1
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
2
|
Mandour MF, Soe PP, Uyttenhove C, Van Snick J, Marbaix E, Coutelier JP. Lactate dehydrogenase-elevating virus enhances natural killer cell-mediated immunosurveillance of mouse mesothelioma development. Infect Agent Cancer 2020; 15:30. [PMID: 32391074 PMCID: PMC7203855 DOI: 10.1186/s13027-020-00288-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background Viral infections can reduce early cancer development through enhancement of cancer immunosurveillance. This study was performed to analyse this effect of viral infection in a mouse model of solid tumor. Methods The experimental model used was the effect of BALB/c mouse infection by lactate dehydrogenase-elevating virus on AB1 mesothelioma cancer development. Results Acute infection with lactate dehydrogenase-elevating virus strongly reduced in vivo early AB1 mesothelioma growth and death resulting from cancer development. This effect was not due to a direct cytolytic effect of the virus on AB1 cells, but to an in vivo activation of natural killer cells. Gamma-interferon production rather than cytotoxic activity against AB1 cells mediated this protective effect. This gamma-interferon production by natural killer cells was dependent on interleukin-12 production. Conclusions Together with other reported effects of infectious agents on cancer development, this observation may support the hypothesis that enhancement of innate immunosurveillance against tumors may result from infection with common infectious agents through modulation of the host immune microenvironment.
Collapse
Affiliation(s)
- Mohamed F Mandour
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium.,2Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pyone Pyone Soe
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium.,3Department of Pathology, University of Medicine, Yangon, Myanmar
| | - Catherine Uyttenhove
- 4Ludwig Institute, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jacques Van Snick
- 4Ludwig Institute, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Etienne Marbaix
- 5Unit of Cell Biology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-Paul Coutelier
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Huaux F, d'Ursel de Bousies V, Parent MA, Orsi M, Uwambayinema F, Devosse R, Ibouraadaten S, Yakoub Y, Panin N, Palmai-Pallag M, van der Bruggen P, Bailly C, Marega R, Marbaix E, Lison D. Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Part Fibre Toxicol 2016; 13:46. [PMID: 27549627 PMCID: PMC4994252 DOI: 10.1186/s12989-016-0158-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background The asbestos-like toxicity of some engineered carbon nanotubes (CNT), notably their capacity to induce mesothelioma, is a serious cause of concern for public health. Here we show that carcinogenic CNT induce an early and sustained immunosuppressive response characterized by the accumulation of monocytic Myeloid Derived Suppressor Cells (M-MDSC) that counteract effective immune surveillance of tumor cells. Methods Wistar rats and C57BL/6 mice were intraperitoneally injected with carcinogenic multi-walled Mitsui-7 CNT (CNT-7) or crocidolite asbestos. Peritoneal mesothelioma development and immune cell accumulation were assessed until 12 months. Leukocyte sub-populations were identified by recording expression of CD11b/c and His48 by flow cytometry. The immunosuppressive activity on T lymphocytes of purified peritoneal leukocytes was assessed in a co-culture assay with activated spleen cells. Results We demonstrate that long and short mesotheliomagenic CNT-7 injected in the peritoneal cavity of rats induced, like asbestos, an early and selective accumulation of monocytic cells (CD11b/cint and His48hi) which possess the ability to suppress polyclonal activation of T lymphocytes and correspond to M-MDSC. Peritoneal M-MDSC persisted during the development of peritoneal mesothelioma in CNT-7-treated rats but were only transiently recruited after non-carcinogenic CNT (CNT-M, CNT-T) injection. Peritoneal M-MDSC did not accumulate in mice which are resistant to mesothelioma development. Conclusions Our data provide new insights into the initial pathogenic events induced by CNT, adding a new component to the adverse outcome pathway leading to mesothelioma development. The specificity of the M-MDSC response after carcinogenic CNT exposure highlights the interest of this response for detecting the ability of new nanomaterials to cause cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0158-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium.
| | - Virginie d'Ursel de Bousies
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Marie-Astrid Parent
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Micaela Orsi
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Raynal Devosse
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Nadtha Panin
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels Branch, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christian Bailly
- Bio and Soft Matter (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Riccardo Marega
- Departement of Chemistry, Université de Namur, Namur, Belgium
| | - Etienne Marbaix
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| |
Collapse
|
4
|
Multhoff G, Habl G, Combs SE. Rationale of hyperthermia for radio(chemo)therapy and immune responses in patients with bladder cancer: Biological concepts, clinical data, interdisciplinary treatment decisions and biological tumour imaging. Int J Hyperthermia 2016; 32:455-63. [PMID: 27050781 DOI: 10.3109/02656736.2016.1152632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer, the most common tumour of the urinary tract, ranks fifth among all tumour entities. While local treatment or intravesical instillation of bacillus Calmette-Guerin (BCG) provides a treatment option for non-muscle invasive bladder cancer of low grade, surgery or radio(chemo)therapy (RT) are frequently applied in high grade tumours. It remains a matter of debate whether surgery or RT is superior with respect to clinical outcome and quality of life. Surgical resection of bladder cancer can be limited by acute side effects, whereas, RT, which offers a non-invasive treatment option with organ- and functional conservation, can cause long-term side effects. Bladder toxicity by RT mainly depends on the total irradiation dose, fraction size and tumour volume. Therefore, novel approaches are needed to improve clinical outcome. Local tumour hyperthermia is currently used either as an ablation therapy or in combination with RT to enhance anti-tumour effects. In combination with RT an increase of the temperature in the bladder stimulates the local blood flow and as a result can improve the oxygenation state of the tumour, which in turn enhances radiation-induced DNA damage and drug toxicity. Hyperthermia at high temperatures can also directly kill cells, particularly in tumour areas which are poorly perfused, hypoxic or have a low tissue pH. This review summarises current knowledge relating to the role of hyperthermia in RT to treat bladder cancer, the induction and manifestation of immunological responses induced by hyperthermia, and the utilisation of the stress proteins as tumour-specific targets for tumour detection and monitoring of therapeutic outcome.
Collapse
Affiliation(s)
- Gabriele Multhoff
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich ;,b Department of Innovative Radiation Oncology, Department of Radiation Sciences , Helmholtz Zentrum München , Neuherberg , Germany
| | - Gregor Habl
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich
| | - Stephanie E Combs
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich ;,b Department of Innovative Radiation Oncology, Department of Radiation Sciences , Helmholtz Zentrum München , Neuherberg , Germany
| |
Collapse
|
5
|
Foulds GA, Radons J, Kreuzer M, Multhoff G, Pockley AG. Influence of tumors on protective anti-tumor immunity and the effects of irradiation. Front Oncol 2013; 3:14. [PMID: 23378947 PMCID: PMC3561630 DOI: 10.3389/fonc.2013.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
Collapse
Affiliation(s)
- Gemma A Foulds
- Department of Oncology, The Medical School, The University of Sheffield Sheffield, UK ; Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | | | | | |
Collapse
|
6
|
Morita R, Hirohashi Y, Sato N. Depletion of Tregs in vivo: a promising approach to enhance antitumor immunity without autoimmunity. Immunotherapy 2012. [PMID: 23194360 DOI: 10.2217/imt.12.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Rech AJ, Mick R, Martin S et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patents. Sci. Transl. Med. 4(134), 134ra62 (2012). Tregs are involved in the maintenance of immunological self-tolerance. Recent studies have revealed that Tregs suppress antitumor immunity and that they are major obstacles for cancer immunotherapy. Various approaches have been carried out to cancel immunological suppression by Tregs in clinical settings; however, side effects such as autoimmunity occurred and expected antitumor effects were not achieved. In a recent study, Rech et al. evaluated daclizumab, a US FDA-approved humanized anti-CD25 antibody, for regulation of Treg cells in a peptide vaccination trial of breast cancer patients. Daclizumab caused long-lasting depletion of CD25+ Tregs, reprogramming of CD25+ Tregs, and enhancement of antipeptide immune response. Of note, major autoimmune responses were not observed in daclizumab-treated patients. This study provides a possible safe and promising approach to regulate Tregs in cancer vaccine therapy.
Collapse
Affiliation(s)
- Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Immunity and malignant mesothelioma: From mesothelial cell damage to tumor development and immune response-based therapies. Cancer Lett 2012; 322:18-34. [DOI: 10.1016/j.canlet.2012.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 11/22/2022]
|
8
|
CD83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer 2012; 15:144-53. [PMID: 22083420 DOI: 10.1007/s10120-011-0090-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/11/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are potent antigen-presenting cells that are central to the regulation, maturation, and maintenance of the cellular immune response against cancer. In contrast, CD4(+)CD25(+) regulatory T cells (Tregs) play a central role in self-tolerance and suppress antitumor immunity. In this study, we investigated the clinical significance of mature CD83(+) DCs and Foxp3(+) Tregs in the primary tumor and regional lymph nodes from the viewpoint of the two opposing players in the immune responses. METHODS We investigated, immunohistochemically, the density of CD83(+) DCs and Foxp3(+) Tregs in primary lesions of gastric cancer (n = 123), as well as in regional lymph nodes with (n = 40) or without metastasis (n = 40). RESULTS Decreased density of CD83(+) DCs and increased density of Foxp3(+) Tregs were observed in the primary tumor and metastatic lymph nodes. Density was significantly correlated with certain clinicopathological features. Poor prognosis was observed in patients with a low density of CD83(+) DCs and a high density of Foxp3(+) Tregs in primary lesions. For patients with metastatic lymph nodes, the density of CD83(+) DCs in negative lymph nodes was found to be an independent prognostic factor by multivariate analysis. CONCLUSION The density of CD83(+) DCs and Foxp3(+) Tregs was inversely correlated with tumor progression and reflected the prognosis of gastric cancer.
Collapse
|
9
|
Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D, Shen X. Regulatory T cell: a protection for tumour cells. J Cell Mol Med 2012; 16:425-36. [PMID: 21895966 PMCID: PMC3822920 DOI: 10.1111/j.1582-4934.2011.01437.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/04/2011] [Indexed: 12/21/2022] Open
Abstract
Characterized by immunosuppression regulatory T cells (Tregs) play a key role in maintaining immune tolerance. A growing number of tumours have been found with Tregs accumulating in microenvironment and patients with high density of Tregs in tumour stroma get a worse prognosis, which suggests that Tregs may inhibit anti-tumour immunity in stroma, resulting in a poor prognosis. In this paper, we demonstrate the accumulation of Tregs in tumour stroma and the possible suppressive mechanisms. We also state the immunotherapy that has being used in animal and clinical trials.
Collapse
Affiliation(s)
- Yi Wang
- *Correspondence to: Fu DA, Ph.D., Xizhong SHEN, M.D., The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Tel.: +86-21-54230545, +86-21-64041990 Fax: +86-21-54230545, +86-21-64038038 E-mail: ,
| | | | - Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Shengdi Wu
- The Department of Gastroenterology of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lili Liu
- The Department of Gastroenterology of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Da Fu
- The Department of Gastroenterology of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
10
|
Jackaman C, Lansley S, Allan JE, Robinson BWS, Nelson DJ. IL-2/CD40-driven NK cells install and maintain potency in the anti-mesothelioma effector/memory phase. Int Immunol 2012; 24:357-68. [DOI: 10.1093/intimm/dxs005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Ireland DJ, Kissick HT, Beilharz MW. The Role of Regulatory T Cells in Mesothelioma. CANCER MICROENVIRONMENT 2012; 5:165-72. [PMID: 22302659 DOI: 10.1007/s12307-012-0100-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma (MM) appears to be responsive to immunotherapy. The lack of complete tumour cure as a result of many immunotherapies tested to date suggests that the immune response to MM is complex and multi-parametric. Regulatory T (Treg) cells are prevalent within murine and human mesotheliomas with their removal shown to result in tumour growth inhibition and the release of anti-tumour effector T cells from immunosuppression. The targeting of immune checkpoints as treatments for various solid tumours has recently shown promise in clinical settings. In addition, synergy between chemotherapy and immunotherapy has been demonstrated for many cancers, including mesothelioma. Here we demonstrate Treg cells as critical mediators of the anti-tumour immune response to MM and potential targets for anti-tumour immunotherapy; though the timing and dosage of Treg cell manipulating immunotherapies need to be optimised.
Collapse
Affiliation(s)
- Demelza J Ireland
- School of Pathology and Laboratory Medicine (M502), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Haydn T Kissick
- Department of Surgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, 3 Blackfan Circle, CLS 4/430, Boston, MA, 02215, USA
| | - Manfred W Beilharz
- School of Pathology and Laboratory Medicine (M502), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
12
|
Bograd AJ, Suzuki K, Vertes E, Colovos C, Morales EA, Sadelain M, Adusumilli PS. Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunol Immunother 2011; 60:1509-27. [PMID: 21913025 DOI: 10.1007/s00262-011-1103-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, primary pleural malignancy with poor prognosis, hypothesized to originate from a chronic inflammatory state within the pleura. Similar to what has been observed in other solid tumors (melanoma, ovarian and colorectal cancer), clinical and pre-clinical MPM investigations have correlated anti-tumor immune responses with improved survival. As such, a better understanding of the complex MPM tumor microenvironment is imperative in strategizing successful immunotherapies. Herein, we review the immune responses vital to the development and progression of MPM, as well as assess the role of immunomodulatory therapies, highlighting recent pre-clinical and clinical immunotherapy investigations.
Collapse
Affiliation(s)
- Adam J Bograd
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang H, Zhu Z, McKinley JM, Meadows GG. IFN-γ is essential for the inhibition of B16BL6 melanoma lung metastasis in chronic alcohol drinking mice. Clin Exp Metastasis 2011; 28:301-7. [PMID: 21234656 PMCID: PMC3086720 DOI: 10.1007/s10585-011-9372-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/30/2010] [Indexed: 01/13/2023]
Abstract
We previously found that chronic alcohol consumption (20% w/v in drinking water) that models the level consumed by human alcoholics, when administered to female C57BL/6 mice inhibits B16BL6 melanoma metastasis to the lung; however, the mechanism is not known. Chronic alcohol consumption increases IFN-γ producing NK, NKT, CD4(+), and CD8(+) T cells. To examine the impact of IFN-γ on metastasis, we inoculated B16BL6 melanoma cells i.v. into control and chronic alcohol drinking IFN-γ knockout (KO) mice. Knockout of the ifn-γ gene abrogated the anti-metastatic effects associated with alcohol consumption. We examined metastasis in common gamma-chain (γC) KO mice, which are deficient in NK, NKT and CD8(+) T cells, and in Vα14Jα281(-/-) KO mice, which are deficient in invariant NKT (iNKT) cells, in order to assess the importance of specific IFN-γ producing cell types to this effect. We found that the antimetastatic effect of alcohol was still present in γC KO mice and also in γC KO mice depleted of Gr-1(+) cells. Knockout of iNKT cells reduced the degree but not the antimetastatic effect associated with alcohol. These results indicate that the antimetastatic effect induced by chronic alcohol consumption is IFN-γ dependent and that multiple IFN-γ producing cell types contribute to this effect.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| | - Jenifer M. McKinley
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| | - Gary G. Meadows
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| |
Collapse
|
14
|
Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, Miura Y, Hiratsuka JI, Kishimoto T, Otsuki T. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am J Respir Cell Mol Biol 2011; 45:795-803. [PMID: 21357438 DOI: 10.1165/rcmb.2010-0435oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asbestos causes malignant tumors such as lung cancer and malignant mesothelioma (MM). To determine whether asbestos exposure causes reduction of antitumor immunity, we established an in vitro T-cell line model of low-dose and continuous exposure to asbestos using an human adult T-cell leukemia virus-1 immortalized human polyclonal T-cell line, MT-2, and revealed that MT-2 cells exposed continuously to asbestos showed resistance to asbestos-induced apoptosis. In addition, the cells presented reduction of surface CXCR3 chemokine receptor expression and IFN-γ production. In this study, to confirm that these findings are suitable for clinical translation, surface CXCR3 and IFN-γ expression were analyzed using freshly isolated human CD4(+) T cells derived from healthy donors and patients with pleural plaque (PP) or MM. The results revealed that CXCR3 and IFN-γ expression in the ex vivo model were reduced in some cases. Additionally, CXCR3 expression in CD4(+) T cells from PPs and MMs was significantly reduced compared with that from healthy donors, and CD4(+) T cells from patients with MMs exhibited a marked reduction in IFN-γ mRNA levels after stimulation in vitro. Moreover, CD4(+)CXCR3(+) T cells in lymphocytes from MMs showed a tendency for an inverse correlation with its ligand CXCL10/IP10 in plasma. These findings show reduction of antitumor immune function in asbestos-exposed patients and indicate that CXCR3, IFN-γ, and CXCL10/IP10 may be candidates to detect and monitor disease status.
Collapse
Affiliation(s)
- Megumi Maeda
- Department of Hygiene, Kawasaki Medical School, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McDonnell AM, Nowak AK, Lake RA. Contribution of the immune system to the chemotherapeutic response. Semin Immunopathol 2011; 33:353-67. [PMID: 21274535 DOI: 10.1007/s00281-011-0246-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
The immune system plays an important role in the surveillance of neoplastic cells by eliminating them before they manifest as full-blown cancer. Despite this, tumors do develop in the presence of a functioning immune system. Conventional chemotherapy and its ability to directly kill tumor cells is one of the most effective weapons in the fight against cancer, however, increasing evidence suggests that the therapeutic efficacy of some cytotoxic drugs relies on their capacity to interact with the immune system. Killing of tumor cells in a manner that favors their capture by immune cells or selective targeting of immunosuppressive pathways by specific chemotherapies promotes the generation of an effective anti-cancer response; however, this alone is rarely sufficient to cause elimination of advanced disease. An understanding of the immunological events occurring in both animal models and patients undergoing chemotherapy will guide decisions for the development of appropriate combinations and scheduling for the integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Alison M McDonnell
- National Centre for Asbestos-Related Diseases and School of Medicine and Pharmacology, The University of Western Australia, Perth, 6009 Western Australia, Australia
| | | | | |
Collapse
|
16
|
Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, Miura Y, Hiratsuka JI, Kishimoto T, Otsuki T. Reduction of CXC chemokine receptor 3 in an in vitro model of continuous exposure to asbestos in a human T-cell line, MT-2. Am J Respir Cell Mol Biol 2010; 45:470-9. [PMID: 21148743 DOI: 10.1165/rcmb.2010-0213oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Because patients with silicosis who are chronically exposed to silica particles develop not only pulmonary fibrosis, but also complications involving autoimmune diseases such as rheumatoid arthritis and systemic sclerosis, exposure to asbestos may affect the human immune system. This immunologic effect may impair antitumor immune function because cancer complications such as lung cancer and malignant mesothelioma are found in patients exposed to asbestos. To elucidate the antitumor immune status caused by CD4(+) T cells exposed to asbestos, an in vitro T-cell model of long-term and low-level exposure to chrysotile asbestos was established from a human adult T-cell leukemia virus-1-immortalized human polyclonal T cell line, MT-2, and the resulting six sublines showed resistance to asbestos-induced apoptosis after more than 8 months of continuous exposure. The results of DNA microarray analysis showed that the expression of 139 genes was altered by long-term and low-level exposure to asbestos, and the profile was almost similar among the six sublines when compared with the original MT-2 cells that had never been exposed to asbestos. Pathway and network analysis indicated a down-regulation of IFN-γ signaling and expression of CXC chemokine receptor 3 (CXCR3) in the sublines, whereas ELISA and flow cytometry analysis demonstrated a reduction in Th1-related IFN-γ production and cell-surface CXCR3 expression. These findings suggest that chronic exposure to asbestos may reduce antitumor immune status in CD4(+) T cells, and that an in vitro T-cell model may be useful in identifying molecules related to the impairment of antitumor immune function.
Collapse
Affiliation(s)
- Megumi Maeda
- Department of Hygiene, Kawasaki Medical School, 577 MatsushiKurashiki, Okayama 7010192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Steer HJ, Lake RA, Nowak AK, Robinson BWS. Harnessing the immune response to treat cancer. Oncogene 2010; 29:6301-13. [PMID: 20856204 DOI: 10.1038/onc.2010.437] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that the immune system has the capacity to attack malignant cells. During malignant transformation cells acquire numerous molecular and biochemical changes that render them potentially vulnerable to immune cells. Yet it is self-evident that a growing tumour has managed to evade these host defence mechanisms. The exact ways in which the immune system interacts with tumour cells and how cancers are able to escape immunological eradication have only recently started to be fully elucidated. Understanding the relationship between the tumour and the anti-tumour immune response and how this can be altered with conventional treatments and immune-targeted therapies is crucial to developing new treatments for patients with cancer. In this review, focusing on the anti-tumour T-cell response, we summarize our understanding of how tumours, cancer treatments and the immune system interact, how tumours evade the immune response and how this process could be manipulated for the benefit of patients with cancer.
Collapse
Affiliation(s)
- H J Steer
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | |
Collapse
|
18
|
Muthana M, Multhoff G, Pockley AG. Tumour infiltrating host cells and their significance for hyperthermia. Int J Hyperthermia 2010; 26:247-55. [PMID: 20388022 DOI: 10.3109/02656730903413375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Much information can be gained by investigating the consequences of hyperthermia on individual cell populations in vitro, however the precise effects of such a therapeutic modality in vivo depend on the tumour microenvironment and the cellular composition therein. Although the direct cytotoxic effects of hyperthermia on tumour tissue can lead to an immediate reduction in tumour volume, long-term benefits to local and distal tumour recurrence will very much depend on the induction of immunity and the capacity of effector cells to traffic to tumours and elicit their cytotoxic functions. The immunological sequelae to hyperthermia are even more important in those instances when large tumour volumes preclude the delivery of appropriate thermal damage. The development of protective anti-tumour immunity requires a plethora of interactions and responses, the vast majority of which can be influenced by temperatures that are consistent with fever-like temperatures (39 degrees -40 degrees C), as well as hyperthermia treatment (<41 degrees C). This article reviews current knowledge relating to the effects of hyperthermia treatment on aspects of the induction and manifestation of immunological responses that are most pertinent to the development and maintenance of protective anti-tumour immunity.
Collapse
Affiliation(s)
- Munitta Muthana
- Department of Infection and Immunity, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
19
|
Anraku M, Tagawa T, Wu L, Yun Z, Keshavjee S, Zhang L, Johnston MR, de Perrot M. Synergistic Antitumor Effects of Regulatory T Cell Blockade Combined with Pemetrexed in Murine Malignant Mesothelioma. THE JOURNAL OF IMMUNOLOGY 2010; 185:956-66. [DOI: 10.4049/jimmunol.0900437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Abstract
Antibodies are important therapeutic agents for cancer. Recently, it has become clear that antibodies possess several clinically relevant mechanisms of action. Many clinically useful antibodies can manipulate tumour-related signalling. In addition, antibodies exhibit various immunomodulatory properties and, by directly activating or inhibiting molecules of the immune system, antibodies can promote the induction of antitumour immune responses. These immunomodulatory properties can form the basis for new cancer treatment strategies.
Collapse
|
21
|
Teng MWL, Swann JB, von Scheidt B, Sharkey J, Zerafa N, McLaughlin N, Yamaguchi T, Sakaguchi S, Darcy PK, Smyth MJ. Multiple antitumor mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Res 2010; 70:2665-74. [PMID: 20332236 DOI: 10.1158/0008-5472.can-09-1574] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several reports have shown that prophylactic depletion of regulatory T cells (Treg) using various monoclonal antibodies (mAb) in mice can stimulate potent antitumor immune responses and prevent tumor development. These same depletion methods do not significantly suppress tumor growth in a therapeutic setting. Although different strategies to deplete FoxP3(+) Treg have been used, no study has systematically compared these qualitatively for the effector mechanisms they each liberate. Herein, using prophylactic depletion of FoxP3(+) Tregs with either anti-CD4, anti-CD25, or anti-FR4 mAbs, we have compared the cellular and effector requirements for elimination of the renal carcinoma RENCA and prevention of methylcholanthrene-induced fibrosarcoma. Collectively from these two models, it was clear that CD8(+) T cells and natural killer cells played an important role downstream of Treg depletion. However, whereas all three mAbs quantitatively depleted FoxP3(+) T cells to a similar extent, subtle differences in the downstream mechanisms of tumor control existed for all three approaches. In general, neutralization of any lymphocyte subset or effector mechanism was insufficient to alter tumor suppression initiated by Treg depletion, and in some settings, the neutralization of multiple effector mechanisms failed to prevent tumor rejection. These studies reveal that Tregs control multiple redundant elements of the immune effector response capable of inhibiting tumor initiation and underscore the importance of effectively targeting these cells in any cancer immunotherapy.
Collapse
Affiliation(s)
- Michele W L Teng
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ivanova AV, Ivanov SV, Prudkin L, Nonaka D, Liu Z, Tsao A, Wistuba I, Roth J, Pass HI. Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer 2009; 8:91. [PMID: 19852844 PMCID: PMC2776015 DOI: 10.1186/1476-4598-8-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/24/2009] [Indexed: 12/28/2022] Open
Abstract
Background FUS1/TUSC2 is a novel tumor suppressor located in the critical 3p21.3 chromosomal region frequently deleted in multiple cancers. We previously showed that Tusc2-deficient mice display a complex immuno-inflammatory phenotype with a predisposition to cancer. The goal of this study was to analyze possible involvement of TUSC2 in malignant pleural mesothelioma (MPM) - an aggressive inflammatory cancer associated with exposure to asbestos. Methods TUSC2 insufficiency in clinical specimens of MPM was assessed via RT-PCR (mRNA level), Representational Oligonucleotide Microarray Analysis (DNA level), and immunohistochemical evaluation (protein level). A possible link between TUSC2 expression and exposure to asbestos was studied using asbestos-treated mesothelial cells and ROS (reactive oxygen species) scavengers. Transcripional effects of TUSC2 in MPM were assessed through expression array analysis of TUSC2-transfected MPM cells. Results Expression of TUSC2 was downregulated in ~84% of MM specimens while loss of TUSC2-containing 3p21.3 region observed in ~36% of MPMs including stage 1 tumors. Exposure to asbestos led to a transcriptional suppression of TUSC2, which we found to be ROS-dependent. Expression array studies showed that TUSC2 activates transcription of multiple genes with tumor suppressor properties and down-regulates pro-tumorigenic genes, thus supporting its role as a tumor suppressor. In agreement with our knockout model, TUSC2 up-regulated IL-15 and also modulated more than 40 other genes (~20% of total TUSC2-affected genes) associated with immune system. Among these genes, we identified CD24 and CD274, key immunoreceptors that regulate immunogenic T and B cells and play important roles in systemic autoimmune diseases. Finally, clinical significance of TUSC2 transcriptional effects was validated on the expression array data produced previously on clinical specimens of MPM. In this analysis, 42 TUSC2 targets proved to be concordantly modulated in MM serving as disease discriminators. Conclusion Our data support immuno-therapeutic potential of TUSC2, define its targets, and underscore its importance as a transcriptional stimulator of anti-tumorigenic pathways.
Collapse
Affiliation(s)
- Alla V Ivanova
- Hematology/Oncology Division, Vanderbilt Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BWS, Nowak AK, Lake RA. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 2009; 58:1219-28. [PMID: 19052741 PMCID: PMC11030690 DOI: 10.1007/s00262-008-0628-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/11/2008] [Indexed: 12/17/2022]
Abstract
Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25+ regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25+ regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25+ regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67(hi)) T cells, including foxp3+ regulatory CD4+ T cells. Ki-67(hi) CD4+ T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25+ CD4+ T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cyclophosphamide/therapeutic use
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Immunosuppressive Agents/therapeutic use
- Inducible T-Cell Co-Stimulator Protein
- Kaplan-Meier Estimate
- Ki-67 Antigen/immunology
- Ki-67 Antigen/metabolism
- L-Selectin/immunology
- L-Selectin/metabolism
- Lymphocyte Depletion
- Mesothelioma/drug therapy
- Mesothelioma/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Gemcitabine
Collapse
Affiliation(s)
- Robbert G van der Most
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McCoy MJ, Nowak AK, Lake RA. Chemoimmunotherapy: an emerging strategy for the treatment of malignant mesothelioma. ACTA ACUST UNITED AC 2009; 74:1-10. [DOI: 10.1111/j.1399-0039.2009.01275.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Davidson B. New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol 2009; 32:227-40. [PMID: 19117264 DOI: 10.1080/01913120802454298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malignant mesothelioma is a primary cancer of the serosal cavities, an anatomic site that is also frequently affected by metastatic disease, predominantly from primary carcinomas of the lung, breast, and ovary. Advances in immunohistochemistry have resulted in improved diagnostic sensitivity and specificity in the differential diagnosis between metastatic adenocarcinoma and malignant mesothelioma in both cytological and histological material. Recently, the author's group applied high throughput technology to the identification of new markers that may aid in differentiating malignant mesothelioma from ovarian and peritoneal serous carcinoma, tumors with closely related histogenesis and antigenic profile. In addition to the improved tools available for serosal cancer diagnosis, knowledge regarding the biology of malignant mesothelioma has been accumulating in recent years. This review presents current data regarding the diagnostic and biological aspects of malignant mesothelioma.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Norwegian Radium Hospital, Rikshospitalet University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, Watanabe K, Niki T, Katoh S, Miyake M, Nagahata SI, Hirabayashi J, Kuchroo VK, Yamauchi A, Hirashima M. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. THE JOURNAL OF IMMUNOLOGY 2008; 181:7660-9. [PMID: 19017954 DOI: 10.4049/jimmunol.181.11.7660] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Tim-3 ligand, galectin-9 (Gal-9), modulates various functions of innate and adaptive immune responses. In this study, we demonstrate that Gal-9 prolongs the survival of Meth-A tumor-bearing mice in a dose- and time-dependent manner. Although Gal-9 did not prolong the survival of tumor-bearing nude mice, transfer of naive spleen cells restored a prolonged Gal-9-induced survival in nude mice, indicating possible involvement of T cell-mediated immune responses in Gal-9-mediated antitumor activity. Gal-9 administration increased the number of IFN-gamma-producing Tim-3(+) CD8(+) T cells with enhanced granzyme B and perforin expression, although it induced CD4(+) T cell apoptosis. It simultaneously increased the number of Tim-3(+)CD86(+) mature dendritic cells (DCs) in vivo and in vitro. Coculture of CD8(+) T cells with DCs from Gal-9-treated mice increased the number of IFN-gamma producing cells and IFN-gamma production. Depletion of Tim-3(+) DCs from DCs of Gal-9-treated tumor-bearing mice decreased the number of IFN-gamma-producing CD8(+) T cells. Such DC activity was significantly abrogated by Tim-3-Ig, suggesting that Gal-9 potentiates CD8(+) T cell-mediated antitumor immunity via Gal-9-Tim-3 interactions between DCs and CD8(+) T cells.
Collapse
Affiliation(s)
- Keiko Nagahara
- Department of Immunology and Immunopathology, Kagawa University, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008; 122:2286-93. [PMID: 18224687 DOI: 10.1002/ijc.23392] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that an increased population of regulatory T cells (Tregs) is one of the reasons for impaired anti-tumor immunity. Recently, Foxp3 has been reported as a reliable marker of Tregs. The authors investigated the frequency of Foxp3(+) Tregs within CD4(+) cells in TILs, regional lymph nodes and PBLs of gastric cancer patients (n = 45). Furthermore, to elucidate the mechanisms behind Treg accumulation within tumors, they evaluated the relationship between CCL17 or CCL22 expression and the frequency of Foxp3(+) Tregs in gastric cancer. CD4(+)CD25(+)Foxp3(+) Tregs as a percentage of CD4(+) cells were counted by flow cytometry and evaluated by immunohistochemistry. Moreover, an in vitro migration assay using Tregs derived from gastric cancers was performed in the presence of CCL17 or CCL22. As a result, the frequency of Foxp3(+) Tregs in TILs was significantly higher than that in normal gastric mucosa (12.4% +/- 7.5% vs. 4.1% +/- 5.3%, p < 0.01). Importantly, the increase in Tregs in TILs occurred to the same extent in early and advanced disease. Furthermore, the frequency of CCL17(+) or CCL22(+) cells among CD14(+) cells within tumors was significantly higher than that of normal gastric mucosa, and there was a significant correlation between the frequency of CCL17(+) or CCL22(+) cells and Foxp3(+) Tregs in TILs. In addition, the in vitro migration assay indicated that Tregs were significantly induced to migrate by CCL17 or CCL22. In conclusion, CCL17 and CCL22 within the tumor are related to the increased population of Foxp3(+) Tregs, with such an observation occurring in early gastric cancer.
Collapse
Affiliation(s)
- Yoshiki Mizukami
- First Department of Surgery, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Schreiber TH. The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors. Cancer Epidemiol Biomarkers Prev 2008; 16:1931-4. [PMID: 17932340 DOI: 10.1158/1055-9965.epi-07-0396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Only since the early 21st century has it been proven that the immune system can actively defend the body against the development of malignant tumors. Escape from this process, termed immunosurveillance, has been shown to be required for the development of many tumors in both mice and humans, and may be a necessary prerequisite for the establishment of many malignancies. Serendipitously, an evolution in the understanding and characterization of immunosuppressor cells, regulatory T cells, has coincided with the establishment of tumor immunosurveillance. These two fields merged when it was found that the recruitment of regulatory T cells within tumors was a dominant mechanism tumors used to escape immunosurveillance. Regulatory T cells are specifically identified with antibodies which recognize the transcription factor, FoxP3. The presence of FoxP3+ cells within tumors has been shown to predict the prognosis, invasiveness, and metastatic ability of some tumors by modulating the ability of the immune system to target tumor cells. Furthermore, depletion of regulatory T cells from tumors could lead to the rejection of both early- and late-stage tumors by the host immune system. These findings suggest that the widespread use of FoxP3 as a biomarker should be explored for human tumors to enable physicians to make better decisions in oncologic care and to prepare the field for novel therapeutic agents directed at the elimination of regulatory T cells within tumors.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Sheila and David Fuente Program in Cancer Biology, University of Miami Miller School of Medicine, 1550 Northwest 10th Avenue, Pap Building no. 328, Miami, FL 33136, USA.
| |
Collapse
|
29
|
Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 2007; 98:148-53. [PMID: 18087278 PMCID: PMC2359685 DOI: 10.1038/sj.bjc.6604149] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has been reported that the population of regulatory T cells (T regs) is increased in tumour-infiltrating lymphocytes in cancer-bearing hosts. Recently, forkhead/winged helix transcription factor p3, Foxp3, is thought to be the most reliable marker of T regs. In the present study, we investigated the prevalence and localisation pattern of Foxp3+ cells in gastric cancer (n=80) by immunohistochemistry, in relation to the clinical outcome of gastric cancer patients. Immunohistochemical staining was performed with anti-Foxp3 mAb, and Foxp3+ cells were semiquantified. We divided all cases into two groups: Foxp3+-high (n=40) and Foxp3+-low (n=40) groups, by the median size of the population of Foxp3+ cells. Furthermore, in terms of the localisation pattern of accumulating Foxp3+ cells in tumours, we classified all cases into three groups: a peri-tumour group (n=30), a diffuse group (n=40), and a follicular group (n=10). As a result, although the populations of Foxp3+ cells in stage IV were significantly larger than those in stage I (P<0.05), there was no significant difference in survival between the patients with high and low population levels of Foxp3+ cells. However, survival in patients with a diffuse pattern of Foxp3+ cells was significantly poorer than in those with a peri-tumoral pattern. In conclusion, the localisation pattern, but not the population size, of Foxp3+ cells was significantly related to patient survival.
Collapse
|
30
|
Guo TL, Chi RP, Hernandez DM, Auttachoat W, Zheng JF. Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein. Carcinogenesis 2007; 28:2560-6. [PMID: 17916904 PMCID: PMC2239241 DOI: 10.1093/carcin/bgm223] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine if genistein (GEN) modulation of the immune responses might contribute to the increased host resistances to tumors. A time-course study was performed in adult female B6C3F1 mice that had been exposed to GEN for 1-4 weeks at the dose level of 20 mg/kg by gavage. A significant increase in ex vivo cytotoxic T lymphocyte (CTL) activity was observed in the periods of 2 weeks and 4 weeks. Moreover, increased activities of CTLs were associated with a decrease in the percentage of CD4(+)CD25(+) T cells and an increase in the production of interferon-gamma and activation of STAT1 (signal transducer and activator of transcription 1) and STAT4. Additionally, exposure of mice to GEN increased the activities of in vivo CTLs. An increased activity of natural killer (NK) cells was also observed. Further study in the B16F10 tumor model suggested that GEN-mediated enhancement in host resistance to B16F10 tumor was partially related to its potentiating effect on NK cells. Finally, 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumor model was employed to determine the chemopreventive effect of oral GEN treatment. Mice pretreated with GEN for 2 weeks by gavage, the time when an enhanced CTL activity had been produced, had a decreased susceptibility toward DMBA-mediated carcinogenesis, while treatment with GEN after tumor induction conferred no protection. In conclusion, pretreatment with GEN by gavage could enhance host resistances to the B16F10 tumor and DMBA-induced carcinogenesis, suggesting that GEN modulation of immune response was, at least partially, responsible for the antitumor effect of this compound.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | | | | | |
Collapse
|