1
|
Yang Z, Krammer S, Mitländer H, Grund JC, Zirlik S, Wirtz S, Rauh M, Shermeh AS, Finotto S. NFATc1 in CD4 + T cells and CD11c + dendritic cells drives T H2-mediated eosinophilic inflammation in allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100355. [PMID: 39629220 PMCID: PMC11613943 DOI: 10.1016/j.jacig.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
Background Asthma, a chronic lung disease, is a significant public health problem worldwide. It is marked by increased TH2 response resulting in eosinophil accumulation. The pathophysiology of asthma involves various cell types, including epithelial cells, dendritic cells (DCs), innate lymphoid cells, B cells, and effector cells. Nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a critical transcription factor for immune regulation, is known for its role in T cells and, more recently, in myeloid cells. However, the specific contributions of NFATc1 in T cells and DCs in the context of asthma are not well understood. Objective We explored NFATc1's role in T cells and DCs in modulating TH2 immune responses within the pathophysiology of allergic asthma. Methods We induced asthma in mice lacking Nfatc1 in CD4+ T cells or CD11c+ DCs using house dust mite, thereby enabling investigation into NFATc1's role in both cell types in experimental allergic asthma. Additionally, we examined NFATc1 expression in these cell types and its correlation with blood eosinophil levels in an adult asthma cohort. Results In a house dust mite-induced asthma model, we found that Nfatc1 deficiency either in CD4+ T cells or CD11c+ DCs resulted in reduced TH2-driven eosinophilic inflammation, IgE levels, and mast cell presence in the lung of asthmatic mice. Nfatc1's absence in CD4+ T cells directly hampered TH2 cell polarization and functionality, whereas in CD11c+ DCs, it affected DC differentiation and maturation, thereby weakening T-cell priming, proliferation, and subsequent TH2 differentiation. Correspondingly, translational research indicated significant correlations between CD4+NFATc1+ and CD11c+NFATc1+ cell populations and eosinophil levels in asthmatic patients, but not in healthy controls. Conclusion NFATc1 in T cells and DCs modulates TH2-mediated eosinophilic inflammation in allergic asthma, thus offering insight into asthma pathogenesis and identifying NFATc1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Sharma P, Sethi RS. In Vivo Exposure of Deltamethrin Dysregulates the NFAT Signalling Pathway and Induces Lung Damage. J Toxicol 2024; 2024:5261994. [PMID: 39239465 PMCID: PMC11377118 DOI: 10.1155/2024/5261994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Deltamethrin is an insecticide used to control harmful agricultural insects that otherwise damage crops and to control vector-borne diseases. Long-term exposure to deltamethrin results in the inflammation of the lungs. The present study elucidates the molecular mechanism underlying the deltamethrin-induced lung damage. The lung samples were extracted from the Swiss albino mice following the treatment of low (2.5 mg/kg) and high (5 mg/kg) doses of deltamethrin. The mRNA expression of TCR, IL-4, and IL-13 showed upregulation, while the expression of NFAT and FOS was downregulated following a low dose of deltamethrin. Moreover, the expression of TCR was downregulated with the exposure of a high dose of deltamethrin. Furthermore, the immunohistochemistry data confirmed the pattern of protein expression for TCR, FOS, IL-4, and IL-13 following a low dose of deltamethrin exposure. However, no change was seen in the TCR, NFAT, FOS, JUN, IL-4, and IL-13 immunopositive cells of the high-dose treatment group. Also, ELISA results showed increased expression of IL-13 in the BAL fluid of animals exposed to low doses of deltamethrin. Overall, the present study showed that deltamethrin exposure induces lung damage and immune dysregulation via dysregulating the NFAT signalling pathway.
Collapse
Affiliation(s)
- Prakriti Sharma
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - R S Sethi
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
3
|
Seal R, Schwab LSU, Chiarolla CM, Hundhausen N, Klose GH, Reu-Hofer S, Rosenwald A, Wiest J, Berberich-Siebelt F. Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis. Front Immunol 2023; 14:1179311. [PMID: 37275854 PMCID: PMC10235777 DOI: 10.3389/fimmu.2023.1179311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water - intermittently with DSS induction - revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities.
Collapse
Affiliation(s)
- Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara S. U. Schwab
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Georg Heinrich Klose
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Johannes Wiest
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
5
|
Kim W, Kim HJ, Trinh NT, Yeon HR, Kim JH, Choi IA, Kim HA, Jung JY, Lee KE. Association between nuclear factor of activated T cells C2 polymorphisms and treatment response in rheumatoid arthritis patients receiving tumor necrosis factor-alpha inhibitors. Pharmacogenet Genomics 2022; 32:10-15. [PMID: 34320607 DOI: 10.1097/fpc.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Nuclear factor of activated T cells C2 (NFATC2) is known as a member of the transcription family and enhances tumor necrosis factor-alpha (TNF-α) synthesis in human T cells at the gene transcription level. Although NFATC2 has a potential role in rheumatoid arthritis (RA) progression and treatment, no study has investigated the association between NFATC2 gene polymorphisms and response status in RA patients receiving TNF-α inhibitors. This study aimed to examine the effects of polymorphisms in NFATC2, a TNF-α transcription factor, on response to TNF-α inhibitors. METHODS This prospective observational study was performed in two centers. Seven single nucleotide polymorphisms (SNPs) were investigated. Good responders were defined as patients with disease activity score (DAS)28 ≤3.2 after 6 months of treatment. Logistic regression analyses were used to investigate the association between genetic polymorphisms and response to the treatment. To test the model's goodness of fit, a Hosmer-Lemeshow test was performed. RESULTS This study included 98 patients, among whom 46 showed favorable responses to the treatment. Patients with hypertension revealed an approximately three-fold lower response to TNF-α inhibitors compared to those without hypertension (23.5 vs. 76.5%; P = 0.049). After adjusting for covariates, C allele carriers of NFATC2 rs3787186 exhibited approximately three-fold lower rates of treatment response compared to those with TT genotype (P = 0.037). The Hosmer-Lemeshow test showed that the fitness of the multivariable analysis model was satisfactory (χ2 = 9.745; 8 degrees of freedom; P = 0.283). CONCLUSION This study suggested an association between the C allele of rs3787186 and treatment response in RA patients receiving TNF-α inhibitors.
Collapse
Affiliation(s)
- Woorim Kim
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Nga Thi Trinh
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Ha Rim Yeon
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Worldcup-ro, Yeongtong-gu, Suwon
| | - In Ah Choi
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, 1sunhwan-ro, Seowon-gu, Cheongju
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| | - Kyung Eun Lee
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| |
Collapse
|
6
|
Kitazawa R, Haraguchi R, Kohara Y, Kitazawa S. RANK- NFATc1 signaling forms positive feedback loop on rank gene expression via functional NFATc1 responsive element in rank gene promoter. Biochem Biophys Res Commun 2021; 572:86-91. [PMID: 34358968 DOI: 10.1016/j.bbrc.2021.07.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Receptor Activator of NF-κB (RANK) expressed on osteoclasts and their precursors is a receptor for RANK ligand (RANKL). Signals transduced by RANKL-RANK interaction induce genes essential for the differentiation and function of osteoclasts, partly through the direct binding of NFATc1, to target gene promoters. We have previously cloned a 6-kb fragment containing the 5'-flanking region of the mouse RANK gene and have demonstrated the presence of binding elements of hematological transcription factors, such as MITF, PU.1 and AP-1. Here, we demonstrated the presence of the functional NFATc1 responsive element on the RANK gene promoter. Transfection of an NFATc1-expression vector increased RANK mRNA that was subsequently nullified by NFATc1 knockdown. With the use of electrophoretic mobility shift assay (EMSA), an oligonucleotide (-388/-353) showed specific protein-DNA binding that was blockshifted with an anti-NFATc1 antibody and washed out with excess amounts of the cold consensus sequence. Co-transfection studies with the use of an NFATc1-expression vector and RANK promoter-reporter constructs showed that NFATc1 increased promoter activity 2-fold in RAW264.7 cells that was again nullified as disclosed by mutagenesis studies. Taken together, these results indicate that RANK transcription is positively regulated by the RANKL signal through the direct binding of NFATc1 to its specific binding site of the RANK gene promoter, and suggest the presence of a crucial positive feedback mechanism of gene expression that promotes accelerated terminal differentiation of RANK-positive committed precursors to mature osteoclasts.
Collapse
Affiliation(s)
- Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan; Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-1, Kobe, 650-0017, Japan; Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Yukihiro Kohara
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan; Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-1, Kobe, 650-0017, Japan.
| |
Collapse
|
7
|
Dai ZT, Xiang Y, Wang Y, Bao LY, Wang J, Li JP, Zhang HM, Lu Z, Ponnambalam S, Liao XH. Prognostic value of members of NFAT family for pan-cancer and a prediction model based on NFAT2 in bladder cancer. Aging (Albany NY) 2021; 13:13876-13897. [PMID: 33962392 PMCID: PMC8202856 DOI: 10.18632/aging.202982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/26/2021] [Indexed: 04/23/2023]
Abstract
Bladder cancer (BLCA) is one of the common malignant tumors of the urinary system. The poor prognosis of BLCA patients is due to the lack of early diagnosis and disease recurrence after treatment. Increasing evidence suggests that gene products of the nuclear factor of activated T-cells (NFAT) family are involved in BLCA progression and subsequent interaction(s) with immune surveillance. In this study, we carried out a pan-cancer analysis of the NFAT family and found that NFAT2 is an independent prognostic factor for BLCA. We then screened for differentially expressed genes (DEGs) and further analyzed such candidate gene loci using gene ontology enrichment to curate the KEGG database. We then used Lasso and multivariate Cox regression to identify 4 gene loci (FER1L4, RNF128, EPHB6, and FN1) which were screened together with NFAT2 to construct a prognostic model based on using Kaplan-Meier analysis to predict the overall survival of BLCA patients. Moreover, the accuracy of our proposed model is supported by deposited datasets in the Gene Expression Omnibus (GEO) database. Finally, a nomogram of this prognosis model for BLCA was established which could help to provide better disease management and treatment.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Yundan Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
8
|
Dimou A, Syrigos KN. The Role of GSK3β in T Lymphocytes in the Tumor Microenvironment. Front Oncol 2020; 10:1221. [PMID: 32850361 PMCID: PMC7396595 DOI: 10.3389/fonc.2020.01221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy options for patients with cancer have emerged following decades of research on immune responses against tumors. Most treatments in this category harness T cells with specificity for tumor associated antigens, neoantigens, and cancer-testis antigens. GSK3β is a serine-threonine kinase with the highest number of substrates and multifaceted roles in cell function including immune cells. Importantly, inhibitors of GSK3β are available for clinical and research use. Here, we review the possible role of GSK3β in the immune tumor microenvironment, with goal to guide future research that tests GSK3β inhibition as an immunotherapy adjunct.
Collapse
Affiliation(s)
- Anastasios Dimou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Konstantinos N Syrigos
- Division of Medical Oncology, Third Department of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
9
|
Sk Md OF, Hazra I, Datta A, Mondal S, Moitra S, Chaudhuri S, Das PK, Basu AK, Mishra R, Chaudhuri S. Regulation of key molecules of immunological synapse by T11TS immunotherapy abrogates Cryptococcus neoformans infection in rats. Mol Immunol 2020; 122:207-221. [PMID: 32388483 DOI: 10.1016/j.molimm.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans infects and disseminates in hosts with diminished T cell responses. The immunomodulator T11TS (T11 target structure) had profound potential in glioma as well as C. neoformans infected model for disease amelioration. It is been established by our group that T11TS potentiates Calcineurin-NFAT pathway in T cells of C. neoformans infected rats. We investigated the upstream Immunological Synapse (IS) molecules that are vital for the foundation of initial signals for downstream signaling, differentiation and proliferation in T cells. Improved RANTES level in the T11TS treated groups suggests potential recruitment of T cells. Down-regulation of TCRαβ, CD3ζ, CD2, CD45 and CD28 molecules by cryptococcus were boosted after T11TS therapy. Heightened expression of inhibitory molecule CTLA-4 in cryptococcosis was dampened by T11TS. The decline of MHC I, MHC II and CD80 expression on macrophages by C. neoformans were enhanced by T11TS. The dampening of positive regulators and upsurge of negative regulators of the IS during cryptococcosis was reversed with T11TS therapy resulting in enhanced clearance of fungus from the lungs as envisaged by our histological studies. This preclinical study with T11TS opens a new prospect for potential immunotherapeutic intervention against the devastating C. neoformans infection with positive aspect for the long-term solution and a safer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Omar Faruk Sk Md
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India; Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Suhnrita Chaudhuri
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, ECIM 6BQ, UK
| | - Prasanta Kumar Das
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Anjan Kumar Basu
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
10
|
Omar Faruk SM, Hazra I, Mondal S, Datta A, Moitra S, Das PK, Mishra R, Chaudhuri S. T11TS immunotherapy potentiates the repressed calcineurin-NFAT signalling pathway of T cells in Cryptococcus neoformans infected rats: a cue towards T-cell activation for antifungal immunity. J Appl Microbiol 2020; 129:753-767. [PMID: 32145053 DOI: 10.1111/jam.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
AIMS To examine the modulation of the interacting partners of the calcineurin (CaN)-NFAT pathway in T cells during Cryptococcus neoformans fungal infection and post-T11TS immunotherapy. METHODS AND RESULTS Wistar rats were infected with C. neoformans and followed by immunotherapy with immune-potentiator T11TS. T cells were analysed by flow cytometry, immunoblotting and nuclear translocation study. The signalling proteins LCK, FYN, LAT, PLCγ1 and CaN in T cells were regulated by C. neoformans infection resulting in reduced nuclear translocation of NFAT and IL-2 expression. Following T11TS immunotherapy, the expressions of the above-mentioned proteins were boosted and thus resulting in the clearance of C. neoformans from lung and spleen. CONCLUSIONS The precise mechanism of suppression of the T-cell function by C. neoformans is still unknown. Previously, we have shown that T11TS positively regulates the function of T cells to abrogate glioma and other immunosuppressive conditions. T11TS immunotherapy increased the expression of the above signalling partners of the CaN-NFAT pathway in T cells and improved nuclear retention of NFAT. As a result, an increased IL-2 expression leads to activation and proliferation of T cells. SIGNIFICANCE AND IMPACT OF THE STUDY Our results demonstrate the role of T11TS in restoring the CaN-NFAT signalling pathway in T cells. It identifies T11TS as an immunotherapeutic agent with potential clinical outcomes to counteract C. neoformans infection.
Collapse
Affiliation(s)
- S M Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - I Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - A Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - P K Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - R Mishra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - S Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Kumar G, Roger PM. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection. Int J Mol Sci 2019; 20:E5154. [PMID: 31627424 PMCID: PMC6834200 DOI: 10.3390/ijms20205154] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bone infection and inflammation leads to the infiltration of immune cells at the site of infection, where they modulate the differentiation and function of osteoclasts and osteoblasts by the secretion of various cytokines and signal mediators. In recent years, there has been a tremendous effort to understand the cells involved in these interactions and the complex pathways of signal transduction and their ultimate effect on bone metabolism. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Diseases falling into the category of osteoimmunology, such as osteoporosis, periodontitis, and bone infections are considered to have a significant implication in mortality and morbidity of patients, along with affecting their quality of life. There is a much-needed research focus in this new field, as the reported data on the immunomodulation of immune cells and their signaling pathways seems to have promising therapeutic benefits for patients.
Collapse
Affiliation(s)
- Gaurav Kumar
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Pierre-Marie Roger
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Service d'Infectiologie, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université de Nice Sophia-Antipolis, 06200 Nice, France.
| |
Collapse
|
12
|
Chasapi A, Balampanis K, Tanoglidi A, Kourea E, Lambrou GI, Lambadiari V, Kalfarentzos F, Hatziagelaki E, Melachrinou M, Sotiropoulou-Bonikou G. SRC-3/AIB-1 may Enhance Hepatic NFATC1 Transcription and Mediate Inflammation in a Tissue-Specific Manner in Morbid Obesity. Endocr Metab Immune Disord Drug Targets 2019; 20:242-255. [PMID: 31322077 DOI: 10.2174/1871530319666190715160630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is a global epidemic which is associated with several cardiometabolic comorbidities and is characterized by chronic, low grade systemic inflammation. Numerous biomarkers have been implicated in the pathophysiology of the disease, including transcription factors and coregulators. Steroid Receptor Coactivator (SRC)-family represent the master regulators of metabolic pathways and their dysregulation is strongly associated with numerous metabolic disorders. METHODS 50 morbidly obese patients participated in the present study. Biopsies were collected from visceral adipose tissue, subcutaneous adipose tissue, skeletal muscle, extra-myocellular adipose tissue and liver. We evaluated the differential protein expression of NFATc1, SRC-2/TIF-2, SRC-3/AIB-1 and inflammatory biomarkers CD68 and CD3 by immunohistochemistry. The current study was designed to determine any correlations between the transcription factor NFATc1 and the SRC coregulators, as well as any associations with the inflammatory biomarkers. RESULTS We identified SRC-3 as a hepatic NFATc1 coactivator and we demonstrated its possible role in energy homeostasis and lipid metabolism. Moreover, we revealed a complex and extensive intraand inter-tissue network among the three main investigated proteins and the inflammatory biomarkers, suggesting their potential participation in the obesity-induced inflammatory cascade. CONCLUSION Steroid receptor coactivators are critical regulators of human metabolism with pleiotropic and tissue-specific actions. We believe that our study will contribute to the better understanding of the complex multi-tissue interactions that are disrupted in obesity and can therefore lead to numerous cardiometabolic diseases. Further on, our present findings suggest that SRC-3/AIB-1 could constitute possible future drug targets.
Collapse
Affiliation(s)
- Athina Chasapi
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece
| | - Konstantinos Balampanis
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.,Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.,Department of Anatomy and Histology-Embryology, Medical School, University of Patras, 26500 Patras, Greece
| | - Anna Tanoglidi
- Department of Clinical Pathology, Akademiska University, Uppsala, Sweden
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece
| | - George I Lambrou
- First Department of Pediatrics, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Medical School, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece
| | - Fotios Kalfarentzos
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, 17, Ag. Thoma St, 11527 Athens, Greece
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece
| | - Maria Melachrinou
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
13
|
Seto T, Sam D, Pan M. Mechanisms of Primary and Secondary Resistance to Immune Checkpoint Inhibitors in Cancer. Med Sci (Basel) 2019; 7:E14. [PMID: 30678257 PMCID: PMC6410194 DOI: 10.3390/medsci7020014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICPis) have revolutionized cancer therapy with broad activities against a wide range of malignancies. However, in many malignancies their efficacy remains limited due to the primary resistance. Furthermore, a high percentage of patients develop progression due to the secondary resistance even after obtaining a response or achieving a stable disease. In this review, we will discuss the mechanisms that underlie the primary and secondary resistance to ICPis in cancer immunotherapy and provide an overview to impart a broad understanding of the critical issues that are encountered in clinical oncology practice.
Collapse
Affiliation(s)
| | - Danny Sam
- Internal Medicine Residency Program.
| | - Minggui Pan
- Internal Medicine Residency Program.
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA 95051, USA; and Kaiser Permanente Division of Research, Oakland, CA 94612, USA.
| |
Collapse
|
14
|
Patterson AR, Bolcas P, Lampe K, Cantrell R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Khurana Hershey GK, Hoebe K. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4 + T-cell development and allergic airway disease. J Allergy Clin Immunol 2019; 143:245-257.e6. [PMID: 30616774 PMCID: PMC6327968 DOI: 10.1016/j.jaci.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-β, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-β. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paige Bolcas
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
15
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Analysis of NFATc1 amplification in T cells for pharmacodynamic monitoring of tacrolimus in kidney transplant recipients. PLoS One 2018; 13:e0201113. [PMID: 30036394 PMCID: PMC6056039 DOI: 10.1371/journal.pone.0201113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic drug monitoring (TDM) of tacrolimus, based on blood concentrations, shows an imperfect correlation with the occurrence of rejection. Here, we tested whether measuring NFATc1 amplification, a member of the calcineurin pathway, is suitable for TDM of tacrolimus. Materials and methods NFATc1 amplification was monitored in T cells of kidney transplant recipients who received either tacrolimus- (n = 11) or belatacept-based (n = 10) therapy. Individual drug effects on NFATc1 amplification were studied in vitro, after spiking blood samples of healthy volunteers with either tacrolimus, belatacept or mycophenolate mofetil. Results At day 30 after transplantation, in tacrolimus-treated patients, NFATc1 amplification was inhibited in CD4+ T cells expressing the co-stimulation receptor CD28 (mean inhibition 37%; p = 0.01) and in CD8+CD28+ T cells (29% inhibition; p = 0.02), while this was not observed in CD8+CD28- T cells or belatacept-treated patients. Tacrolimus pre-dose concentrations of these patients correlated inversely with NFATc1 amplification in CD28+ T cells (rs = -0.46; p < 0.01). In vitro experiments revealed that 50 ng/ml tacrolimus affected NFATc1 amplification by 58% (mean; p = 0.02). Conclusion In conclusion, measuring NFATc1 amplification is a direct tool for monitoring biological effects of tacrolimus on T cells in whole blood samples of kidney transplant recipients. This technique has potential that requires further development before it can be applied in daily practice.
Collapse
Affiliation(s)
- Nynke M. Kannegieter
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| | - Dennis A. Hesselink
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gretchen N. de Graav
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig Dis Sci 2016; 61:3407-3424. [PMID: 27655102 DOI: 10.1007/s10620-016-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) involve dysregulated immune responses to gut antigens in genetically predisposed individuals. While a better elucidation of IBD pathophysiology has considerably increased the number of treatment options, the need for more effective therapeutic strategies remains a pressing priority. Defects of both non-hematopoietic (epithelial and stromal) and hematopoietic (lymphoid and myeloid) cells have been described in patients with IBD. Within the lymphoid system, alterations of the T cell compartment are viewed as essential in the pathogenesis of IBD. However, growing evidence points to the additional perturbations of the B cell compartment. Indeed, the intestinal lamina propria from IBD patients shows an increased presence of antibody-secreting plasma cells, which correlates with enhanced pro-inflammatory immunoglobulin G production and changes in the quality of non-inflammatory IgA responses. These B cell abnormalities are compounded by the emergence of systemic antibody responses to various autologous and microbial antigens, which predates the clinical diagnosis of IBD and identifies patients with complicated disease. It is presently unclear whether such antibody responses play a pathogenetic role, as B cell depletion with the CD20-targeting monoclonal antibody rituximab did not ameliorate ulcerative colitis in a clinical trial. However, it must be noted that unresponsiveness to rituximab is also observed also in some patients with autoimmune disorders usually responsive to B cell-depleting therapies. In this review, we discussed mechanistic aspects of B cell-based therapies and their potential role in IBD with a special interest on BAFF and BAFF-targeting therapies buoyed by the success of anti-BAFF treatments in rheumatologic disorders.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Departments of Medicine and Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xavier Treton
- Department of Gastroenterology, Beaujon Hospital, APHP, Denis Diderot University, Paris, France
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
17
|
Zhang Q, Tian Y, Duan J, Wu J, Yan S, Chen H, Meng X, Owusu-Ansah KG, Zheng S. Chelerythrine ameliorates acute cardiac allograft rejection in mice. Transpl Immunol 2016; 38:78-83. [PMID: 27450116 DOI: 10.1016/j.trim.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
Abstract
The improvement in graft survival over the past decade has been mainly due to calcineurin inhibitors, which interfere with the calcium-mediated pathway. Recently, other pathways such as those mediated by protein kinase C (PKC) are coming into view. The purpose of this study was to assess the immunosuppressive properties of chelerythrine, a specific PKC inhibitor, in preventing acute rejection in murine heterotopic heart transplantation. Mice were randomly divided into control and chelerythrine treated group. The control group received PBS while the chelerythrine treated group was given intraperitoneal injection doses (1, 5, 10mg/kg) of chelerythrine from day 0 to day 14 after heart transplantation. Six days after transplantation, cardiac allografts were harvested for further tests. The mean survival time (MST) of the cardiac allograft in untreated animals was 8days while graft MSTs observed in chelerythrine treated group was 13 and 23days at 5 and 10mg/kg treatment doses, respectively (P<0.05). Histologic assessment of the allograft in chelerythrine group showed a significant decline in histologic rejection score, as well as CD4+ and CD8+ T cell infiltration and ICAM-1+ endothelial cell activation. Down-regulation of Th1/Th2 cytokine expression was observed in chelerythrine treatment group. Meanwhile, chelerythrine was also found to inhibit the dephosphorylation of phosphorylated nuclear factor of activated T cells (NFAT) protein 1 and 4.
Collapse
Affiliation(s)
- Qiyi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Yang Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jixuan Duan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jingjin Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Hui Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xueqin Meng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Kwabena Gyabaah Owusu-Ansah
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathog 2016; 12:e1005642. [PMID: 27186886 PMCID: PMC4871349 DOI: 10.1371/journal.ppat.1005642] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG) mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81) in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans. EBV is a human herpesvirus that remains in the host for life, but is normally well controlled by the host immune response. Nevertheless, EBV causes lymphomas in certain individuals, particularly when T cell function is impaired. Antibodies against two different inhibitory receptors on T cells, PD-1 and CTLA-4, have been recently shown to improve T cell cytotoxic function against a subset of non-virally associated tumors. Here we have used an EBV-infected cord blood-humanized mouse model to show that EBV-infected lymphomas express both the PD-L1 and PD-L2 inhibitory ligands for PD-1. Importantly, we find that the combination of PD-1 and CTLA-4 blockade decreases the growth of EBV-induced lymphomas in this model, and demonstrate that this anti-tumor effect requires T cells and enhances their responses to EBV. Our results suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-associated diseases in humans.
Collapse
|
19
|
Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, Bailey M, Zhang H, Maher CA, Humphrey PA, Andriole GL, Ding L, You Z, Chen F. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene 2015; 35:3282-92. [PMID: 26477312 PMCID: PMC5012433 DOI: 10.1038/onc.2015.389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive due to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found upregulation of Nuclear Factor of Activated T Cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1β, IL6, and SPP1 (Osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten-null–driven prostate tumorigenesis by overcoming the PTEN loss–induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.
Collapse
Affiliation(s)
- K R Manda
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA
| | - P Tripathi
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - A C Hsi
- The Genome Institute, Washington University, St Louis, MO, USA
| | - J Ning
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA
| | - M B Ruzinova
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - H Liapis
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - M Bailey
- The Genome Institute, Washington University, St Louis, MO, USA
| | - H Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - C A Maher
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - P A Humphrey
- Department of Pathology, Yale University, New Haven, CT, USA
| | - G L Andriole
- Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Surgery, Washington University, St Louis, MO, USA
| | - L Ding
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - F Chen
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| |
Collapse
|
20
|
Guo Q, Tripathi P, Manson SR, Austin PF, Chen F. Transcriptional dysregulation in the ureteric bud causes multicystic dysplastic kidney by branching morphogenesis defect. J Urol 2015; 193:1784-90. [PMID: 25301096 PMCID: PMC4504205 DOI: 10.1016/j.juro.2014.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE The calcineurin-NFAT signaling pathway regulates the transcription of genes important for development. It is impacted by various genetic and environmental factors. We investigated the potential role of NFAT induced transcriptional dysregulation in the pathogenesis of congenital abnormalities of the kidneys and urinary tract. MATERIALS AND METHODS A murine model of conditional NFATc1 activation in the ureteric bud was generated and examined for histopathological changes. Metanephroi were also cultured in vitro to analyze branching morphogenesis in real time. RESULTS NFATc1 activation led to defects resembling multicystic dysplastic kidney. These mutants showed severe disorganization of branching morphogenesis characterized by decreased ureteric bud branching and the disconnection of ureteric bud derivatives from the main collecting system. The orphan ureteric bud derivatives may have continued to induce nephrogenesis and likely contributed to the subsequent formation of blunt ended filtration units and cysts. The ureter also showed irregularities consistent with impaired epithelial-mesenchymal interaction. CONCLUSIONS This study reveals the profound effects of NFAT signaling dysregulation on the ureteric bud and provides insight into the pathogenesis of multicystic dysplastic kidney. Our results suggest that the obstruction hypothesis and the bud theory may not be mutually exclusive to explain the pathogenesis of multicystic dysplastic kidney. Ureteric bud dysfunction such as that induced by NFAT activation can disrupt ureteric bud-metanephric mesenchyma interaction, causing primary defects in branching morphogenesis, subsequent dysplasia and cyst formation. Obstruction of the main collecting system can further enhance these defects, producing the pathological changes associated with multicystic dysplastic kidney.
Collapse
Affiliation(s)
- Qiusha Guo
- Washington University School of Medicine, St. Louis, Missouri
| | - Piyush Tripathi
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Scott R Manson
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Paul F Austin
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Feng Chen
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
21
|
Goldstein J, Fletcher S, Roth E, Wu C, Chun A, Horsley V. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev 2014; 28:983-94. [PMID: 24732379 PMCID: PMC4018496 DOI: 10.1101/gad.236554.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In most tissues, the prevailing view is that stem cell (SC) niches are generated by signals from within the nearby tissue environment. Here, we define genetic changes altered in hair follicle (HF) SCs in mice treated with a potent SC activator, cyclosporine A (CSA), which inhibits the phosphatase calcineurin (CN) and the activity of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). We show that CN/Nfatc1 regulates expression of prolactin receptor (Prlr) and that canonical activation of Prlr and its downstream signaling via Jak/Stat5 drives quiescence of HF SCs during pregnancy and lactation, when serum prolactin (Prl) levels are highly elevated. Using Prl injections and genetic/pharmacological loss-of-function experiments in mice, we show that Prl signaling stalls follicular SC activation through its activity in the skin epithelium. Our findings define a unique CN-Nfatc1-Prlr-Stat5 molecular circuitry that promotes persistent SC quiescence in the skin.
Collapse
Affiliation(s)
- Jill Goldstein
- Department of Molecular, Cell, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13:543-54. [PMID: 22950383 DOI: 10.2174/1566524011313040007] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 01/28/2023]
Abstract
Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer.
Collapse
Affiliation(s)
- M-G Pan
- Division of Oncology and Hematology, Kaiser Permanente Medical Center, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
23
|
Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 2013; 33:1840-9. [PMID: 23624921 DOI: 10.1038/onc.2013.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
Abstract
NFAT (the nuclear factor of activated T cells) upregulation has been linked to cellular transformation intrinsically, but it is unclear whether and how tissue cells with NFAT activation change the local environment for tumor initiation and progression. Direct evidence showing NFAT activation initiates primary tumor formation in vivo is also lacking. Using inducible transgenic mouse systems, we show that tumors form in a subset of, but not all, tissues with NFATc1 activation, indicating that NFAT oncogenic effects depend on cell types and tissue contexts. In NFATc1-induced skin and ovarian tumors, both cells with NFATc1 activation and neighboring cells without NFATc1 activation have significant upregulation of c-Myc and activation of Stat3. Besides known and suspected NFATc1 targets, such as Spp1 and Osm, we have revealed the early upregulation of a number of cytokines and cytokine receptors, as key molecular components of an inflammatory microenvironment that promotes both NFATc1(+) and NFATc1(-) cells to participate in tumor formation. Cultured cells derived from NFATc1-induced tumors were able to establish a tumorigenic microenvironment, similar to that of the primary tumors, in an NFATc1-dependent manner in nude mice with T-cell deficiency, revealing an addiction of these tumors to NFATc1 activation and downplaying a role for T cells in the NFATc1-induced tumorigenic microenvironment. These findings collectively suggest that beyond the cell autonomous effects on the upregulation of oncogenic proteins, NFATc1 activation has non-cell autonomous effects through the establishment of a promitogenic microenvironment for tumor growth. This study provides direct evidence for the ability of NFATc1 in inducing primary tumor formation in vivo and supports targeting NFAT signaling in anti-tumor therapy.
Collapse
|
24
|
Kao TC, Wu CH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid recover glucocorticoid resistance via PI3K-induced AP1, CRE and NFAT activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:295-302. [PMID: 23218403 DOI: 10.1016/j.phymed.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 10/27/2012] [Indexed: 05/08/2023]
Abstract
Glucocorticoids are widely used in the clinical setting as remedies for inflammatory diseases, such as asthma and chronic obstructive pulmonary disease. However, the constant increase in the number of patients suffering from glucocorticoid resistance could present a serious problem for clinicians. In these cases, it may be reasonable to use additional treatments to restore the therapeutic effect of glucocorticoids. Glycyrrhizic acid (GA) and 18β-glycyrrhetinic acid (18βGA) are bioactive compounds in licorice that have been used for thousands of years in traditional Chinese medicine to treat coughs. We showed that GA and 18βGA exhibit potential anti-inflammatory and antioxidant properties. GA and 18βGA induced dual specificity protein phosphatase 1 (DUSP1) expression, and this effect was unchanged by the addition of RU486, a glucocorticoid receptor antagonist. The stimulation of DUSP1 expression by GA and 18βGA occurred via both glucocorticoid receptor (GR) and PI3K signaling, and the simultaneous activation of transcription elements, such as AP1 (activator protein 1), CRE (cAMP response element), GRE (glucocorticoid receptor element) and NFAT (nuclear factor of activated T-cells), was confirmed. Furthermore, we designed an in vitro glucocorticoid resistance model to verify the effects of GA and 18βGA on glucocorticoid resistance that was induced by ROS. The data showed that these two phytochemicals restored glucocorticoid sensitivity by depleting ROS through HO-1 expression. p38 and NO, which are factors that are induced by reactive oxygen species and caused depletion of GR signaling, were inhibited by GA and 18βGA treatment. This phenomenon was considered to be related to the coordinated modulation of GR and PI3K signaling by GA and 18βGA, in conjugation with AP1, CRE, GRE and NFAT activation. This study provides a possible strategy for enhancing the efficacy of glucocorticoids and may improve the prognosis of patients with serious inflammatory diseases.
Collapse
Affiliation(s)
- Tzu-Chien Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | |
Collapse
|
25
|
Crotti TN, Dharmapatni AASSK, Alias E, Zannettino ACW, Smith MD, Haynes DR. The immunoreceptor tyrosine-based activation motif (ITAM) -related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Res Ther 2012; 14:R245. [PMID: 23146195 PMCID: PMC3674611 DOI: 10.1186/ar4088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/06/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction The immunoreceptor tyrosine-based activation motif (ITAM) pathway provides osteoclast co-stimulatory signals and regulates proliferation, survival and differentiation of effector immune cells. In the osteoclast, the receptors Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Osteoclast Associated Receptor (OSCAR) and their respective adaptor proteins, DAP12 and FcRγ mediate ITAM signals and induce calcium signaling and the crucial transcription factor, NFATc1. In rheumatoid arthritis (RA), OSCAR expression by monocytes is inversely correlated with disease activity. Additionally, serum levels of OSCAR are reduced in RA patients versus healthy controls suggesting that expression and secretion or cleavage of soluble (s) OSCAR is immune modulated. Recent data suggest that endothelial cells may also be a source of OSCAR. Methods ITAM receptors, their adaptor proteins, and NFATc1 and cathepsin K were detected in human synovial tissues by immunohistochemistry. Synovial tissues from patients with active RA were compared with tissue from patients in remission, osteoarthritis (OA) patients and healthy individuals. OSCAR was measured by immunoassay in synovial fluids recovered from active RA and OA patients. Endothelial cells were cultured with or without 5 ng/mL TNF-α or IL-1β over 72 hours. Temporal expression of OSCAR mRNA was assessed by qRT PCR and OSCAR protein in the supernatant was measured by ELISA. Results Significantly higher (P < 0.05) NFATc1-positive inflammatory cell aggregates were found in active RA tissues than in healthy synovial tissue. Similarly, the percentage of OSCAR, FcRγ, DAP12 and TREM2 positive cells was significantly higher in active RA tissues compared to the healthy synovial tissue. Notably, OSCAR was strongly expressed in the microvasculature of the active RA tissues (9/9), inactive RA (8/9) weakly in OA (4/9) but only in the lumen of healthy synovial tissue (0/8). OSCAR levels were detected in synovial fluids from both RA (47 to 152 ng/mL) and OA (112 to 145 ng/mL) patients. Moreover, OSCAR mRNA expression and soluble OSCAR release was stimulated by TNF-α and IL1-β in cultured endothelial cells. Conclusions Increased levels of ITAM related factors were present in synovial tissue from active RA joints compared to OA and healthy joints. OSCAR was strongly expressed by the vasculature of active RA patients and membrane bound and soluble OSCAR was stimulated by inflammatory mediators in endothelial cells in vitro.
Collapse
|
26
|
Zhang B, Shi W, Ma J, Sloan A, Faul C, Wei C, Reiser J, Yang Y, Liu S, Wang W. The calcineurin-NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. J Mol Med (Berl) 2012; 90:1407-20. [PMID: 23015147 DOI: 10.1007/s00109-012-0960-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 11/26/2022]
Abstract
Circulating and podocyte-bound urokinase receptor (uPAR) is a mediator of podocyte injury, proteinuria, and focal segmental glomerulosclerosis (FSGS) allowing pathological activation of the uPAR-β3 integrin signaling axis. Clinically, calcineurin inhibitors (e.g., cyclosporine A, CsA) are known to suppress T cells, yet are also being used to reduce proteinuria in FSGS, suggesting the possibility of signal cross talk between uPAR and calcineurin. Calcineurin is known to facilitate the nuclear translocation of the nuclear factor of activated T cells (NFAT). Accordingly, in vivo conditional NFATc1 activation in podocytes leads to proteinuria in mice, yet the downstream targets of NFAT remain unclear. Here, we show that inducible podocyte-specific expression of constitutively active NFATc1 increased podocyte uPAR expression by binding to the Plaur gene promoter (encoding uPAR) in chromatin immunoprecipitation assays. Pathological uPAR signals in podocytes are independent of T cells and affect cell motility via activation, but not expression, changes of the β3 integrin and can be blocked by CsA, NFAT-siRNA, or the cell-permeable NFAT inhibitor (11R-VIVIT) using rodent models of glomerular disease (LPS; 5/6 nephrectomized rats). Taken together, these findings identify podocyte uPAR as a downstream target of NFAT and provide further insights into the pathogenesis of FSGS.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Is the antiproteinuric effect of cyclosporine a independent of its immunosuppressive function in T cells? Int J Nephrol 2012; 2012:809456. [PMID: 22778954 PMCID: PMC3384901 DOI: 10.1155/2012/809456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
The antiproteinuric effect of cyclosporine A(CsA) has been believed to result from its immunosuppressive effect on the transcription factor NFAT in T cells. However, current evidences supporting this hypothesis are missing. A recent study showed that CsA has a direct antiproteinuric effect on podocytes, suggesting a novel non-immunosuppressive mechanism for CsA's antiproteinuric effect. Conditional NFATc1 activation in podoyctes per se is sufficient to induce proteinuria in mice, indicating that NFAT activation in podocytes is a critical pathogenic molecular event leading to podocyte injury and proteinuria. Meanwhile, evidence showed that TRPC6-mediated Ca(2+) influx stimulates NFAT-dependent TRPC6 expression. Altogether, these advances in podocyte research indicate that calcineurin-NFAT signal or calcineurin-synaptopodin axis has a direct proteinuric effect on podocytes which raises the possibility of developing specific antiproteinuric drugs that lack the unwanted effects of calcineurin or NFAT inhibition.
Collapse
|
28
|
Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev 2011; 241:180-205. [PMID: 21488898 PMCID: PMC3077803 DOI: 10.1111/j.1600-065x.2011.01011.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH, Chen F. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 2010; 21:1657-66. [PMID: 20651158 DOI: 10.1681/asn.2009121253] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutant forms of TRPC6 can activate NFAT-dependent transcription in vitro via calcium influx and activation of calcineurin. The same TRPC6 mutants can cause FSGS, but whether this involves an NFAT-dependent mechanism is unknown. Here, we generated mice that allow conditional induction of NFATc1. Mice with NFAT activation in nascent podocytes in utero developed proteinuria and glomerulosclerosis postnatally, resembling FSGS. NFAT activation in adult mice also caused progressive proteinuria and FSGS. Ultrastructural studies revealed podocyte foot process effacement and deposition of extracellular matrix. NFAT activation did not initially affect expression of podocin, synaptopodin, and nephrin but reduced their expression as glomerular injury progressed. In contrast, we observed upregulation of Wnt6 and Fzd9 in the mutant glomeruli before the onset of significant proteinuria, suggesting a potential role for Wnt signaling in the pathogenesis of NFAT-induced podocyte injury and FSGS. These results provide in vivo evidence for the involvement of NFAT signaling in podocytes, proteinuria, and glomerulosclerosis. Furthermore, this study suggests that NFAT activation may be a key intermediate step in the pathogenesis of mutant TRPC6-mediated FSGS and that suppression of NFAT activity may contribute to the antiproteinuric effects of calcineurin inhibitors.
Collapse
Affiliation(s)
- Yinqiu Wang
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
CD28 costimulation regulates a wide range of cellular processes, from proliferation and survival to promoting the differentiation of specialized T-cell subsets. Since first being identified over 20 years ago, CD28 has remained a subject of intense study because of its profound consequences on T cell function and its potential for therapeutic manipulation. In this review we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing on PI-3 kinase-dependent and -independent pathways and how these are linked to specific cellular outcomes. Recent studies using gene targeted knockin mice have clarified the relative importance of these motifs on in vivo immune responses; however, much remains to be elucidated. Understanding the mechanism behind costimulation holds great potential for development of new clinically relevant reagents, a fact beginning to be realized with the advent of drugs that prevent CD28 ligation and signaling.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
31
|
Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. ACTA ACUST UNITED AC 2010; 11:27-60. [PMID: 20173386 DOI: 10.1159/000289196] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor kappaB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 2009; 31:24-31. [PMID: 19836308 DOI: 10.1016/j.it.2009.09.007] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022]
Abstract
In just a few years, the view of glycogen synthase kinase-3 (GSK3) has been transformed from an obscure enzyme seldom encountered in the immune literature to one implicated in an improbably large number of roles. GSK3 is a crucial regulator of the balance between pro- and anti-inflammatory cytokine production in both the periphery and the central nervous system, so that GSK3 inhibitors such as lithium can diminish inflammation. GSK3 influences T-cell proliferation, differentiation and survival. Many effects stem from GSK3 regulation of critical transcription factors, such as NF-kappaB, NFAT and STATs. These discoveries led to the rapid application of GSK3 inhibitors to animal models of sepsis, arthritis, colitis, multiple sclerosis and others, demonstrating their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
33
|
Scottà C, Soligo M, Camperio C, Piccolella E. FOXP3 induced by CD28/B7 interaction regulates CD25 and anergic phenotype in human CD4+CD25- T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:1025-33. [PMID: 18606654 DOI: 10.4049/jimmunol.181.2.1025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among the signals necessary to generate CD4(+)CD25(+)FOXP3(+) T cells from CD4(+)CD25(-)FOXP3(-) T cells, a pivotal role is played by CD28. However, in humans, it is not known whether CD28 signaling independently of TCR promotes forkhead box protein 3 (FOXP3) expression and regulates CD4(+)CD25(+)FOXP3(+) T cell functions. To address this issue, starting from our previous experience, we analyzed the unique signals delivered by CD28 following stimulation by its natural ligand B7. Our results show that, in primary CD4(+)CD25(-) T cells, CD28 signals independent of TCR-mediated stimulatory pathways are sufficient to induce the transcription of FOXP3 in a small number of CD4(+)CD25(-) T cells committed to express FOXP3. These signals are dependent on CD28-derived PI3K/Akt pathways and resistant to cyclosporin A. In addition, we demonstrated that translated FOXP3 was recruited to CD25, Il-2, and Ctla4 target promoters. CD28-mediated FOXP3 expression was transient and correlated with CD25 expression. The presence of FOXP3 in CD28-activated CD4(+)CD25(-) T cells correlated with a transient unresponsiveness to antigenic stimuli. The addition of exogenous IL-2 did not influence either FOXP3 or CD25 expression but rescued CD28-activated T cells from apoptosis. Our results, demonstrating that FOXP3 expression driven solely by the CD28/B7 interaction inhibited T cell activation, support the role of CD28 in the regulation of peripheral tolerance and suggest a new mechanism through which it could occur.
Collapse
Affiliation(s)
- Cristiano Scottà
- Department of Cellular and Developmental Biology, University Sapienza of Rome, Rome, Italy
| | | | | | | |
Collapse
|
34
|
Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 2008; 132:299-310. [PMID: 18243104 PMCID: PMC2546702 DOI: 10.1016/j.cell.2007.11.047] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/28/2007] [Accepted: 11/26/2007] [Indexed: 12/17/2022]
Abstract
Quiescent adult stem cells reside in specialized niches where they become activated to proliferate and differentiate during tissue homeostasis and injury. How stem cell quiescence is governed is poorly understood. We report here that NFATc1 is preferentially expressed by hair follicle stem cells in their niche, where its expression is activated by BMP signaling upstream and it acts downstream to transcriptionally repress CDK4 and maintain stem cell quiescence. As stem cells become activated during hair growth, NFATc1 is downregulated, relieving CDK4 repression and activating proliferation. When calcineurin/NFATc1 signaling is suppressed, pharmacologically or via complete or conditional NFATc1 gene ablation, stem cells are activated prematurely, resulting in precocious follicular growth. Our findings may explain why patients receiving cyclosporine A for immunosuppressive therapy display excessive hair growth, and unveil a functional role for calcium-NFATc1-CDK4 circuitry in governing stem cell quiescence.
Collapse
Affiliation(s)
- Valerie Horsley
- Howard Hughes Medical Institute Laboratory of Mammalian Cell Biology and Development, The Rockefeller University New York, NY 10065
| | - Antonios O. Aliprantis
- Department of Infectious Diseases and Immunology Harvard School of Public Health Boston, MA 02115
- Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115
| | - Lisa Polak
- Howard Hughes Medical Institute Laboratory of Mammalian Cell Biology and Development, The Rockefeller University New York, NY 10065
| | - Laurie H. Glimcher
- Department of Infectious Diseases and Immunology Harvard School of Public Health Boston, MA 02115
- Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115
| | - Elaine Fuchs
- Howard Hughes Medical Institute Laboratory of Mammalian Cell Biology and Development, The Rockefeller University New York, NY 10065
| |
Collapse
|