently favor producing standardized drug-grade allergen extracts for therapeutic use, and clinical trials are ongoing. In the near future, recombinant production could replace purification strategies since it allows the manufacturing of pure, native allergens or sequence-modified allergens with reduced allergenicity. A recurring issue within this field is the inadequate reporting of production procedures, quality control, product physicochemical characteristics, allergenicity, and immunological properties. This information is of vital importance in assessing therapeutic standardization and clinical safety profile, which are central parameters for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada.,Department of Immunology, The University of Toronto, Toronto, Canada
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
30
|
Freidl R, Gstöttner A, Baranyi U, Swoboda I, Stolz F, Focke‐Tejkl M, Wekerle T, van Ree R, Valenta R, Linhart B. Resistance of parvalbumin to gastrointestinal digestion is required for profound and long-lasting prophylactic oral tolerance. Allergy 2020; 75:326-335. [PMID: 31325321 PMCID: PMC7065025 DOI: 10.1111/all.13994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Background Early introduction of food allergens into children's diet is considered as a strategy for the prevention of food allergy. The major fish allergen parvalbumin exhibits high stability against gastrointestinal digestion. We investigated whether resistance of carp parvalbumin to digestion affects oral tolerance induction. Methods Natural Cyp c 1, nCyp c 1, and a gastrointestinal digestion‐sensitive recombinant Cyp c 1 mutant, mCyp c 1, were analyzed for their ability to induce oral tolerance in a murine model. Both antigens were compared by gel filtration, circular dichroism measurement, in vitro digestion, and splenocyte proliferation assays using synthetic Cyp c 1‐derived peptides. BALB/c mice were fed once with high doses of nCyp c 1 or mCyp c 1, before sensitization to nCyp c 1. Immunological tolerance was studied by measuring Cyp c 1‐specific antibodies and cellular responses by ELISA, basophil activation, splenocyte proliferations, and intragastric allergen challenge. Results Wild‐type and mCyp c 1 showed the same physicochemical properties and shared the same major T‐cell epitope. However, mCyp c 1 was more sensitive to enzymatic digestion in vitro than nCyp c 1. A single high‐dose oral administration of nCyp c 1 but not of mCyp c 1 induced long‐term oral tolerance, characterized by lack of parvalbumin‐specific antibody and cellular responses. Moreover, mCyp c 1‐fed mice, but not nCyp c 1‐fed mice developed allergic symptoms upon challenge with nCyp c 1. Conclusion Sensitivity to digestion in the gastrointestinal tract influences the capacity of an allergen to induce prophylactic oral tolerance.
Collapse
Affiliation(s)
- Raphaela Freidl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Antonia Gstöttner
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Surgery Medical University of Vienna Vienna Austria
| | - Ines Swoboda
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery Medical University of Vienna Vienna Austria
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology Academic Medical Center Amsterdam Netherlands
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
31
|
Pérez-Tavarez R, Carrera M, Pedrosa M, Quirce S, Rodríguez-Pérez R, Gasset M. Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Sci Rep 2019; 9:16298. [PMID: 31704988 PMCID: PMC6841720 DOI: 10.1038/s41598-019-52801-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Most fish-allergic patients have anti-β-parvalbumin (β-PV) immunoglobulin E (IgE), which cross-reacts among fish species with variable clinical effects. Although the β-PV load is considered a determinant for allergenicity, fish species express distinct β-PV isoforms with unknown pathogenic contributions. To identify the role various parameters play in allergenicity, we have taken Gadus morhua and Scomber japonicus models, determined their β-PV isoform composition and analyzed the interaction of the IgE from fish-allergic patient sera with these different conformations. We found that each fish species contains a major and a minor isoform, with the total PV content four times higher in Gadus morhua than in Scomber japonicus. The isoforms showing the best IgE recognition displayed protease-sensitive globular folds, and if forming amyloids, they were not immunoreactive. Of the isoforms displaying stable globular folds, one was not recognized by IgE under any of the conditions, and the other formed highly immunoreactive amyloids. The results showed that Gadus morhua muscles are equipped with an isoform combination and content that ensures the IgE recognition of all PV folds, whereas the allergenic load of Scomber japonicus is under the control of proteolysis. We conclude that the consideration of isoform properties and content may improve the explanation of fish species allergenicity differences.
Collapse
Affiliation(s)
- Raquel Pérez-Tavarez
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Mónica Carrera
- Insto Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, 36208, Vigo, Spain
| | - María Pedrosa
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Santiago Quirce
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Rosa Rodríguez-Pérez
- Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - María Gasset
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain.
| |
Collapse
|
32
|
Volpicella M, Leoni C, Dileo MCG, Ceci LR. Progress in the Analysis of Food Allergens through Molecular Biology Approaches. Cells 2019; 8:E1073. [PMID: 31547388 PMCID: PMC6770348 DOI: 10.3390/cells8091073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023] Open
Abstract
Food allergies associated with class E immunoglobulins (IgE) are a serious health problem that affects between 1% and 10% of the population of developing countries, with a variability that depends on the geographical area and age range considered. These allergies are caused by a cross-link reaction between a specific food protein (the allergen) and the host IgE. Allergic reactions can range from mild itching to anaphylactic shock and there are no clues to predict the effects of an allergen. Strict avoidance of allergenic food is the only way to avoid possible serious allergic reactions. In the last 30 years a growing number of molecular studies have been conducted to obtain information on the diffusion of food allergens and to establish the structural basis of their allergenicity. At the same time, these studies have also allowed the development of molecular tools (mainly based on synthetic peptides and recombinant allergens) that can be of great help for diagnostic and therapeutic approaches of food allergies. Accordingly, this review focuses on advances in the study of food allergens made possible by molecular technologies and how results and technologies can be integrated for the development of a systematic food molecular allergology. The review may be of interest both to scientists approaching this field of investigation and to physicians who wish to have an update on the progress of research in diagnosis and therapy of food allergies.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
- Institute of Bioenergetics, Biomembranes and Molecular Biotechnologies, Italian National Research Council, Via Amendola 165/a, 70126 Bari, Italy.
| | - Claudia Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
| | - Maria C G Dileo
- Department of Biology, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
| | - Luigi R Ceci
- Institute of Bioenergetics, Biomembranes and Molecular Biotechnologies, Italian National Research Council, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
33
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
34
|
Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow´s Milk Allergy. Nutrients 2019; 11:E1492. [PMID: 31261965 PMCID: PMC6683018 DOI: 10.3390/nu11071492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cow´s milk is one of the most important and basic nutrients introduced early in life in our diet but can induce IgE-associated allergy. IgE-associated allergy to cow´s milk can cause severe allergic manifestations in the gut, skin and even in the respiratory tract and may lead to life-threatening anaphylactic shock due to the stability of certain cow´s milk allergens. Here, we provide an overview about the allergen molecules in cow´s milk and the advantages of the molecular diagnosis of IgE sensitization to cow´s milk by serology. In addition, we review current strategies for prevention and treatment of cow´s milk allergy and discuss how they could be improved in the future by innovative molecular approaches that are based on defined recombinant allergens, recombinant hypoallergenic allergen derivatives and synthetic peptides.
Collapse
Affiliation(s)
- Birgit Linhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Raphaela Freidl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Olga Elisyutina
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
35
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
36
|
Rational design of a hypoallergenic Phl p 7 variant for immunotherapy of polcalcin-sensitized patients. Sci Rep 2019; 9:7802. [PMID: 31127132 PMCID: PMC6534608 DOI: 10.1038/s41598-019-44208-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 12/02/2022] Open
Abstract
Polcalcins are important respiratory panallergens, whose IgE-binding capacity depends on the presence of calcium. Since specific immunotherapy is not yet available for the treatment of polcalcin-sensitized patients, we aimed to develop a molecule for efficient and safe immunotherapy. We generated a hypoallergenic variant of the grass pollen polcalcin Phl p 7 by introducing specific point mutations into the allergen’s calcium-binding regions. We thereby followed a mutation strategy that had previously resulted in a hypoallergenic mutant of a calcium-binding food allergen, the major fish allergen parvalbumin. Dot blot assays performed with sera from Phl p 7-sensitized patients showed a drastically reduced IgE reactivity of the Phl p 7 mutant in comparison to wildtype Phl p 7, and basophil activation assays indicated a significantly reduced allergenic activity. Rabbit IgG directed against mutant rPhl p 7 blocked patients’ IgE binding to wildtype Phl p 7, indicating the mutant’s potential applicability for immunotherapy. Mass spectrometry and circular dichroism experiments showed that the mutant had lost the calcium-binding capacity, but still represented a folded protein. In silico analyses revealed that the hypoallergenicity might be due to fewer negative charges on the molecule’s surface and an increased molecular flexibility. We thus generated a hypoallergenic Phl p 7 variant that could be used for immunotherapy of polcalcin-sensitized individuals.
Collapse
|
37
|
Huang HJ, Resch-Marat Y, Rodriguez-Dominguez A, Chen KW, Kiss R, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Valenta R, Vrtala S. Underestimation of house dust mite–specific IgE with extract-based ImmunoCAPs compared with molecular ImmunoCAPs. J Allergy Clin Immunol 2018; 142:1656-1659.e9. [DOI: 10.1016/j.jaci.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023]
|
38
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
39
|
Yang RQ, Chen YL, Chen F, Wang H, Zhang Q, Liu GM, Jin T, Cao MJ. Purification, Characterization, and Crystal Structure of Parvalbumins, the Major Allergens in Mustelus griseus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8150-8159. [PMID: 29969026 DOI: 10.1021/acs.jafc.8b01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fish play important roles in human nutrition and health, but also trigger allergic reactions in some population. Parvalbumin (PV) represents the major allergen of fish. While IgE cross-reactivity to PV in various bony fish species has been well characterized, little information is available about allergens in cartilaginous fish. In this study, two shark PV isoforms (named as SPV-I and SPV-II) from Mustelus griseus were purified. Their identities were further confirmed by mass spectroscopic analysis. IgE immunoblot analysis showed that sera from fish-allergic patients reacted to both SPV-I and SPV-II, but the majority of sera reacted more intensely to SPV-I than SPV-II. Thermal denaturation monitored by CD spectrum showed that both of the SPV allergens are highly thermostable. SPV-I maintained its IgE-binding capability after heat denaturation, while the IgE-binding capability of SPV-II was reduced. The results of crystal structure showed that SPV-I and SPV-II were similar in their overall tertiary structure, but their amino acid sequences shared lower similarities, indicating that the differences in the IgE-binding capabilities of SPV-I and SPV-II might be due to differential antigen epitopes in these two isoforms.
Collapse
Affiliation(s)
- Ru-Qing Yang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian 361021 , China
| | - Yu-Lei Chen
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian 361021 , China
| | - Feng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center , University of Science & Technology of China , Hefei 230007 , China
| | - Heqiao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center , University of Science & Technology of China , Hefei 230007 , China
| | - Qian Zhang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian 361021 , China
| | - Guang-Ming Liu
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian 361021 , China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen , Fujian 361100 , China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center , University of Science & Technology of China , Hefei 230007 , China
| | - Min-Jie Cao
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian 361021 , China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen , Fujian 361100 , China
| |
Collapse
|
40
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide the reader with an updated summary of published trial data regarding the use of oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) for treatment of IgE-mediated food allergies. RECENT FINDINGS Data from phase 2 trials for treatment of peanut allergy with OIT and EPIT reveal an increase in the threshold of reactivity for peanut-allergic children. Compared to EPIT, OIT promotes a greater increase in the threshold of reactivity; however, adverse events are more common with OIT. OIT, EPIT, and SLIT appear to modulate the immune response for some food-allergic individuals. Data regarding utility for treatment of food allergies regardless of modality is limited to few foods, as is investigation into treatment of food-allergic infants, young children, and adults. Future trials are likely to focus on young children, food allergies other than peanut, and treatment of multifood-allergic individuals.
Collapse
|
42
|
Cook QS, Burks AW. Peptide and Recombinant Allergen Vaccines for Food Allergy. Clin Rev Allergy Immunol 2018; 55:162-171. [DOI: 10.1007/s12016-018-8673-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium 2017; 67:53-64. [DOI: 10.1016/j.ceca.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022]
|
44
|
|
45
|
Fu L, Wang C, Wang Y. Seafood allergen-induced hypersensitivity at the microbiota-mucosal site: Implications for prospective probiotic use in allergic response regulation. Crit Rev Food Sci Nutr 2017; 58:1512-1525. [DOI: 10.1080/10408398.2016.1269719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
46
|
Tscheppe A, Breiteneder H. Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy. Int Arch Allergy Immunol 2017; 172:187-202. [PMID: 28467993 DOI: 10.1159/000464104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The years 1988-1995 witnessed the beginning of allergen cloning and the generation of recombinant allergens, which opened up new avenues for the diagnosis and research of human allergic diseases. Most crystal and solution structures of allergens have been obtained using recombinant allergens. Structural information on allergens allows insights into their evolutionary biology, illustrates clinically observed cross-reactivities, and makes the design of hypoallergenic derivatives for allergy vaccines possible. Recombinant allergens are widely used in molecule-based allergy diagnosis such as protein microarrays or suspension arrays. Recombinant technologies have been used to produce well-characterized, noncontaminated vaccine components with known biological activities including a variety of allergen derivatives with reduced IgE reactivity. Such recombinant hypoallergens as well as wild-type recombinant allergens have been used successfully in several immunotherapy trials for more than a decade to treat birch and grass pollen allergy. As a more recent application, the development of antibody repertoires directed against conformational epitopes during immunotherapy has been monitored by recombinant allergen chimeras. Although much progress has been made, the number and quality of recombinant allergens will undoubtedly increase and keep improving our knowledge in basic scientific investigations, diagnosis, and therapy of human allergic diseases.
Collapse
Affiliation(s)
- Angelika Tscheppe
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
47
|
Scheiblhofer S, Laimer J, Machado Y, Weiss R, Thalhamer J. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev Vaccines 2017; 16:479-489. [PMID: 28290225 PMCID: PMC5490637 DOI: 10.1080/14760584.2017.1306441] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- a Department of Molecular Biology , University of Salzburg , Salzburg , Austria
| | - Josef Laimer
- a Department of Molecular Biology , University of Salzburg , Salzburg , Austria
| | - Yoan Machado
- a Department of Molecular Biology , University of Salzburg , Salzburg , Austria
| | - Richard Weiss
- a Department of Molecular Biology , University of Salzburg , Salzburg , Austria
| | - Josef Thalhamer
- a Department of Molecular Biology , University of Salzburg , Salzburg , Austria
| |
Collapse
|
48
|
Stephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL. Allergenicity of bony and cartilaginous fish - molecular and immunological properties. Clin Exp Allergy 2017; 47:300-312. [PMID: 28117510 DOI: 10.1111/cea.12892] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergy to bony fish is common and probably increasing world-wide. The major heat-stable pan-fish allergen, parvalbumin (PV), has been identified and characterized for numerous fish species. In contrast, there are very few reports of allergic reactions to cartilaginous fish despite widespread consumption. The molecular basis for this seemingly low clinical cross-reactivity between these two fish groups has not been elucidated. PV consists of two distinct protein lineages, α and β. The α-lineage of this protein is predominant in muscle tissue of cartilaginous fish (Chondrichthyes), while β-PV is abundant in muscle tissue of bony fish (Osteichthyes). The low incidence of allergic reactions to ingested rays and sharks is likely due to the lack of molecular similarity, resulting in reduced immunological cross-reactivity between the two PV lineages. Structurally and physiologically, both protein lineages are very similar; however, the amino acid homology is very low with 47-54%. Furthermore, PV from ancient fish species such as the coelacanth demonstrates 62% sequence homology to leopard shark α-PV and 70% to carp β-PV. This indicates the extent of conservation of the PV isoforms lineages across millennia. This review highlights prevalence data on fish allergy and sensitization to fish, and details the molecular diversity of the two protein lineages of the major fish allergen PV among different fish groups, emphasizing the immunological and clinical differences in allergenicity.
Collapse
Affiliation(s)
- J N Stephen
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - M F Sharp
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - T Ruethers
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - A Taki
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - D E Campbell
- Clinical Immunology and Allergy, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - A L Lopata
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
49
|
Freidl R, Gstoettner A, Baranyi U, Swoboda I, Stolz F, Focke-Tejkl M, Wekerle T, van Ree R, Valenta R, Linhart B. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy. J Allergy Clin Immunol 2016; 139:1897-1905.e1. [PMID: 27876628 PMCID: PMC5438872 DOI: 10.1016/j.jaci.2016.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. OBJECTIVES This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. METHODS C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. RESULTS A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. CONCLUSIONS Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy.
Collapse
Affiliation(s)
- Raphaela Freidl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Antonia Gstoettner
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ines Swoboda
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands; Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
50
|
Brotons-Canto A, Martín-Arbella N, Gamazo C, Irache JM. New pharmaceutical approaches for the treatment of food allergies. Expert Opin Drug Deliv 2016; 15:675-686. [PMID: 27732129 DOI: 10.1080/17425247.2016.1247805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Allergic diseases constitute one of the most common causes of chronic illness in developed countries. The main mechanism determining allergy is an imbalance between Th1 and Th2 response towards Th2. AREAS COVERED This review describes the mechanisms underlying the natural tolerance to food components and the development of an allergic response in sensitized individuals. Furthermore, therapeutic approaches proposed to manage these abnormal immunologic responses food are also presented and discussed. EXPERT OPINION In the past, management of food allergies has consisted of the education of patients to avoid the ingestion of the culprit food and to initiate the therapy (e.g. self-injectable epinephrine) in case of accidental ingestion. In recent years, sublingual/oral immunotherapies based on the continuous administration of small amounts of the allergen have been developed. However, the long periods of time needed to obtain significant desensitization and the generation of adverse effects, limit their use. In order to solve these drawbacks, strategies to induce tolerance are being studied, such as the use of either adjuvant immunotherapy in order to facilitate the reversion of the Th2 response towards Th1 or the use of monoclonal antibodies to block the main immunogenic elements.
Collapse
Affiliation(s)
- Ana Brotons-Canto
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| | - Nekane Martín-Arbella
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| | - Carlos Gamazo
- b Department of Microbiology , University of Navarra , Pamplona , Spain
| | - Juan M Irache
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| |
Collapse
|