1
|
Soe PP, Coutelier JP. Enhanced Mouse Susceptibility to Endotoxin Shock after Plasmodium yoelii Infection Is Correlated with Increased Serum Levels of Lipopolysaccharide Soluble Receptors. Int J Mol Sci 2023; 24:ijms24108851. [PMID: 37240201 DOI: 10.3390/ijms24108851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Sepsis is a common disease in sub-Saharan Africa and Asia, where malaria is also prevalent. To determine whether Plasmodium infection might enhance susceptibility to endotoxin shock, we used a mouse model of lipopolysaccharide (LPS) administration. Our results indicated that Plasmodium yoelii infection in mice strongly enhanced the susceptibility of the host to develop endotoxin shock. This increased susceptibility to endotoxin shock was correlated with a synergistic effect of Plasmodium and LPS on the secretion of Tumor Necrosis Factor (TNF). TNF contributed mostly to lethality after the dual challenge since neutralization with an anti-TNF antibody provided protection from death. Plasmodium infection also induced an enhancement of the serum levels of LPS soluble ligands, sCD14 and Lipopolysaccharide Binding Protein. In this regard, our data confirm that Plasmodium infection can profoundly modify responses to secondary bacteria challenges, resulting in dysregulated cytokine expression and pathological effects. If confirmed in humans, LPS soluble receptors might serve as markers of susceptibility to septic shock.
Collapse
Affiliation(s)
- Pyone Pyone Soe
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Pathology, University of Medicine 1, Yangon 11131, Myanmar
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Beeson JG, Kurtovic L, Valim C, Asante KP, Boyle MJ, Mathanga D, Dobano C, Moncunill G. The RTS,S malaria vaccine: Current impact and foundation for the future. Sci Transl Med 2022; 14:eabo6646. [DOI: 10.1126/scitranslmed.abo6646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RTS,S vaccine has recently been recommended for implementation as a childhood vaccine in regions with moderate-to-high malaria transmission. We discuss mechanisms of vaccine protection and longevity, implementation considerations, and future research needed to increase the vaccine’s health impact, including vaccine modifications for higher efficacy and longevity of protection.
Collapse
Affiliation(s)
- James G. Beeson
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Kintampo North Municipality, Bono East Region, Ghana
| | - Michelle J. Boyle
- QIMR Berghofer Institute, Herston, Queensland, Australia
- University of Queensland, School of Biomedical Sciences, St Lucia, Queensland, Australia
- Griffith University, Brisbane, Queensland, Australia
| | - Don Mathanga
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Carlota Dobano
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
3
|
Woodford J, Sagara I, Diawara H, Assadou MH, Katile A, Attaher O, Issiaka D, Santara G, Soumbounou IH, Traore S, Traore M, Dicko OM, Niambele SM, Mahamar A, Kamate B, Haidara B, Sissoko K, Sankare S, Diarra SDK, Zeguime A, Doritchamou JYA, Zaidi I, Dicko A, Duffy PE. Recent malaria does not substantially impact COVID-19 antibody response or rates of symptomatic illness in communities with high malaria and COVID-19 transmission in Mali, West Africa. Front Immunol 2022; 13:959697. [PMID: 35990648 PMCID: PMC9382593 DOI: 10.3389/fimmu.2022.959697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria has been hypothesized as a factor that may have reduced the severity of the COVID-19 pandemic in sub-Saharan Africa. To evaluate the effect of recent malaria on COVID-19 we assessed a subgroup of individuals participating in a longitudinal cohort COVID-19 serosurvey that were also undergoing intensive malaria monitoring as part of antimalarial vaccine trials during the 2020 transmission season in Mali. These communities experienced a high incidence of primarily asymptomatic or mild COVID-19 during 2020 and 2021. In 1314 individuals, 711 were parasitemic during the 2020 malaria transmission season; 442 were symptomatic with clinical malaria and 269 had asymptomatic infection. Presence of parasitemia was not associated with new COVID-19 seroconversion (29.7% (211/711) vs. 30.0% (181/603), p=0.9038) or with rates of reported symptomatic seroconversion during the malaria transmission season. In the subsequent dry season, prior parasitemia was not associated with new COVID-19 seroconversion (30.2% (133/441) vs. 31.2% (108/346), p=0.7499), with symptomatic seroconversion, or with reversion from seropositive to seronegative (prior parasitemia: 36.2% (64/177) vs. no parasitemia: 30.1% (37/119), p=0.3842). After excluding participants with asymptomatic infection, clinical malaria was also not associated with COVID-19 serostatus or symptomatic seroconversion when compared to participants with no parasitemia during the monitoring period. In communities with intense seasonal malaria and a high incidence of asymptomatic or mild COVID-19, we did not demonstrate a relationship between recent malaria and subsequent response to COVID-19. Lifetime exposure, rather than recent infection, may be responsible for any effect of malaria on COVID-19 severity.
Collapse
Affiliation(s)
- John Woodford
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Issaka Sagara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mahamadoun Hamady Assadou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Katile
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Gaoussou Santara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Seydou Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Moussa Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sidi Mohamed Niambele
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Bourama Kamate
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Bayaya Haidara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kourane Sissoko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Seydou Sankare
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sadio Dite Koni Diarra
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
4
|
The impact of malaria coinfection on Ebola virus disease outcomes: A systematic review and meta-analysis. PLoS One 2021; 16:e0251101. [PMID: 34029352 PMCID: PMC8143409 DOI: 10.1371/journal.pone.0251101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction Viral outbreaks present a particular challenge in countries in Africa where there is already a high incidence of other infectious diseases, including malaria which can alter immune responses to secondary infection. Ebola virus disease (EVD) is one such problem; understanding how Plasmodium spp. and Ebolavirus (EBOV) interact is important for future outbreaks. Methods We conducted a systematic review in PubMed and Web of Science to find peer-reviewed papers with primary data literature to determine 1) prevalence of EBOV/Plasmodium spp. coinfection, 2) effect of EBOV/Plasmodium spp. coinfection on EVD pathology and the immune response, 3) impact of EBOV/Plasmodium spp. coinfection on the outcome of EVD-related mortality. Random effects meta-analyses were conducted with the R package meta to produce overall proportion and effect estimates as well as measure between-study heterogeneity. Results From 322 peer-reviewed papers, 17 were included in the qualitative review and nine were included in a meta-analysis. Prevalence of coinfection was between 19% and 72%. One study reported significantly lower coagulatory response biomarkers in coinfected cases but no difference in inflammatory markers. Case fatality rates were similar between EBOV(+)/Pl(+) and EBOV(+)/Pl(-) cases (62.8%, 95% CI 49.3–74.6 and 56.7%, 95% CI 53.2–60.1, respectively), and there was no significant difference in risk of mortality (RR 1.09, 95% CI 0.90–1.31) although heterogeneity between studies was high. One in vivo mouse model laboratory study found no difference in mortality by infection status, but another found prior acute Plasmodium yoeli infection was protective against morbidity and mortality via the IFN-γ signalling pathway. Conclusion The literature was inconclusive; studies varied widely and there was little attempt to adjust for confounding variables. Laboratory studies may present the best option to answer how pathogens interact within the body but improvement in data collection and analysis and in diagnostic methods would aid patient studies in the future.
Collapse
|
5
|
Guha R, Mathioudaki A, Doumbo S, Doumtabe D, Skinner J, Arora G, Siddiqui S, Li S, Kayentao K, Ongoiba A, Zaugg J, Traore B, Crompton PD. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. PLoS Pathog 2021; 17:e1009430. [PMID: 33822828 PMCID: PMC8023468 DOI: 10.1371/journal.ppat.1009430] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/27/2021] [Indexed: 12/24/2022] Open
Abstract
In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1β, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1β and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.
Collapse
Affiliation(s)
- Rajan Guha
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (RG); (PDC)
| | - Anna Mathioudaki
- Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Shafiuddin Siddiqui
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Judith Zaugg
- Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (RG); (PDC)
| |
Collapse
|
6
|
Safety and feasibility of apheresis to harvest and concentrate parasites from subjects with induced blood stage Plasmodium vivax infection. Malar J 2021; 20:43. [PMID: 33446191 PMCID: PMC7807416 DOI: 10.1186/s12936-021-03581-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Background In the absence of a method to culture Plasmodium vivax, the only way to source parasites is ex vivo. This hampers many aspects of P. vivax research. This study aimed to assess the safety of apheresis, a method for selective removal of specific components of blood as a means of extracting and concentrating P. vivax parasites. Methods An iterative approach was employed across four non-immune healthy human subjects in single subject cohorts. All four subjects were inoculated with ~ 564 blood stage P. vivax (HMP013-Pv) and subjected to apheresis 10 to 11 days later. Blood samples collected during apheresis (haematocrit layers 0.5% to 11%) were tested for the presence and concentration of P. vivax by microscopy, flow cytometry, 18S rDNA qPCR for total parasites, and pvs25 qRT-PCR for female gametocyte transcripts. Safety was determined by monitoring adverse events. Malaria transmission to mosquitoes was assessed by membrane feeding assays. Results There were no serious adverse events and no significant safety concerns. Apheresis concentrated asexual parasites by up to 4.9-fold (range: 0.9–4.9-fold) and gametocytes by up to 1.45-fold (range: 0.38–1.45-fold) compared to pre-apheresis densities. No single haematocrit layer contained > 40% of all the recovered P. vivax asexual parasites. Ex vivo concentration of parasites by Percoll gradient centrifugation of whole blood achieved greater concentration of gametocytes than apheresis. Mosquito transmission was enhanced by up to fivefold in a single apheresis sample compared to pre-apheresis. Conclusion The modest level of parasite concentration suggests that the use of apheresis may not be an ideal method for harvesting P. vivax. Trial Registration Australia New Zealand Clinical Trials Registry (ANZCTR) Trial ID: ACTRN12617001502325 registered on 19th October 2017. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373812.
Collapse
|
7
|
Walk J, Keramati F, de Bree LCJ, Arts RJW, Blok B, Netea MG, Stunnenberg HG, Sauerwein RW. Controlled Human Malaria Infection Induces Long-Term Functional Changes in Monocytes. Front Mol Biosci 2020; 7:604553. [PMID: 33324683 PMCID: PMC7726436 DOI: 10.3389/fmolb.2020.604553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Innate immune memory responses (also termed "trained immunity") have been described in monocytes after BCG vaccination and after stimulation in vitro with microbial and endogenous ligands such as LPS, β-glucan, oxidized LDL, and monosodium urate crystals. However, whether clinical infections are also capable of inducing a trained immunity phenotype remained uncertain. We evaluated whether Plasmodium falciparum infection can induce innate immune memory by measuring monocyte-derived cytokine production from five volunteers undergoing Controlled Human Malaria Infection. Monocyte responses followed a biphasic pattern: during acute infection, monocytes produced lower amounts of inflammatory cytokines upon secondary stimulation, but 36 days after malaria infection they produced significantly more IL-6 and TNF-α in response to various stimuli. Furthermore, transcriptomic and epigenomic data analysis revealed a clear reprogramming of monocytes at both timepoints, with long-term changes of H3K4me3 at the promoter regions of inflammatory genes that remain present for several weeks after parasite clearance. These findings demonstrate an epigenetic basis of trained immunity induced by human malaria in vivo.
Collapse
Affiliation(s)
- Jona Walk
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Farid Keramati
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Rob J W Arts
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bas Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Woodford J, Collins KA, Odedra A, Wang C, Jang IK, Domingo GJ, Watts R, Marquart L, Berriman M, Otto TD, McCarthy JS. An Experimental Human Blood-Stage Model for Studying Plasmodium malariae Infection. J Infect Dis 2020; 221:948-955. [PMID: 30852586 DOI: 10.1093/infdis/jiz102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/06/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium malariae is considered a minor malaria parasite, although its global disease burden is underappreciated. The aim of this study was to develop an induced blood-stage malaria (IBSM) model of P. malariae to study parasite biology, diagnostic assays, and treatment. METHODS This clinical trial involved 2 healthy subjects who were intravenously inoculated with cryopreserved P. malariae-infected erythrocytes. Subjects were treated with artemether-lumefantrine after development of clinical symptoms. Prior to antimalarial therapy, mosquito-feeding assays were performed to investigate transmission, and blood samples were collected for rapid diagnostic testing and parasite transcription profiling. Serial blood samples were collected for biomarker analysis. RESULTS Both subjects experienced symptoms and signs typical of early malaria. Parasitemia was detected 7 days after inoculation, and parasite concentrations increased until antimalarial treatment was initiated 25 and 21 days after inoculation for subjects 1 and 2 respectively (peak parasitemia levels, 174 182 and 50 291 parasites/mL, respectively). The parasite clearance half-life following artemether-lumefantrine treatment was 6.7 hours. Mosquito transmission was observed for 1 subject, while in vivo parasite transcription and biomarkers were successfully profiled. CONCLUSIONS An IBSM model of P. malariae has been successfully developed and may be used to study the biology of, diagnostic testing for, and treatment of this neglected malaria species. CLINICAL TRIALS REGISTRATION ACTRN12617000048381.
Collapse
Affiliation(s)
- John Woodford
- QIMR Berghofer Medical Research Institute
- The University of Queensland
| | | | | | - Claire Wang
- Queensland Paediatric Infectious Diseases Laboratory, Brisbane, Australia
| | | | | | | | | | | | - Thomas D Otto
- Wellcome Sanger Institute, Hinxton
- Centre of Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute
- The University of Queensland
| |
Collapse
|
9
|
Guha R, Mathioudaki A, Doumbo S, Doumtabe D, Skinner J, Arora G, Siddiqui S, Li S, Kayentao K, Ongoiba A, Zaugg J, Traore B, Crompton PD. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33106806 DOI: 10.1101/2020.10.21.346197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1β, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. Author Summary The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.
Collapse
|
10
|
Adams K, Weber KS, Johnson SM. Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. Int J Mol Sci 2020; 21:ijms21228462. [PMID: 33187101 PMCID: PMC7697998 DOI: 10.3390/ijms21228462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Immune memory is a defining characteristic of adaptive immunity, but recent work has shown that the activation of innate immunity can also improve responsiveness in subsequent exposures. This has been coined “trained immunity” and diverges with the perception that the innate immune system is primitive, non-specific, and reacts to novel and recurrent antigen exposures similarly. The “exposome” is the cumulative exposures (diet, exercise, environmental exposure, vaccination, genetics, etc.) an individual has experienced and provides a mechanism for the establishment of immune training or immunotolerance. It is becoming increasingly clear that trained immunity constitutes a delicate balance between the dose, duration, and order of exposures. Upon innate stimuli, trained immunity or tolerance is shaped by epigenetic and metabolic changes that alter hematopoietic stem cell lineage commitment and responses to infection. Due to the immunomodulatory role of the exposome, understanding innate immune training is critical for understanding why some individuals exhibit protective phenotypes while closely related individuals may experience immunotolerant effects (e.g., the order of exposure can result in completely divergent immune responses). Research on the exposome and trained immunity may be leveraged to identify key factors for improving vaccination development, altering inflammatory disease development, and introducing potential new prophylactic treatments, especially for diseases such as COVID-19, which is currently a major health issue for the world. Furthermore, continued exposome research may prevent many deleterious effects caused by immunotolerance that frequently result in host morbidity or mortality.
Collapse
|
11
|
Dobaño C, Nhabomba AJ, Manaca MN, Berthoud T, Aguilar R, Quintó L, Barbosa A, Rodríguez MH, Jiménez A, Groves PL, Santano R, Bassat Q, Aponte JJ, Guinovart C, Doolan DL, Alonso PL. A Balanced Proinflammatory and Regulatory Cytokine Signature in Young African Children Is Associated With Lower Risk of Clinical Malaria. Clin Infect Dis 2020; 69:820-828. [PMID: 30380038 DOI: 10.1093/cid/ciy934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The effect of timing of exposure to first Plasmodium falciparum infections during early childhood on the induction of innate and adaptive cytokine responses and their contribution to the development of clinical malaria immunity is not well established. METHODS As part of a double-blind, randomized, placebo-controlled trial in Mozambique using monthly chemoprophylaxis with sulfadoxine-pyrimethamine plus artesunate to selectively control timing of malaria exposure during infancy, peripheral blood mononuclear cells collected from participants at age 2.5, 5.5, 10.5, 15, and 24 months were stimulated ex vivo with parasite schizont and erythrocyte lysates. Cytokine messenger RNA expressed in cell pellets and proteins secreted in supernatants were quantified by reverse-transcription quantitative polymerase chain reaction and multiplex flow cytometry, respectively. Children were followed up for clinical malaria from birth until 4 years of age. RESULTS Higher proinflammatory (interleukin [IL] 1, IL-6, tumor necrosis factor) and regulatory (IL-10) cytokine concentrations during the second year of life were associated with reduced incidence of clinical malaria up to 4 years of age, adjusting by chemoprophylaxis and prior malaria exposure. Significantly lower concentrations of antigen-specific T-helper 1 (IL-2, IL-12, interferon-γ) and T-helper 2 (IL-4, IL-5) cytokines by 2 years of age were measured in children undergoing chemoprophylaxis compared to children receiving placebo (P < .03). CONCLUSIONS Selective chemoprophylaxis altering early natural exposure to malaria blood stage antigens during infancy had a significant effect on T-helper lymphocyte cytokine production >1 year later. Importantly, a balanced proinflammatory and anti-inflammatory cytokine signature, probably by innate cells, around age 2 years was associated with protective clinical immunity during childhood. CLINICAL TRIALS REGISTRATION NCT00231452.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | | | - Maria N Manaca
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Tamara Berthoud
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Arnoldo Barbosa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Mauricio H Rodríguez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Penny L Groves
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Caterina Guinovart
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pedro L Alonso
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| |
Collapse
|
12
|
Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Rep 2020; 28:1729-1743.e5. [PMID: 31412243 DOI: 10.1016/j.celrep.2019.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
Microbial exposures can define an individual's basal immune state. Cohousing specific pathogen-free (SPF) mice with pet store mice, which harbor numerous infectious microbes, results in global changes to the immune system, including increased circulating phagocytes and elevated inflammatory cytokines. How these differences in the basal immune state influence the acute response to systemic infection is unclear. Cohoused mice exhibit enhanced protection from virulent Listeria monocytogenes (LM) infection, but increased morbidity and mortality to polymicrobial sepsis. Cohoused mice have more TLR2+ and TLR4+ phagocytes, enhancing recognition of microbes through pattern-recognition receptors. However, the response to a TLR2 ligand is muted in cohoused mice, whereas the response to a TLR4 ligand is greatly amplified, suggesting a basis for the distinct response to Listeria monocytogenes and sepsis. Our data illustrate how microbial exposure can enhance the immune response to unrelated challenges but also increase the risk of immunopathology from a severe cytokine storm.
Collapse
|
13
|
Loughland JR, Woodberry T, Field M, Andrew DW, SheelaNair A, Dooley NL, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, McCarthy JS, Boyle MJ, Minigo G. Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent Plasmodium falciparum infection. Clin Transl Immunology 2020; 9:e1144. [PMID: 32566226 PMCID: PMC7302943 DOI: 10.1002/cti2.1144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response, yet their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. METHODS The transcriptional and functional profiles of monocytes were examined in controlled human malaria infection with P. falciparum blood stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA sequencing and flow cytometry at peak infection and compared to pre-infection or at convalescence in acute malaria. RESULTS In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response and cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change were greater in children. CONCLUSIONS Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggests monocyte phenotypes may change with age or exposure.
Collapse
Affiliation(s)
- Jessica R Loughland
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Tonia Woodberry
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Present address:
The University of NewcastleCallaghanNSWAustralia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia,John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Dean W Andrew
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Kim A Piera
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Fiona H Amante
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Enny Kenangalem
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia,District Health AuthorityTimikaIndonesia
| | - Ric N Price
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | - Nicholas M Anstey
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Gabriela Minigo
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,College of Health and Human SciencesCharles Darwin UniversityDarwinNTAustralia
| |
Collapse
|
14
|
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-388. [PMID: 32132681 PMCID: PMC7186935 DOI: 10.1038/s41577-020-0285-6] [Citation(s) in RCA: 1510] [Impact Index Per Article: 302.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
- Genetics Section, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Musa M Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andreas Schlitzer
- Myeloid Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
- German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
15
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
16
|
Yap XZ, McCall MBB, Sauerwein RW. Fast and fierce versus slow and smooth: Heterogeneity in immune responses to Plasmodium in the controlled human malaria infection model. Immunol Rev 2020; 293:253-269. [PMID: 31605396 PMCID: PMC6973142 DOI: 10.1111/imr.12811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Controlled human malaria infection (CHMI) is an established model in clinical malaria research. Upon exposure to Plasmodium falciparum parasites, malaria-naive volunteers differ in dynamics and composition of their immune profiles and subsequent capacity to generate protective immunity. CHMI volunteers are either inflammatory responders who have prominent cellular IFN-γ production primarily driven by adaptive T cells, or tempered responders who skew toward antibody-mediated humoral immunity. When exposed to consecutive CHMIs under antimalarial chemoprophylaxis, individuals who can control parasitemia after a single immunization (fast responders) are more likely to be protected against a subsequent challenge infection. Fast responders tend to be inflammatory responders who can rapidly induce long-lived IFN-γ+ T cell responses. Slow responders or even non-responders can also be protected, but via a more diverse range of responses that take a longer time to reach full protective efficacy, in part due to their tempered phenotype. The latter group can be identified at baseline before CHMI by higher expression of inhibitory ligands CTLA-4 and TIM-3 on CD4+ T cells. Delineating heterogeneity in human immune responses to P. falciparum will facilitate rational design and strategy towards effective malaria vaccines.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthew B. B. McCall
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Robert W. Sauerwein
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
17
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
18
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
19
|
Ortega-Pajares A, Rogerson SJ. The Rough Guide to Monocytes in Malaria Infection. Front Immunol 2018; 9:2888. [PMID: 30581439 PMCID: PMC6292935 DOI: 10.3389/fimmu.2018.02888] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
While half of the world's population is at risk of malaria, the most vulnerable are still children under five, pregnant women and returning travelers. Anopheles mosquitoes transmit malaria parasites to the human host; but how Plasmodium interact with the innate immune system remains largely unexplored. The most recent advances prove that monocytes are a key component to control parasite burden and to protect host from disease. Monocytes' protective roles include phagocytosis, cytokine production and antigen presentation. However, monocytes can be involved in pathogenesis and drive inflammation and sequestration of infected red blood cells in organs such as the brain, placenta or lungs by secreting cytokines that upregulate expression of endothelial adhesion receptors. Plasmodium DNA, hemozoin or extracellular vesicles can impair the function of monocytes. With time, reinfections with Plasmodium change the relative proportion of monocyte subsets and their physical properties. These changes relate to clinical outcomes and might constitute informative biomarkers of immunity. More importantly, at the molecular level, transcriptional, metabolic or epigenetic changes can “prime” monocytes to alter their responses in future encounters with Plasmodium. This mechanism, known as trained immunity, challenges the traditional view of monocytes as a component of the immune system that lacks memory. Overall, this rough guide serves as an update reviewing the advances made during the past 5 years on understanding the role of monocytes in innate immunity to malaria.
Collapse
Affiliation(s)
- Amaya Ortega-Pajares
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Chakraborty B, Mondal P, Gajendra P, Mitra M, Das C, Sengupta S. Deciphering genetic regulation of CD14 by SP1 through characterization of peripheral blood mononuclear transcriptome of P. faiciparum and P. vivax infected malaria patients. EBioMedicine 2018; 37:442-452. [PMID: 30337251 PMCID: PMC6286629 DOI: 10.1016/j.ebiom.2018.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Plasmodium falciparum and Plasmodium vivax are two major parasites responsible for malaria which remains a threat to almost 50% of world's population despite decade-long eradication program. One possible reason behind this conundrum is that the bases of clinical variability in malaria caused by either species are complex and poorly understood. METHODS Whole-genome transcriptome was analyzed to identify the active and predominant pathways in the PBMC of P. falciparum and P. vivax infected malaria patients. Deregulated genes were identified and annotated using R Bioconductor and DAVID/KEGG respectively. Genetic and functional regulation of CD14, a prioritized candidate, were established by quantitative RT-PCR, genotyping using RFLP and resequencing, mapping of transcription factor binding using CONSITE and TFBIND, dual luciferase assay, western blot analysis, RNAi- mediated gene knockdown and chromatin-immunoprecipation. FINDINGS The study highlighted that deregulation of host immune and inflammatory genes particularly CD14 as a key event in P. falciparum malaria. An abundance of allele-C of rs5744454, located in CD14 promoter, in severe malaria motivated us to establish an allele-specific regulation of CD14 by SP1. An enhancement of SP1 and CD14 expression was observed in artemisinin treated human monocyte cell line. INTERPRETATION Our data not only reinstates that CD14 of TLR pathway plays a predominant role in P. falciparum malaria, it establishes a functional basis for genetic association of rs5744454 with P. falciparum severe malaria by demonstrating a cis-regulatory role of this promoter polymorphism. Moreover, the study points towards a novel pharmacogenetic aspect of artemisinin-based anti-malarial therapy. FUND: DST-SERB, Govt. of India, SR/SO/HS-0056/2013.
Collapse
Affiliation(s)
- Bijurica Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Pragya Gajendra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mitashree Mitra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
21
|
Pandey RK, Ali M, Ojha R, Bhatt TK, Prajapati VK. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. Vaccine 2018; 36:4555-4565. [PMID: 29921492 DOI: 10.1016/j.vaccine.2018.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
Malaria infection is the severe health concern for a long time. As per the WHO reports, the malarial infection causes huge mortality all around the world and is incomparable with any other infectious diseases. The absence of effective treatment options and increasing drug resistance to the available therapeutics like artemisinin and other derivatives demand an efficient alternative to overcome this death burden. Here, we performed the literature survey and sorted the Plasmodium falciparum secretory and membrane proteins to design multi-epitope subunit vaccine using an adjuvant, B-cell- and T-cell epitopes. Every helper T-lymphocyte (HTL) epitope was IFN-γ positive and IL-4 non-inducer. The physicochemical properties, allergenicity, and antigenicity of designed vaccine were analyzed for the safety concern. Homology modeling and refinement were performed to obtain the functional tertiary structure of vaccine protein followed by its molecular docking with the toll-like receptor-4 (TLR-4) immune receptor. Molecular dynamics simulation was performed to check the interaction and stability of the receptor-ligand complex. Lastly, in silico cloning was performed to generate the restriction clone of designed vaccine for the futuristic expression in a microbial expression system. This way, we designed the multi-epitope subunit vaccine to serve the people living in the global endemic zone.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Mudassar Ali
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
22
|
Infectious Agents as Stimuli of Trained Innate Immunity. Int J Mol Sci 2018; 19:ijms19020456. [PMID: 29401667 PMCID: PMC5855678 DOI: 10.3390/ijms19020456] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.
Collapse
|
23
|
Tannous S, Ghanem E. A bite to fight: front-line innate immune defenses against malaria parasites. Pathog Glob Health 2018; 112:1-12. [PMID: 29376476 DOI: 10.1080/20477724.2018.1429847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria infection caused by Plasmodium parasites remains a major health burden worldwide especially in the tropics and subtropics. Plasmodium exhibits a complex life cycle whereby it undergoes a series of developmental stages in the Anopheles mosquito vector and the vertebrate human host. Malaria severity is mainly attributed to the genetic complexity of the parasite which is reflected in the sophisticated mechanisms of invasion and evasion that allow it to overcome the immune responses of both its invertebrate and vertebrate hosts. In this review, we aim to provide an updated, clear and concise summary of the literature focusing on the interactions of the vertebrate innate immune system with Plasmodium parasites, namely sporozoites, merozoites, and trophozoites. The roles of innate immune factors, both humoral and cellular, in anti-Plasmodium defense are described with particular emphasis on the contribution of key innate players including neutrophils, macrophages, and natural killer cells to the clearance of liver and blood stage parasites. A comprehensive understanding of the innate immune responses to malaria parasites remains an important goal that would dramatically help improve the design of original treatment strategies and vaccines, both of which are urgently needed to relieve the burden of malaria especially in endemic countries.
Collapse
Affiliation(s)
- Stephanie Tannous
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| | - Esther Ghanem
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| |
Collapse
|
24
|
Novel Immunoinformatics Approaches to Design Multi-epitope Subunit Vaccine for Malaria by Investigating Anopheles Salivary Protein. Sci Rep 2018; 8:1125. [PMID: 29348555 PMCID: PMC5773588 DOI: 10.1038/s41598-018-19456-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Malaria fever has been pervasive for quite a while in tropical developing regions causing high morbidity and mortality. The causal organism is a protozoan parasite of genus Plasmodium which spreads to the human host by the bite of hitherto infected female Anopheles mosquito. In the course of biting, a salivary protein of Anopheles helps in blood feeding behavior and having the ability to elicit the host immune response. This study represents a series of immunoinformatics approaches to design multi-epitope subunit vaccine using Anopheles mosquito salivary proteins. Designed subunit vaccine was evaluated for its immunogenicity, allergenicity and physiochemical parameters. To enhance the stability of vaccine protein, disulfide engineering was performed in a region of high mobility. Codon adaptation and in silico cloning was also performed to ensure the higher expression of designed subunit vaccine in E. coli K12 expression system. Finally, molecular docking and simulation study was performed for the vaccine protein and TLR-4 receptor, to determine the binding free energy and complex stability. Moreover, the designed subunit vaccine was found to induce anti-salivary immunity which may have the ability to prevent the entry of Plasmodium sporozoites into the human host.
Collapse
|
25
|
Schrum JE, Crabtree JN, Dobbs KR, Kiritsy MC, Reed GW, Gazzinelli RT, Netea MG, Kazura JW, Dent AE, Fitzgerald KA, Golenbock DT. Cutting Edge: Plasmodium falciparum Induces Trained Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 200:1243-1248. [PMID: 29330325 DOI: 10.4049/jimmunol.1701010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022]
Abstract
Malarial infection in naive individuals induces a robust innate immune response. In the recently described model of innate immune memory, an initial stimulus primes the innate immune system to either hyperrespond (termed training) or hyporespond (tolerance) to subsequent immune challenge. Previous work in both mice and humans demonstrated that infection with malaria can both serve as a priming stimulus and promote tolerance to subsequent infection. In this study, we demonstrate that initial stimulation with Plasmodium falciparum-infected RBCs or the malaria crystal hemozoin induced human adherent PBMCs to hyperrespond to subsequent ligation of TLR2. This hyperresponsiveness correlated with increased H3K4me3 at important immunometabolic promoters, and these epigenetic modifications were also seen in Kenyan children naturally infected with malaria. However, the use of epigenetic and metabolic inhibitors indicated that the induction of trained immunity by malaria and its ligands may occur via a previously unrecognized mechanism(s).
Collapse
Affiliation(s)
- Jacob E Schrum
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Juliet N Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Katherine R Dobbs
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106
| | - Michael C Kiritsy
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - George W Reed
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605.,Corrona, LLC, Southborough, MA 01772
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 41270-901, Brazil.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; and
| | - James W Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106
| | - Arlene E Dent
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106.,Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106
| | | | - Douglas T Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
26
|
Abstract
Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration.
Collapse
|
27
|
Dobbs KR, Embury P, Vulule J, Odada PS, Rosa BA, Mitreva M, Kazura JW, Dent AE. Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria. JCI Insight 2017; 2:95352. [PMID: 28931756 DOI: 10.1172/jci.insight.95352] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory "intermediate" monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum-infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192-05), the Burroughs Wellcome Fund/American Society of Tropical Medicine and Hygiene, and the Rainbow Babies & Children's Foundation.
Collapse
Affiliation(s)
- Katherine R Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Paula Embury
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter S Odada
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Mandala WL, Msefula CL, Gondwe EN, Drayson MT, Molyneux ME, MacLennan CA. Monocyte activation and cytokine production in Malawian children presenting with P. falciparum malaria. Parasite Immunol 2017; 38:317-25. [PMID: 27027867 PMCID: PMC4850749 DOI: 10.1111/pim.12319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Malaria in malaria‐naïve adults is associated with an inflammatory response characterized by expression of specific activation markers on innate immune cells. Here, we investigate activation and adhesion marker expression, and cytokine production in monocytes from children presenting with cerebral malaria (CM, n = 36), severe malarial anaemia (SMA, n = 42) or uncomplicated malaria (UM, n = 66), and healthy aparasitemic children (n = 52) in Blantyre, Malawi. In all malaria groups, but particularly in the two severe malaria groups, monocyte expression of CD11b, CD11c, CD18, HLA‐DR and CD86, and percentages of TNF‐α‐ and IL‐6‐producing monocytes were lower than in healthy controls, while expression of CD11a, TLR2 and TLR4 was lower in children with severe malaria compared with controls. These levels mostly normalized during convalescence, but percentages of cytokine‐producing monocytes remained suppressed in children with SMA. In all malaria groups, especially the SMA group, a greater proportion of monocytes were loaded with haemozoin than among controls. In a P. falciparum hyperendemic area, monocytes in children with acute symptomatic malaria have reduced expression of adhesion molecules and activation markers and reduced inflammatory cytokine production. This immune suppression could be due to accumulation of haemozoin and/or previous exposure to P. falciparum.
Collapse
Affiliation(s)
- W L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, University of Liverpool, Liverpool, UK
| | - C L Msefula
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, University of Liverpool, Liverpool, UK
| | - E N Gondwe
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, University of Liverpool, Liverpool, UK
| | - M T Drayson
- Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M E Molyneux
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, University of Liverpool, Liverpool, UK.,Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - C A MacLennan
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK.,The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Hirako IC, Ataide MA, Faustino L, Assis PA, Sorensen EW, Ueta H, Araújo NM, Menezes GB, Luster AD, Gazzinelli RT. Splenic differentiation and emergence of CCR5 +CXCL9 +CXCL10 + monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun 2016; 7:13277. [PMID: 27808089 PMCID: PMC5097164 DOI: 10.1038/ncomms13277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells have an important role in immune surveillance. After being exposed to microbial components, they migrate to secondary lymphoid organs and activate T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11b+F4/80+CD11c+MHCIIhighDC-SIGNhighLy6c+ and express high levels of CCR5, CXCL9 and CXCL10 (CCR5+CXCL9/10+ MO-DCs). We propose that malaria-induced splenic MO-DCs take a reverse migratory route. After differentiation in the spleen, CCR5+CXCL9/10+ MO-DCs traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the influx of CD8+ T lymphocytes, leading to a lethal neuropathological syndrome. Cerebral malaria is an often fatal complication of Plasmodium infection involving accumulation of inflammatory leukocytes in the central nervous system. Here the authors map the development and trafficking of CCR5+ monocyte-derived dendritic cells from the spleen to the brains of Plasmodium berghei ANKA infected mice.
Collapse
Affiliation(s)
- Isabella C Hirako
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Marco A Ataide
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Lucas Faustino
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Patricia A Assis
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil
| | - Elizabeth W Sorensen
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Hisashi Ueta
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Natalia M Araújo
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Gustavo B Menezes
- Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Ricardo T Gazzinelli
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil.,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01655, USA
| |
Collapse
|
30
|
Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum. Parasitology 2016; 143:224-35. [PMID: 26864135 DOI: 10.1017/s0031182015000761] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.
Collapse
|
31
|
Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect Immun 2016; 84:1403-1412. [PMID: 26902728 DOI: 10.1128/iai.01522-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are sentinels of the immune system that uniquely prime naive cells and initiate adaptive immune responses. CD1c (BDCA-1) myeloid DCs (CD1c(+) mDCs) highly express HLA-DR, have a broad Toll-like receptor (TLR) repertoire, and secrete immune modulatory cytokines. To better understand immune responses to malaria, CD1c(+) mDC maturation and cytokine production were examined in healthy volunteers before and after experimental intravenous Plasmodium falciparum infection with 150- or 1,800-parasite-infected red blood cells (pRBCs). After either dose, CD1c(+) mDCs significantly reduced HLA-DR expression in prepatent infections. Circulating CD1c(+) mDCs did not upregulate HLA-DR after pRBC or TLR ligand stimulation and exhibited reduced CD86 expression. At peak parasitemia, CD1c(+) mDCs produced significantly more tumor necrosis factor (TNF), whereas interleukin-12 (IL-12) production was unchanged. Interestingly, only the 1,800-pRBC dose caused a reduction in the circulating CD1c(+) mDC count with evidence of apoptosis. The 1,800-pRBC dose produced no change in T cell IFN-γ or IL-2 production at peak parasitemia or at 3 weeks posttreatment. Overall, CD1c(+) mDCs are compromised by P. falciparum exposure, with impaired HLA-DR and CD86 expression, and have an increased capacity for TNF but not IL-12 production. A first prepatent P. falciparum infection is sufficient to modulate CD1c(+) mDC responsiveness, likely contributing to hampered effector T cell cytokine responses and assisting parasite immune evasion.
Collapse
|
32
|
Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O'Neill LAJ, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science 2016; 352:aaf1098. [PMID: 27102489 DOI: 10.1126/science.aaf1098] [Citation(s) in RCA: 1743] [Impact Index Per Article: 193.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, Bonn University, Bonn, Germany. Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
33
|
Domingues W, Kanunfre KA, Rodrigues JC, Teixeira LE, Yamamoto L, Okay TS. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS. Rev Inst Med Trop Sao Paulo 2016; 58:30. [PMID: 27074324 PMCID: PMC4826083 DOI: 10.1590/s1678-9946201658030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation.
Collapse
Affiliation(s)
- Wilson Domingues
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Aparecida Kanunfre
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Jonatas Cristian Rodrigues
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro Emidio Teixeira
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lidia Yamamoto
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Thelma Suely Okay
- Laboratory of Seroepidemiology and Immunobiology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Mbengue B, Niang B, Niang MS, Varela ML, Fall B, Fall MM, Diallo RN, Diatta B, Gowda DC, Dieye A, Perraut R. Inflammatory cytokine and humoral responses to Plasmodium falciparum glycosylphosphatidylinositols correlates with malaria immunity and pathogenesis. Immun Inflamm Dis 2016; 4:24-34. [PMID: 27042299 PMCID: PMC4768067 DOI: 10.1002/iid3.89] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
Pro-inflammatory cytokines induced by glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum contribute to malaria pathogenesis and hence, the naturally acquired anti-GPI antibody thought to provide protection against severe malaria (SM) by neutralizing the stimulatory activity of GPIs. In previous studies, the anti-GPI antibody levels increased with age in parallel with the development of acquired immunity, and high levels of anti-GPI antibodies were associated with mild malaria (MM) cases. In the present study, the relationship between the levels of pro-inflammatory cytokines and anti-GPI IgG antibody responses, parasitemia, and the clinical outcomes were evaluated in SM and mild malaria (MM) patients. Sera from a total of 110 SM and 72 MM cases after excluding of ineligible patients were analyzed for the levels of anti-GPI antibodies, IgG subclasses, and cytokine responses by ELISA. While the total anti-GPI antibody levels were similar in overall SM and MM groups, they were significantly higher in surviving SM patients than in fatal SM cases. In the case of cytokines, the TNF-α and IL-6 levels were significantly higher in SM compared to MM, whereas the IL-10 levels were similar in both groups. The data presented here demonstrate that high levels of the circulatory pro-inflammatory, TNF-α, and IL-6, are indicators of malaria severity, whereas anti-inflammatory cytokine IL-10 level does not differentiate SM and MM cases. Further, among SM patients, relatively low levels of anti-GPI antibodies are indicators of fatal outcomes compared to survivors, suggesting that anti-GPI antibodies provide some level of protection against SM fatality.
Collapse
Affiliation(s)
- Babacar Mbengue
- Service d'Immunologie Université Cheikh Anta Diop de DakarUCADDakarSenegal
- Unité d'ImmunogénétiqueInstitut Pasteur de Dakar, IPDDakarSenegal
| | - Birahim Niang
- Service de RéanimationHôpital Principal de Dakar, HPDDakarSenegal
| | | | | | - Becaye Fall
- Fédération des laboratoiresHôpital Principal de Dakar, HPDDakarSenegal
| | | | | | - Bacary Diatta
- Service de RéanimationHôpital Principal de Dakar, HPDDakarSenegal
| | - D. Channe Gowda
- Department of Biochemistry and Molecular BiologyPennsylvania State University College of Medicine, Milton S. Hershey Medical Center PennsylvaniaHersheyUSA
| | - Alioune Dieye
- Service d'Immunologie Université Cheikh Anta Diop de DakarUCADDakarSenegal
- Unité d'ImmunogénétiqueInstitut Pasteur de Dakar, IPDDakarSenegal
| | - Ronald Perraut
- Unité d'ImmunologieInstitut Pasteur de Dakar, IPDDakarSenegal
| |
Collapse
|
35
|
Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children. mBio 2016; 7:e01300-15. [PMID: 26884431 PMCID: PMC4791846 DOI: 10.1128/mbio.01300-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. There were approximately 198 million cases of malaria worldwide in 2013, with an estimated 584,000 deaths occurring mostly in sub-Saharan African children. CM is a severe and rare form of Plasmodium falciparum infection and is associated with high rates of mortality and neurological morbidity, despite antimalarial treatment. A greater understanding of the pathophysiology of CM would allow the development of adjunctive therapies to improve clinical outcomes. A hallmark of CM is cerebral microvasculature sequestration of P. falciparum-infected red blood cells (iRBCs), which results in vasculopathy in some patients. Our data provide a global analysis of the host pathways associated with CM and newly identify an association of activated neutrophils with brain iRBC sequestration. Products of activated neutrophils could alter endothelial cell receptors and coagulation to facilitate iRBC adherence. Future studies can now examine the role of neutrophils in CM pathogenesis to improve health outcomes.
Collapse
|
36
|
Panigrahi S, Kar A, Tripathy S, Mohapatra MK, Dhangadamajhi G. Genetic predisposition of variants in TLR2 and its co-receptors to severe malaria in Odisha, India. Immunol Res 2015; 64:291-302. [DOI: 10.1007/s12026-015-8749-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
DNA-Containing Immunocomplexes Promote Inflammasome Assembly and Release of Pyrogenic Cytokines by CD14+ CD16+ CD64high CD32low Inflammatory Monocytes from Malaria Patients. mBio 2015; 6:e01605-15. [PMID: 26578679 PMCID: PMC4659466 DOI: 10.1128/mbio.01605-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflammation. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulating anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an NF-κB transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha [TNF-α] and interleukin-1β [IL-1β])in peripheral blood mononuclear cells from acute malaria patients was found to be a CD14+ CD16 (FcγRIIIA)+ CD64 (FcγRI)high CD32 (FcγRIIB)low monocyte subset. Monocytes from convalescent patients were predominantly of the classical phenotype (CD14+ CD16−) that produces high levels of IL-10 and lower levels of TNF-α and IL-1β in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions with broad applications to systemic inflammatory diseases. Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease.
Collapse
|
38
|
IFN-γ Priming Effects on the Maintenance of Effector Memory CD4(+) T Cells and on Phagocyte Function: Evidences from Infectious Diseases. J Immunol Res 2015; 2015:202816. [PMID: 26509177 PMCID: PMC4609814 DOI: 10.1155/2015/202816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Although it has been established that effector memory CD4+ T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γ priming as a mechanism affecting both innate immune cells and effector memory CD4+ T cells. Suboptimal concentrations of IFN-γ are seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4+ T cells. Thus, IFN-γ priming can thus be considered an important bridge between innate and adaptive immunity.
Collapse
|
39
|
Thomé R, Bombeiro AL, Issayama LK, Rapôso C, Lopes SCP, da Costa TA, Di Gangi R, Ferreira IT, Longhini ALF, Oliveira ALR, da Cruz Höfling MA, Costa FTM, Verinaud L. Exacerbation of autoimmune neuro-inflammation in mice cured from blood-stage Plasmodium berghei infection. PLoS One 2014; 9:e110739. [PMID: 25329161 PMCID: PMC4201583 DOI: 10.1371/journal.pone.0110739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023] Open
Abstract
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P. berghei NK65 and treated with chloroquine (CQ), with MOG35-55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35-55-immunized mice after adoptive transfer of P. berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luidy Kazuo Issayama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarina Rapôso
- Department of Histology and Embryology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Stefanie Costa Pinto Lopes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Isadora Tassinari Ferreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
40
|
Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. Innate sensing of malaria parasites. Nat Rev Immunol 2014; 14:744-57. [PMID: 25324127 DOI: 10.1038/nri3742] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immune receptors have a key role in immune surveillance by sensing microorganisms and initiating protective immune responses. However, the innate immune system is a classic 'double-edged sword' that can overreact to pathogens, which can have deleterious effects and lead to clinical manifestations. Recent studies have unveiled the complexity of innate immune receptors that function as sensors of Plasmodium spp. in the vertebrate host. This Review highlights the cellular and molecular mechanisms by which Plasmodium infection is sensed by different families of innate immune receptors. We also discuss how these events mediate both host resistance to infection and the pathogenesis of malaria.
Collapse
Affiliation(s)
- Ricardo T Gazzinelli
- 1] Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 01605-02324 Worcester, Massachusetts, USA. [2] Laboratório de Imunopatologia, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brazil. [3] Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Parisa Kalantari
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 01605-02324 Worcester, Massachusetts, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 01605-02324 Worcester, Massachusetts, USA
| | - Douglas T Golenbock
- 1] Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 01605-02324 Worcester, Massachusetts, USA. [2] Laboratório de Imunopatologia, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
41
|
Antonelli LRV, Leoratti FMS, Costa PAC, Rocha BC, Diniz SQ, Tada MS, Pereira DB, Teixeira-Carvalho A, Golenbock DT, Gonçalves R, Gazzinelli RT. The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria. PLoS Pathog 2014; 10:e1004393. [PMID: 25233271 PMCID: PMC4169496 DOI: 10.1371/journal.ppat.1004393] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.
Collapse
Affiliation(s)
- Lis R. V. Antonelli
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Fabiana M. S. Leoratti
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A. C. Costa
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno C. Rocha
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suelen Q. Diniz
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro S. Tada
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil
| | - Dhelio B. Pereira
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil
| | - Andrea Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Douglas T. Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Kamau E, Alemayehu S, Feghali KC, Komisar J, Regules J, Cowden J, Ockenhouse CF. Measurement of parasitological data by quantitative real-time PCR from controlled human malaria infection trials at the Walter Reed Army Institute of Research. Malar J 2014; 13:288. [PMID: 25066459 PMCID: PMC4128310 DOI: 10.1186/1475-2875-13-288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background The use of quantitative real-time PCR (qPCR) has allowed for precise quantification of parasites in the prepatent period and greatly improved the reproducibility and statistical power of controlled human malaria infection (CHMI) trials. Parasitological data presented here are from non-immunized, control-challenged subjects who participated in two CHMI trials conducted at the Walter Reed Army Institute of Research (WRAIR). Methods Standardized sporozoite challenge was achieved through the bite of five Anopheles stephensi mosquitoes infected with the 3D7clone of the NF54 strain of Plasmodium falciparum. Blood smears were scored positive when two unambiguous parasites were found. Analysis of parasitological PCR data was performed on log-transformed data using an independent sample t-test when comparing the two studies. The multiplication rate of blood-stage parasites was estimated using the linear model. Results On average, parasites were detected 4.91 days (95% CI = 4.190 to 5.627) before smears. The earliest parasites were detected within 120 hours (5.01 days) after challenge. Parasite densities showed consistent cyclic patterns of blood-stage parasite growth in all volunteers. The parasite multiplication rates for both studies was 8.18 (95% CI = 6.162 to 10.20). Data showed that at low parasite densities, a combination of sequestration and stochastic effects of low copy number DNA may impact qPCR detection and the parasite detection limit. Conclusion Smear positive is an endpoint which antimalarial rescue is imperative whereas early detection of parasitological data by qPCR can allow for better anticipation of the endpoint. This would allow for early treatment to reduce clinical illness and risk for study participants. To use qPCR as the primary endpoint in CHMI trials, an algorithm of two positives by qPCR where one of the positives must have parasite density of at least 2 parasites/μL is proposed.
Collapse
Affiliation(s)
- Edwin Kamau
- Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Gonçalves RM, Lima NF, Ferreira MU. Parasite virulence, co-infections and cytokine balance in malaria. Pathog Glob Health 2014; 108:173-8. [PMID: 24854175 DOI: 10.1179/2047773214y.0000000139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Strong early inflammatory responses followed by a timely production of regulatory cytokines are required to control malaria parasite multiplication without inducing major host pathology. Here, we briefly examine the homeostasis of inflammatory responses to malaria parasite species with varying virulence levels and discuss how co-infections with bacteria, viruses, and helminths can modulate inflammation, either aggravating or alleviating malaria-related morbidity.
Collapse
|
44
|
Punsawad C. Effect of malaria components on blood mononuclear cells involved in immune response. Asian Pac J Trop Biomed 2014; 3:751-6. [PMID: 23998019 DOI: 10.1016/s2221-1691(13)60151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, 222 Thasala District, Nakhon Si Thammarat 80161, Thailand.
| |
Collapse
|
45
|
Ataide MA, Andrade WA, Zamboni DS, Wang D, Souza MDC, Franklin BS, Elian S, Martins FS, Pereira D, Reed G, Fitzgerald KA, Golenbock DT, Gazzinelli RT. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog 2014; 10:e1003885. [PMID: 24453977 PMCID: PMC3894209 DOI: 10.1371/journal.ppat.1003885] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14+CD16−Caspase-1+ and CD14dimCD16+Caspase-1+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria. Together Plasmodium falciparum and P. vivax infect approximately 250 million individuals, reaping life of near one million children every year. Extensive research on malaria pathogenesis has funneled into the consensus that the clinical manifestations are often a consequence of the systemic inflammation. Importantly, secondary bacterial and viral infections potentiate this inflammatory reaction being important co-factors for the development of severe disease. One of the hallmarks of malaria syndrome is the paroxysm, which is characterized by high fever associated with peak of parasitemia. In this study we dissected the mechanisms of induction and the importance of the pyrogenic cytokine, IL-1β in the pathogenesis of malaria. Our results demonstrate the critical role of the innate immune receptors named Toll-Like Receptors and inflammasome on induction, processing and release of active form of IL-1β during malaria. Importantly, we provide evidences that bacterial superinfection further potentiates the Plasmodium-induced systemic inflammation, leading to the release of bulk amounts of IL-1β and severe disease. Hence, this study uncovers new checkpoints that could be targeted for preventing systemic inflammation and severe malaria.
Collapse
MESH Headings
- Animals
- Bacterial Infections/genetics
- Bacterial Infections/immunology
- Bacterial Infections/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Caspase 1/genetics
- Caspase 1/immunology
- Caspase 1/metabolism
- Female
- Humans
- Inflammasomes/genetics
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Malaria, Vivax/immunology
- Malaria, Vivax/metabolism
- Malaria, Vivax/microbiology
- Malaria, Vivax/pathology
- Male
- Mice
- Mice, Knockout
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein
- Plasmodium chabaudi/immunology
- Plasmodium chabaudi/metabolism
- Plasmodium vivax/immunology
- Plasmodium vivax/metabolism
- Shock, Septic/genetics
- Shock, Septic/immunology
- Shock, Septic/metabolism
- Shock, Septic/pathology
Collapse
Affiliation(s)
- Marco A. Ataide
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Warrison A. Andrade
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dario S. Zamboni
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Donghai Wang
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Maria do Carmo Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bernardo S. Franklin
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Samir Elian
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano S. Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dhelio Pereira
- Centro de Pesquisas em Medicina Tropical, Porto Velho, Rondônia, Brazil
| | - George Reed
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Douglas T. Golenbock
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ricardo T. Gazzinelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Laurens MB, Billingsley P, Richman A, Eappen AG, Adams M, Li T, Chakravarty S, Gunasekera A, Jacob CG, Sim BKL, Edelman R, Plowe CV, Hoffman SL, Lyke KE. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection. PLoS One 2013; 8:e68969. [PMID: 23874828 PMCID: PMC3712927 DOI: 10.1371/journal.pone.0068969] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Controlled human malaria infection (CHMI) is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf) sporozoite (SPZ)-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP) was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%); 12 of 19 (63%) on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8). The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44). Quantitative polymerase chain reaction (qPCR) detected parasites an average of 79.8 hours (range 43.8-116.7) before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200). Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis. TRIAL REGISTRATION ClinicalTrials.gov NCT00744133 NCT00744133.
Collapse
Affiliation(s)
- Matthew B Laurens
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malaria modifies neonatal and early-life toll-like receptor cytokine responses. Infect Immun 2013; 81:2686-96. [PMID: 23690399 DOI: 10.1128/iai.00237-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protection from infections in early life relies extensively on innate immunity, but it is unknown whether and how maternal infections modulate infants' innate immune responses, thereby altering susceptibility to infections. Plasmodium falciparum causes pregnancy-associated malaria (PAM), and epidemiological studies have shown that PAM enhances infants' susceptibility to infection with P. falciparum. We investigated how PAM-mediated exposures in utero affect innate immune responses and their relationship with infection in infancy. In a prospective study of mothers and their babies in Benin, we investigated changes in Toll-like receptor (TLR)-mediated cytokine responses related to P. falciparum infections. Whole-blood samples from 134 infants at birth and at 3, 6, and 12 months of age were stimulated with agonists specific for TLR3, TLR4, TLR7/8, and TLR9. TLR-mediated interleukin 6 (IL-6) and IL-10 production was robust at birth and then stabilized, whereas tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses were weak at birth and then increased. In multivariate analyses, maternal P. falciparum infections at delivery were associated with significantly higher TLR3-mediated IL-6 and IL-10 responses in the first 3 months of life (P < 0.05) and with significantly higher TLR3-, TLR7/8-, and TLR9-mediated TNF-α responses between 6 and 12 months of age (P < 0.05). Prospective analyses showed that higher TLR3- and TLR7/8-mediated IL-10 responses at birth were associated with a significantly higher risk of P. falciparum infection in infancy (P < 0.05). Neonatal and infant intracellular TLR-mediated cytokine responses are conditioned by in utero exposure through PAM late in pregnancy. Enhanced TLR-mediated IL-10 responses at birth are associated with an increased risk of P. falciparum infection, suggesting a compromised ability to combat infection in early life.
Collapse
|
48
|
Olupot-Olupot P, Urban BC, Jemutai J, Nteziyaremye J, Fanjo HM, Karanja H, Karisa J, Ongodia P, Bwonyo P, Gitau EN, Talbert A, Akech S, Maitland K. Endotoxaemia is common in children with Plasmodium falciparum malaria. BMC Infect Dis 2013; 13:117. [PMID: 23497104 PMCID: PMC3605375 DOI: 10.1186/1471-2334-13-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/27/2013] [Indexed: 02/04/2023] Open
Abstract
Background Children presenting to hospital with recent or current Plasmodium falciparum malaria are at increased the risk of invasive bacterial disease, largely enteric gram-negative organisms (ENGO), which is associated with increased mortality and recurrent morbidity. Although incompletely understood, the most likely source of EGNO is the bowel. We hypothesised that as a result of impaired gut-barrier function endotoxin (lipopolysaccharide), present in the cell-wall of EGNO and in substantial quantities in the gut, is translocated into the bloodstream, and contributes to the pathophysiology of children with severe malaria. Methods We conducted a prospective study in 257 children presenting with malaria to two hospitals in Kenya and Uganda. We analysed the clinical presentation, endotoxin and cytokine concentration. Results Endotoxaemia (endotoxin activity ≥0.4 EAA Units) was observed in 71 (27.6%) children but its presence was independent of both disease severity and outcome. Endotoxaemia was more frequent in children with severe anaemia but not specifically associated with other complications of malaria. Endotoxaemia was associated with a depressed inflammatory and anti-inflammatory cytokine response. Plasma endotoxin levels in severe malaria negatively correlated with IL6, IL10 and TGFβ (Spearman rho: TNFα: r=−0.122, p=0.121; IL6: r=−0.330, p<0.0001; IL10: r=−0.461, p<0.0001; TGFβ: r=−0.173, p<0.027). Conclusions Endotoxaemia is common in malaria and results in temporary immune paralysis, similar to that observed in patients with sepsis and experimentally-induced endotoxaemia. Intense sequestration of P. falciparum-infected erythrocytes within the endothelial bed of the gut has been observed in pathological studies and may lead to gut-barrier dysfuction. The association of endotoxaemia with the anaemia phenotype implies that it may contribute to the dyserythropoesis accompanying malaria through inflammation. Both of these factors feasibly underpin the susceptibility to EGNO co-infection. Further research is required to investigate this initial finding, with a view to future treatment trials targeting mechanism and appropriate antimicrobial treatment.
Collapse
|
49
|
Epstein JE. Taking a bite out of malaria: controlled human malaria infection by needle and syringe. Am J Trop Med Hyg 2013; 88:3-4. [PMID: 23303797 PMCID: PMC3541742 DOI: 10.4269/ajtmh.2013.12-0715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Judith E. Epstein
- *Address correspondence to Judith E. Epstein, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910. E-mail:
| |
Collapse
|
50
|
|