1
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
3
|
Bellini C, Horváti K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020; 9:cells9122673. [PMID: 33333744 PMCID: PMC7765234 DOI: 10.3390/cells9122673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) herald of the “End TB Strategy” has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against Mycobacterium tuberculosis (Mtb). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mtb, has highlighted the need for alternative vaccines. In this review, we seek to give an overview of Mtb infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.
Collapse
Affiliation(s)
- Chiara Bellini
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
4
|
Silva JV, Santos SDS, Machini MT, Giarolla J. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target 2020; 29:269-283. [PMID: 33059502 DOI: 10.1080/1061186x.2020.1837843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neglected Tropical Diseases (NTDs) and infectious illnesses, such as malaria, tuberculosis and Zika fever, represent a major public health concern in many countries and regions worldwide, especially in developing ones. They cause thousands of deaths per year, and certainly compromise the life of affected patients. The drugs available for therapy are toxic, have considerable adverse effects, and are obsolete, especially with respect to resistance. In this context, targeted peptides are considered promising in the design of new drugs, since they have specific action and reduced toxicity. Indeed, there is a rising interest in these targeted compounds within the pharmaceutical industry, proving their importance to the Pharmaceutical Sciences field. Many have been approved by the Food and Drug Administration (FDA) to be used as medicines, plus there are more than 300 peptides currently in clinical trials. The main purpose of this review is to show the most promising potential targeted peptides acting as hits molecules in NTDs and other infectious illnesses. We hope to contribute to the discovery of medicines in this relatively neglected area, which will be extremely useful in improving the health of many suffering people.
Collapse
Affiliation(s)
- João Vitor Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Mir SA, Sharma S. Adjunctive Immunotherapeutic Efficacy of N-Formylated Internal Peptide of Mycobacterial Glutamine Synthetase in Mouse Model of Tuberculosis. Protein Pept Lett 2019; 27:236-242. [PMID: 31746288 DOI: 10.2174/0929866526666191028151615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Host-directed therapies are a comparatively new and promising method for the treatment of tuberculosis. A variety of host pathways, vaccines and drugs have the potential to provide novel adjunctive therapies for the treatment of tuberculosis. In this connection, we have earlier reported the immunotherapeutic potential of N-formylated N-terminal peptide of glutamine synthetase of Mycobacterim tuberculosis H37Rv (Mir SA and Sharma S, 2014). Now in the present study, we investigated the immunotherapeutic effect of N-terminally formylated internal-peptide 'f- MLLLPD' of mycobacterial glutamine synthetase (Rv2220) in mouse model of tuberculosis. METHODS The N-terminally formylated peptide, f-MLLLPD was tested for its potential to generate Reactive Oxygen Species (ROS) in murine neutrophils. Further, its therapeutic effect alone or in combination with anti-tubercular drugs was evaluated in mouse model of tuberculosis. RESULTS The f-MLLLPD peptide treatment alone and in combination with ATDs reduced the bacterial load (indicated as colony forming units) in lungs of infected mice by 0.58 (p<0.01) and 2.92 (p<0.001) log10 units respectively and in their spleens by 0.46 (p<0.05) and 2.46 (p<0.001) log10 units respectively. In addition, the observed histopathological results correlated well with the CFU data. CONCLUSION The results of the current study show that f-MLLLPD peptide confers an additional therapeutic efficacy to the anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh - 160012, India.,Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah-11952, Saudi Arabia
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh - 160012, India
| |
Collapse
|
6
|
Mir SA, Sharma S. Immunotherapeutic potential of an N-formylated peptide of Listeria monocytogenes in experimental tuberculosis. Immunopharmacol Immunotoxicol 2019; 41:292-298. [PMID: 31046503 DOI: 10.1080/08923973.2019.1593446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The current therapeutic regimens for tuberculosis (TB) are complex and involve the prolonged use of multiple antibiotics with diverse side effects that lead to therapeutic failure and bacterial resistance. The standard appliance of immunotherapy may aid as a powerful tool to combat the ensuing threat of TB. We have earlier reported the immunotherapeutic potential of N-formylated peptides of two secretory proteins of Mycobacterium tuberculosis H37Rv. Here, we investigated the immunotherapeutic effect of an N-formylated peptide from Listeria monocytogenes in experimental TB. Methods: The N-terminally formylated listerial peptide with amino acid sequence 'f-MIGWII' was tested for its adjunctive therapeutic efficacy in combination with anti-tuberculosis drugs (ATDs) in the mouse model of TB. In addition, its potential to generate reactive oxygen species (ROS) in murine neutrophils was also evaluated. Results: The LemA peptide (f-MIGWII) induced a significant increase in the intracellular ROS levels of mouse neutrophils (p ≤ .05). The ATD treatment reduced the colony forming units (CFU) in lungs and spleen of infected mice by 2.39 and 1.67 log10 units, respectively (p < .001). Treatment of the infected mice with combination of ATDs and LemA peptide elicited higher therapeutic efficacy over ATDs alone. The histopathological changes in the lungs of infected mice also correlated well with the CFU data. Conclusions: Our results clearly indicate that LemA peptide conferred an additional therapeutic effect when given in combination with the ATDss (p < .01) and hence can be used as adjunct to the conventional chemotherapy against TB.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- a Department of Biochemistry , Postgraduate Institute of Medical Education & Research (PGIMER) , Chandigarh , India.,b Department of Medical Laboratory Sciences, College of Applied Medical Science , Majmaah University , Al Majmaah , Saudi Arabia
| | - Sadhna Sharma
- a Department of Biochemistry , Postgraduate Institute of Medical Education & Research (PGIMER) , Chandigarh , India
| |
Collapse
|
7
|
Pagani TD, Guimarães ACR, Waghabi MC, Corrêa PR, Kalume DE, Berrêdo-Pinho M, Degrave WM, Mendonça-Lima L. Exploring the Potential Role of Moonlighting Function of the Surface-Associated Proteins From Mycobacterium bovis BCG Moreau and Pasteur by Comparative Proteomic. Front Immunol 2019; 10:716. [PMID: 31080447 PMCID: PMC6497762 DOI: 10.3389/fimmu.2019.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Surface-associated proteins from Mycobacterium bovis BCG Moreau RDJ are important components of the live Brazilian vaccine against tuberculosis. They are important targets during initial BCG vaccine stimulation and modulation of the host's immune response, especially in the bacterial-host interaction. These proteins might also be involved in cellular communication, chemical response to the environment, pathogenesis processes through mobility, colonization, and adherence to the host cell, therefore performing multiple functions. In this study, the proteomic profile of the surface-associated proteins from M. bovis BCG Moreau was compared to the BCG Pasteur reference strain. The methodology used was 2DE gel electrophoresis combined with mass spectrometry techniques (MALDI-TOF/TOF), leading to the identification of 115 proteins. Of these, 24 proteins showed differential expression between the two BCG strains. Furthermore, 27 proteins previously described as displaying moonlighting function were identified, 8 of these proteins showed variation in abundance comparing BCG Moreau to Pasteur and 2 of them presented two different domain hits. Moonlighting proteins are multifunctional proteins in which two or more biological functions are fulfilled by a single polypeptide chain. Therefore, the identification of such proteins with moonlighting predicted functions can contribute to a better understanding of the molecular mechanisms unleashed by live BCG Moreau RDJ vaccine components.
Collapse
Affiliation(s)
- Talita Duarte Pagani
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil.,Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
9
|
Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection. PLoS Pathog 2016; 12:e1005688. [PMID: 27272249 PMCID: PMC4896622 DOI: 10.1371/journal.ppat.1005688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules.
Collapse
|
10
|
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37:239-49. [PMID: 25917388 PMCID: PMC4439333 DOI: 10.1007/s00281-015-0490-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection. In humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | | |
Collapse
|
11
|
Caccamo N, Pietra G, Sullivan LC, Brooks AG, Prezzemolo T, La Manna MP, Di Liberto D, Joosten SA, van Meijgaarden KE, Di Carlo P, Titone L, Moretta L, Mingari MC, Ottenhoff THM, Dieli F. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 2015; 45:1069-81. [PMID: 25631937 DOI: 10.1002/eji.201445193] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022]
Abstract
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB.
Collapse
Affiliation(s)
- Nadia Caccamo
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Els CACM, Corbière V, Smits K, van Gaans-van den Brink JAM, Poelen MCM, Mascart F, Meiring HD, Locht C. Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Front Immunol 2014; 5:361. [PMID: 25157249 PMCID: PMC4127798 DOI: 10.3389/fimmu.2014.00361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here, we review Mtb protein PTMs and methods to assess their role in protective immunity against Mtb.
Collapse
Affiliation(s)
- Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Véronique Corbière
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Kaat Smits
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | | | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Francoise Mascart
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium ; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Hugo D Meiring
- Institute for Translational Vaccinology , Bilthoven , Netherlands
| | - Camille Locht
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille , Lille , France ; INSERM U1019 , Lille , France ; CNRS UMR8204 , Lille , France ; Université Lille Nord de France , Lille , France
| |
Collapse
|
13
|
Mir SA, Sharma S. Immunotherapeutic potential of N-formylated peptides of ESAT-6 and glutamine synthetase in experimental tuberculosis. Int Immunopharmacol 2014; 18:298-303. [DOI: 10.1016/j.intimp.2013.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 10/25/2022]
|
14
|
Mir SA, Sharma S. Cloning, expression and N-terminal formylation of ESAT-6 of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2013; 92:223-9. [DOI: 10.1016/j.pep.2013.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
|
15
|
Mir SA, Sharma S. Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis. Vaccine 2013; 31:3818-25. [PMID: 23628242 DOI: 10.1016/j.vaccine.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 01/21/2023]
Abstract
The MHC class I family comprises both classical (class Ia) and non-classical (class Ib) members. While the prime function of classical MHC class I molecules (MHC class Ia) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I (MHC class Ib) antigens perform diverse array of functions in both innate and adaptive immunity. Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Recent studies have shown that MHC class I molecules play an important role in the protective immune response to M. tuberculosis infection. Both MHC Ia-restricted and MHC class Ib-restricted M. tuberculosis -reactive CD8(+) T cells have been identified in humans and mice, but their relative contributions to immunity is still uncertain. Unlike MHC class Ia-restricted CD8(+) T cells, MHC class Ib-restricted CD8(+) T cells are constitutively activated in naive animals and respond rapidly to infection challenge, hence filling the temporal gap between innate and adaptive immunity. The present review article summarizes the general host immunity against M. tuberculosis infection highlighting the possible role of MHC class Ib molecule, H2-M3 and their ligands (N-formylated peptides) in protection against tuberculosis.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | | |
Collapse
|
16
|
Rocha CD, Trombone APF, Lorenzi JCC, Almeida LP, Gembre AF, Padilha E, Ramos SG, Silva CL, Coelho-Castelo AAM. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis. Braz J Med Biol Res 2012; 45:1183-94. [PMID: 22983180 PMCID: PMC3854234 DOI: 10.1590/s0100-879x2012007500148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022] Open
Abstract
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Collapse
Affiliation(s)
- C D Rocha
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hofstetter AR, Ford ML, Sullivan LC, Wilson JJ, Hadley A, Brooks AG, Lukacher AE. MHC class Ib-restricted CD8 T cells differ in dependence on CD4 T cell help and CD28 costimulation over the course of mouse polyomavirus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3071-9. [PMID: 22393155 DOI: 10.4049/jimmunol.1103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently identified a protective MHC class Ib-restricted CD8 T cell response to infection with mouse polyomavirus. These CD8 T cells recognize a peptide from aa 139-147 of the VP2 viral capsid protein bound to the nonpolymorphic H-2Q9 molecule, a member of the Qa-2 family of β(2)m-associated MHC class Ib molecules. Q9:VP2.139-specific CD8 T cells exhibit an unusual inflationary response characterized by a gradual expansion over 3 mo followed by a stable maintenance phase. We previously demonstrated that Q9:VP2.139-specific CD8 T cells are dependent on Ag for expansion, but not for long-term maintenance. In this study, we tested the hypothesis that the expansion and maintenance components of the Q9:VP2.139-specific T cell response are differentially dependent on CD4 T cell help and CD28 costimulation. Depletion of CD4(+) cells and CD28/CD40L blockade impaired expansion of Q9:VP2.139-specific CD8 T cells, and intrinsic CD28 signaling was sufficient for expansion. In contrast, CD4 T cell insufficiency, but not CD28/CD40L blockade, resulted in a decline in frequency of Q9:VP2.139-specific CD8 T cells during the maintenance phase. These results indicate that the Q9:VP2.139-specific CD8 T cell response to mouse polyomavirus infection depends on CD4 T cell help and CD28 costimulation for inflationary expansion, but only on CD4 T cell help for maintenance.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen L, Jay DC, Fairbanks JD, He X, Jensen PE. An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus. THE JOURNAL OF IMMUNOLOGY 2011; 187:6463-72. [PMID: 22084437 DOI: 10.4049/jimmunol.1101171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
19
|
Hofstetter AR, Sullivan LC, Lukacher AE, Brooks AG. Diverse roles of non-diverse molecules: MHC class Ib molecules in host defense and control of autoimmunity. Curr Opin Immunol 2010; 23:104-10. [PMID: 20970974 DOI: 10.1016/j.coi.2010.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
While the prime function of classical MHC class I molecules (MHC-I) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I antigens perform a diverse array of functions in both innate and adaptive immunity. In this review we summarize recent evidence that non classical MHC-I molecules are not only recognized by pathogen-specific T cells but that they also serve as immunoregulatory molecules by stimulating a number of distinct non-conventional T cell subsets.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
20
|
Tang C, Yamada H, Shibata K, Yoshida SI, Wajjwalku W, Yoshikai Y. IL-15 protects antigen-specific CD8+ T cell contraction after Mycobacterium bovis bacillus Calmette-Guérin infection. J Leukoc Biol 2009; 86:187-94. [PMID: 19389797 DOI: 10.1189/jlb.0608363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We reported previously that IL-15 plays a critical role in protecting effector CD8(+) T cells from apoptosis during the contraction phase following acute infection with Listeria monocytogenes by inducing antiapoptotic molecules. In the present study, we examined the effects of in vivo administration of rIL-15 on contraction of CD8(+) T cells after chronic infection with Mycobacterium bovis BCG and on the efficacy of BCG vaccination against Mycobacterium tuberculosis infection. Antigen-specific CD8(+) T cells reached an expansion peak at approximately Day 21, followed by a contraction after inoculation with rBCG expressing OVA. In vivo administration of rIL-15 from Days 22 to 42 after BCG inoculation inhibited apoptosis of effector CD8(+) T cells by up-regulating their Bcl-2 expression, resulting in a significant increase of antigen-specific memory CD8(+) T cells producing IFN-gamma. However, the IL-15 treatment did not elicit improved efficacy of BCG vaccination against M. tuberculosis. These results suggest that IL-15 plays a critical role in protecting activated CD8(+) T cells from apoptosis during the contraction phase following BCG inoculation, although IL-15 administration alone at the contraction phase might not be sufficient to protect the efficient memory T cell responses against subsequent infection with M. tuberculosis.
Collapse
Affiliation(s)
- Ce Tang
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Tang C, Yamada H, Shibata K, Maeda N, Yoshida S, Wajjwalku W, Ohara N, Yamada T, Kinoshita T, Yoshikai Y. Efficacy of recombinant bacille Calmette-Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J Infect Dis 2008; 197:1263-74. [PMID: 18422438 DOI: 10.1086/586902] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protection against Mycobacterium tuberculosis not only depends on CD4+ T helper type 1 (Th1) cells but, also, on CD8+ T cells. Interleukin (IL)-15 has an important function in the maintenance of memory CD8+ T cells. In the present study, we examined the efficacy of recombinant Mycobacterium bovis bacille Calmette-Guérin (rBCG) secreting fusion protein antigen (Ag) 85B murine IL-15 (rBCG-Ag85B-IL15) in providing protection against M. tuberculosis infection. The levels of major histocompatibility (MHC) class Ib (H2-M3)-binding TB2- or MHC class Ia (H-2Db)-binding MPT64-specific CD8+ T cells producing interferon (IFN)-gamma were significantly higher after immunization with rBCG-Ag85B-IL15 than after immunization with rBCG secreting Ag85B (rBCG-Ag85B). The levels of purified protein derivative- or Ag85B-specific CD4+ T cells producing IFN-gamma were also higher in mice immunized with rBCG-Ag85B-IL15 than in mice immunized with rBCG-Ag85B. Mice immunized with rBCG-Ag85B-IL15 exhibited CD8+ and CD4+ T cells responses that were stronger than those in mice immunized with rBCG-Ag85B, as well as robust protection in the lung against intratracheal challenge of M. tuberculosis. Thus, rBCG-Ag85B-IL15 vaccination capable of inducing efficient cell-mediated immunity might be used as an effective vaccine for tuberculosis.
Collapse
Affiliation(s)
- Ce Tang
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishimura J, Saiga H, Sato S, Okuyama M, Kayama H, Kuwata H, Matsumoto S, Nishida T, Sawa Y, Akira S, Yoshikai Y, Yamamoto M, Takeda K. Potent Antimycobacterial Activity of Mouse Secretory Leukocyte Protease Inhibitor. THE JOURNAL OF IMMUNOLOGY 2008; 180:4032-9. [DOI: 10.4049/jimmunol.180.6.4032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|