1
|
Fukaura R, Tanahashi K, Omi M, Takeichi T, Akiyama M. Nonsense Variant in CYP4F22 Causes Malformation of Corneocyte Lipid Envelopes in a Lamellar Ichthyosis Patient. Acta Derm Venereol 2025; 105:adv41072. [PMID: 39907505 PMCID: PMC11812275 DOI: 10.2340/actadv.v105.41072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
- Ryo Fukaura
- Nagoya University Graduate School of Medicine, Department of Dermatology, Aichi-ken, Japan
| | - Kana Tanahashi
- Nagoya University Graduate School of Medicine, Department of Dermatology, Aichi-ken, Japan
| | - Michiya Omi
- Nagoya University Graduate School of Medicine, Department of Dermatology, Aichi-ken, Japan
| | - Takuya Takeichi
- Nagoya University Graduate School of Medicine, Department of Dermatology, Aichi-ken, Japan
| | - Masashi Akiyama
- Nagoya University Graduate School of Medicine, Department of Dermatology, Aichi-ken, Japan.
| |
Collapse
|
2
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
3
|
Giangrazi F, Buffa D, Lloyd AT, Redmond AK, Glover LE, O'Farrelly C. Evolutionary Analysis of the Mammalian IL-17 Cytokine Family Suggests Conserved Roles in Female Fertility. Am J Reprod Immunol 2024; 92:e13907. [PMID: 39177066 DOI: 10.1111/aji.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
PROBLEM The interleukin-17 (IL-17) family includes pro-inflammatory cytokines IL-17A-F with important roles in mucosal defence, barrier integrity and tissue regeneration. IL-17A can be dysregulated in fertility complications, including pre-eclampsia, endometriosis and miscarriage. Because mammalian subclasses (eutherian, metatherian, and prototherian) have different related reproductive strategies, IL-17 genes and proteins were investigated in the three mammalian classes to explore their involvement in female fertility. METHOD OF STUDY Gene and protein sequences for IL-17s are found in eutherian, metatherian and prototherian mammals. Through synteny and multiple sequence protein alignment, the relationships among mammalian IL-17s were inferred. Publicly available datasets of early pregnancy stages and female fertility in therian mammals were collected and analysed to retrieve information on IL-17 expression. RESULTS Synteny mapping and phylogenetic analyses allowed the classification of mammalian IL-17 family orthologs of human IL-17. Despite differences in their primary amino acid sequence, metatherian and prototherian IL-17s share the same tertiary structure as human IL-17s, suggesting similar functions. The analysis of available datasets for female fertility in therian mammals shows up-regulation of IL-17A and IL-17D during placentation. IL-17B and IL-17D are also found to be over-expressed in human fertility complication datasets, such as endometriosis or recurrent implantation failure. CONCLUSIONS The conservation of the IL-17 gene and protein across mammals suggests similar functions in all the analysed species. Despite significant differences, the upregulation of IL-17 expression is associated with the establishment of pregnancy in eutherian and metatherian mammals. The dysregulation of IL-17s in human reproductive disorders suggests them as a potential therapeutic target.
Collapse
Affiliation(s)
- Federica Giangrazi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dafne Buffa
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andrew T Lloyd
- Department of Science and Health, Institute of Technology, Carlow, Ireland
| | | | - Louise E Glover
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Reproductive Medicine, Merrion Fertility Clinic, Dublin 2, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kawamura K, Matsumura Y, Kawamura T, Araki H, Hamada N, Kuramoto K, Yagi H, Onoyama I, Asanoma K, Kato K. Endometrial senescence is mediated by interleukin 17 receptor B signaling. Cell Commun Signal 2024; 22:363. [PMID: 39010112 PMCID: PMC11247761 DOI: 10.1186/s12964-024-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND We previously identified Il17RB, a member of the IL17 superfamily, as a candidate marker gene for endometrial aging. While IL17RB has been linked to inflammation and malignancies in several organ systems, its function in the endometrium has not been investigated and is thus poorly understood. In the present study, we performed a functional analysis of this receptor with the aim of determining the effects of its age-associated overexpression on the uterine environment. METHODS We analyzed IL17RB-related signaling pathways and downstream gene expression in an immortalized human endometrial glandular epithelial cell line ("hEM") forced to express the receptor via lentiviral transduction ("IL17RB-hEM"). We also prepared endometrial organoids from human endometrial tissue sourced from hysterectomy patients ("patient-derived EOs") and exposed them to cytokines that are upregulated by IL17RB expression to investigate changes in organoid-forming capacity and senescence markers. We analyzed RNA-seq data (GEO accession number GSE132886) from our previous study to identify the signaling pathways associated with altered IL17RB expression. We also analyzed the effects of the JNK pathway on organoid-forming capacity. RESULTS Stimulation with interleukin 17B enhanced the NF-κB pathway in IL17RB-hEM, resulting in significantly elevated expression of the genes encoding the senescence associated secretory phenotype (SASP) factors IL6, IL8, and IL1β. Of these cytokines, IL1β inhibited endometrial organoid growth. Bioinformatics analysis showed that the JNK signaling pathway was associated with age-related variation in IL17RB expression. When IL17RB-positive cells were cultured in the presence of IL17B, their organoid-forming capacity was slightly but non-significantly lower than in unexposed IL17RB-positive cells, but when IL17B was paired with a JNK inhibitor (SP600125), it was restored to control levels. Further, IL1β exposure significantly reduced organoid-forming capacity and increased p21 expression in endometrial organoids relative to non-exposure (control), but when IL1β was paired with SP600125, both indicators were restored to levels comparable to the control condition. CONCLUSIONS We have revealed an association between IL17RB, whose expression increases in the endometrial glandular epithelium with advancing age, and cellular senescence. Using human endometrial organoids as in vitro model, we found that IL1β inhibits cell proliferation and leads to endometrial senescence via the JNK pathway.
Collapse
Affiliation(s)
- Keiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Teruhiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Business and Technology Management, Faculty of Economics, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazutaka Kuramoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Chen Z, Zeng J, Pei X, Zhao J, Zhao F, Zhang G, Liang K, Li J, Zhao X. Causal Relationships Between Circulating Inflammatory Proteins and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study. Nat Sci Sleep 2024; 16:787-800. [PMID: 38894977 PMCID: PMC11184171 DOI: 10.2147/nss.s458637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose Clinical studies have demonstrated the intricate association between the onset and progression of obstructive sleep apnea (OSA) and the activation of the inflammatory cascade reaction. This study delves into investigating the causal links between 91 circulating inflammatory proteins (CIPs) and OSA through the application of Mendelian randomization (MR) techniques. Methods Utilizing genetic data on OSA sourced from the Finnish Biobank (FinnGen) Genome-wide Association Studies (GWAS) of the European population, alongside summary-level GWAS data of CIPs from 14,824 European participants, we conducted a bidirectional MR study. Results This study suggests that several factors may be associated with the risk of OSA. IL-17C (odds ratio (OR) = 1.090, p = 0.0311), CCL25 (OR = 1.079, p = 0.0493), FGF-5 (OR = 1.090, p = 0.0003), CD5 (OR = 1.055, p = 0.0477), and TNFSF14 (OR = 1.092, p = 0.0008) may positively correlate with OSA risk. Conversely, IL-20RA (OR = 0.877, p = 0.0107), CCL19 (OR = 0.933, p = 0.0237), MIP-1 alpha (OR = 0.906, p = 0.0042), Flt3L (OR = 0.941, p = 0.0019), CST5 (OR = 0.957, p = 0.0320), OPG (OR = 0.850, p = 0.0001), and TRAIL (OR = 0.956, p = 0.0063) may reduce the risk of OSA. Additionally, elevated levels of IL-10RA (OR = 1.153, p = 0.0478) were observed as a consequence of OSA. Conversely, OSA may potentially lead to decreased levels of CCL28 (OR = 0.875, p = 0.0317), DNER (OR = 0.874, p = 0.0324), FGF-21 (OR = 0.846, p = 0.0344), and CSF-1 (OR = 0.842, p = 0.0396). Conclusion Through this bidirectional MR study, we have identified 12 upstream regulatory proteins and 5 downstream effect proteins that are linked to OSA. These findings hold promise in providing potential therapeutic targets for the inflammatory mechanisms underlying OSA.
Collapse
Affiliation(s)
- Zhengjie Chen
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jinjie Zeng
- Department of Respiratory, The Third Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Xiang Pei
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jingjing Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Fang Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Guoxin Zhang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Kexin Liang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jiarong Li
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Xiaoyun Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Chest Hospital of Tianjin University, Tianjin, People’s Republic of China
- DeepinBreath Union Laboratory, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Garcia EM, Lenz JD, Schaub RE, Hackett KT, Salgado-Pabón W, Dillard JP. IL-17C is a driver of damaging inflammation during Neisseria gonorrhoeae infection of human Fallopian tube. Nat Commun 2024; 15:3756. [PMID: 38704381 PMCID: PMC11069574 DOI: 10.1038/s41467-024-48141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.
Collapse
Affiliation(s)
- Erin M Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Zhu J, Wei J, Lin Y, Tang Y, Su Z, Li L, Liu B, Cai X. Inhibition of IL-17 signaling in macrophages underlies the anti-arthritic effects of halofuginone hydrobromide: Network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2024; 24:105. [PMID: 38413973 PMCID: PMC10900594 DOI: 10.1186/s12906-024-04397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaming Wei
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoli Su
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China.
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiong Cai
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
8
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, Li F. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci 2023; 24:13539. [PMID: 37686343 PMCID: PMC10487659 DOI: 10.3390/ijms241713539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The members of the cytokine interleukin 17 (IL-17) family, along with their receptors (IL-17R), are vital players in a range of inflammatory diseases and cancer. Although generally regarded as proinflammatory, the effects they exhibit on cancer progression are a double-edged sword, with both antitumor and protumor activities being discovered. There is growing evidence that the IL-17 signaling pathways have significant impacts on the tumor microenvironment (TME), immune response, and inflammation in various types of cancer, including pancreatic cancer. However, the detailed mechanistic functions of the IL-17/IL-17R families in pancreatic cancer were rarely systematically elucidated. This review considers the role of the IL-17/IL-17R families in inflammation and tumor immunity and elaborates on the mechanistic functions and correlations of these members with pathogenesis, progression, and chemoresistance in pancreatic cancer. By summarizing the advanced findings on the role of IL-17/IL17R family members and IL-17 signaling pathways at the molecular level, cellular level, and disease level in pancreatic cancer, this review provides an in-depth discussion on the potential of IL-17/IL-17R as prognostic markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Boyue Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
9
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
10
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
11
|
Smith AD, Chen C, Cheung L, Dawson HD. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front Nutr 2023; 9:1057318. [PMID: 36704785 PMCID: PMC9871501 DOI: 10.3389/fnut.2022.1057318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.
Collapse
|
12
|
Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB, Alhumaydhi FA, Khalil AA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr Pharm Des 2023; 29:2078-2090. [PMID: 37670700 DOI: 10.2174/1381612829666230904150808] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The IL-17 (interleukin 17) family consists of six structurally related pro-inflammatory cytokines, namely IL-17A to IL-17F. These cytokines have garnered significant scientific interest due to their pivotal role in the pathogenesis of various diseases. Notably, a specific subset of T-cells expresses IL-17 family members, highlighting their importance in immune responses against microbial infections. INTRODUCTION IL-17 cytokines play a critical role in host defense mechanisms by inducing cytokines and chemokines, recruiting neutrophils, modifying T-cell differentiation, and stimulating the production of antimicrobial proteins. Maintaining an appropriate balance of IL-17 is vital for overall health. However, dysregulated production of IL-17A and other members can lead to the pathogenesis of numerous inflammatory and autoimmune diseases. METHOD This review provides a comprehensive overview of the IL-17 family and its involvement in several inflammatory and autoimmune diseases. Relevant literature and research studies were analyzed to compile the data presented in this review. RESULTS IL-17 cytokines, particularly IL-17A, have been implicated in the development of various inflammatory and autoimmune disorders, including multiple sclerosis, Hashimoto's thyroiditis, systemic lupus erythematosus, pyoderma gangrenosum, autoimmune hepatic disorders, rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, osteoarthritis, and graft-versus-host disease. Understanding the role of IL-17 in these diseases is crucial for developing targeted therapeutic strategies. CONCLUSION The significant involvement of IL-17 cytokines in inflammatory and autoimmune diseases underscores their potential as therapeutic targets. Current treatments utilizing antibodies against IL-17 cytokines and IL-17RA receptors have shown promise in managing these conditions. This review consolidates the understanding of IL-17 family members and their roles, providing valuable insights for the development of novel immunomodulators to effectively treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Farhin Muntaha Tasnim
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritionals Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Šteigerová M, Šíma M, Slanař O. Pathogenesis of Collagen-Induced Arthritis: Role of Immune Cells with Associated Cytokines and Antibodies, Comparison with Rheumatoid Arthritis. Folia Biol (Praha) 2023; 69:41-49. [PMID: 38063000 DOI: 10.14712/fb2023069020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Collagen-induced arthritis is the most com-mon in vivo model of rheumatoid arthritis used for investigation of new potential therapies in preclinical research. Rheumatoid arthritis is a systemic inflammatory and autoimmune disease affecting joints, accompanied by significant extra-articular symptoms. The pathogenesis of rheumatoid arthritis and collagen-induced arthritis involves a so far properly unexplored network of immune cells, cytokines, antibodies and other factors. These agents trigger the autoimmune response leading to polyarthritis with cell infiltration, bone and cartilage degeneration and synovial cell proliferation. Our review covers the knowledge about cytokines present in the rat collagen-induced arthritis model and the factors affecting them. In addition, we provide a comparison with rheumatoid arthritis and a description of their important effects on the development of both diseases. We discuss the crucial roles of various immune cells (subtypes of T and B lymphocytes, dendritic cells, monocytes, macrophages), fibroblast-like synoviocy-tes, and their related cytokines (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, IL-23, GM-CSF, TGF-β). Finally, we also focus on key antibodies (rheu-matoid factor, anti-citrullinated protein antibodies, anti-collagen II antibodies) and tissue-degrading enzymes (matrix metalloproteinases).
Collapse
Affiliation(s)
- Monika Šteigerová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
14
|
Pharmacology Mechanism of Polygonum Bistorta in Treating Ulcerative Colitis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6461560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim. Ulcerative colitis (UC) is a refractory gastrointestinal disease. The study aimed to expound the mechanism of Polygonum bistorta (PB) in treating UC by network pharmacology, molecular docking, and experiment verification. Methods. The compositions and targets of PB and UC-associated targets were obtained by searching the websites and the literature. The potential mechanism of PB in the treatment of UC was predicted by protein-protein interaction network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecule docking was performed by AutoDock. In vitro experiments explored the mechanism of quercetin (Que), the main active composition of PB, in treating UC. Results. Six compositions, 139 PB targets, and 934 UC-associated targets were obtained. 93 overlapping targets between PB and UC were identified, and 18 of them were the core targets. 467 biological processes, 10 cell components, and 30 molecular functions were obtained by GO analysis. 102 pathways were enriched through KEGG analysis. Among them, the IL-17 signaling pathway had high importance. The core targets FOS, JUN, IL-1β, CCL2, CXCL8, and MMP9 could dock with Que successfully. Act1, TRAF6, FOS, and JUN were identified by KEGG as the key proteins of the IL-17 signaling pathway. The expressions of the abovementioned proteins were increased in Caco-2 cells stimulated by Dextran sulfate sodium and decreased after being treated by Que. Conclusion. PB might treat UC by downregulating the IL-17 signaling pathway. It is worth doing further research on PB treating UC in vivo.
Collapse
|
15
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
16
|
El-Helbawy NF, El Zowalaty AE. Identification of Age-Associated Transcriptomic Changes Linked to Immunotherapy Response in Primary Melanoma. Curr Issues Mol Biol 2022; 44:4118-4131. [PMID: 36135194 PMCID: PMC9497511 DOI: 10.3390/cimb44090282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Melanoma is a lethal form of skin cancer. Immunotherapeutic agents such as anti-PD-1 (pembrolizumab and nivolumab) and anti-CTLA-4 (ipilimumab) have revolutionized melanoma treatment; however, drug resistance is rapidly acquired. Several studies have reported an increase in melanoma rates in older patients. Thus, the impact of ageing on transcriptional profiles of melanoma and response to immunotherapy is essential to understand. In this study, the bioinformatic analysis of RNA seq data of old and young melanoma patients receiving immunotherapy identifies the significant upregulation of extra-cellular matrix and cellular adhesion genes in young cohorts, while genes involved in cell proliferation, inflammation, non-canonical Wnt signaling and tyrosine kinase receptor ROR2 are significantly upregulated in the old cohort. Several Treg signature genes as well as transcription factors that are associated with dysfunctional T cell tumor infiltration are differentially expressed. The differential expression of several genes involved in oxidative phosphorylation, glycolysis and glutamine metabolism is also observed. Taken together, this study provides novel findings on the impact of ageing on transcriptional changes in melanoma, and novel therapeutic targets for future studies.
Collapse
Affiliation(s)
- Nehal Farid El-Helbawy
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Ahmed Ezat El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Necroptosis Plays a Crucial Role in Vascular Injury during DVT and Is Enhanced by IL-17B. J Immunol Res 2022; 2022:6909764. [PMID: 36046722 PMCID: PMC9424031 DOI: 10.1155/2022/6909764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Background. This study investigated whether vascular endothelial necroptosis is involved in deep vein thrombosis (DVT) and how IL-17B facilitates necroptosis signaling. Methods. The DVT mouse model was induced by ligation of the IVC. The cross-sectional area of thrombus increases and the thrombus occupied the entire venous lumen at 48 h after ligation. Meanwhile, the increased expression of p-RIP3/RIP3 was most pronounced at 48 h after ligation, and the p-MLKL/MLKL peaked at 72 h. Results. Based on Illumina sequencing and KEGG pathway analyses, the activated RIP3/MLKL is associated with increased IL-17B. With thrombus formation, IL-17B was upregulated and enhanced the expression of RIP3 and MLKL in the IVC wall, as well as their phosphorylation levels (all
, the comparison group consisted of the control group, DVT group, DVT/IL-17B group, and DVT/anti-IL-17B group). The p-RIP3/RIP3 and p-MLKL/MLKL ratios were reduced by anti-IL-17B. Similarly, the weight and cross-sectional area of the thrombi were increased by IL-17B and decreased by the IL-17B antibody. IL-17B had a smaller effect on thrombosis in knockout mice compared with WT mice. In vitro, the IL-17B protein expression and the level of RIP3 and MLKL phosphorylation increased high in the OGD cells, accompanied by increased expression of IL-6 and TNF-α. IL-17B enhanced the expression of IL-6 and TNF-α but had little effect on the IL-6 and TNF-α after transfected with siRIP3 or siMLKL. Similarly, the plasma IL-17B, IL-6, and TNF-α were significantly increased after thrombosis in WT mice, and enhanced by IL-17B. But IL-17B did not increase the plasma IL-6 and TNF-α in knockout mice. Conclusions. In conclusion, those results suggest that vascular endothelial necroptosis plays a crucial role in vascular injury and IL-17B could enhance the necroptosis pathway.
Collapse
|
18
|
Zhou X, Jiang XX, Zhang GR, Ji W, Shi ZC, Ma XF, Wei KJ. Molecular and functional characterization of teleost-specific Interleukin-17N in yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2022; 220:493-509. [PMID: 35981681 DOI: 10.1016/j.ijbiomac.2022.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
In mammals, six interleukin-17 (IL-17) genes, as potent pro-inflammatory cytokines, all accelerate the inflammatory responses. In teleosts, seven IL-17 genes have been found in various species, but little is known about the function of teleost-specific IL-17N. In this study, teleost IL-17N and IL-17A/F2 genes all had six conserved cysteine residues forming three intrachain disulfide bridges, the length of three exons of teleost IL-17N gene was similar to that of teleost IL-17A/F2 gene, and the neighbor-joining (NJ) phylogenetic tree showed that teleost IL-17N was clustered with vertebrate IL-17A/F, implying that teleost IL-17N gene may be a paralog of teleost IL-17A/F gene. Pelteobagrus fulvidraco (Pf) IL-17N gene was highly expressed in the blood, brain and kidney of healthy yellow catfish. Pf_IL-17N transcript and protein were notably up-regulated in the spleen, head kidney, gill and kidney detected after Edwardsiella ictaluri infection. Lipopolysaccharides (LPS), polyinosinic-polycytidylic acid (Poly I:C) and peptidoglycan (PGN) also remarkably induced the expression of Pf_IL-17N in the isolated peripheral blood leucocytes (PBLs) of yellow catfish. These results reveal that Pf_IL-17N may play important roles in preventing the invasion of pathogens. Furthermore, the recombinant (r) Pf_IL-17N protein could significantly induce the mRNA expressions of inflammatory cytokines, chemokines and antimicrobial peptide genes in yellow catfish in vivo and in vitro, and it also notably promoted the phagocytosis of myeloid cells in the PBLs and the chemotaxis of the PBLs and gill leucocytes (GLs) in yellow catfish. Besides, though the rPf_IL-17N protein could induce and aggravate inflammation infiltration in the kidney of yellow catfish, it did not effectively and notably increase the survival rate of yellow catfish after E. ictaluri infection. Furthermore, the rPf_IL-17N protein could induce the mRNA expressions of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways related genes, and the inhibitor of NF-κB and MAPK signal pathways could restrain the rPf_IL-17N protein-induced inflammatory response. This study provides crucial evidence that the Pf_IL-17N may mediate inflammatory response to eliminate invasive pathogens.
Collapse
Affiliation(s)
- Xu Zhou
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xin-Xin Jiang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gui-Rong Zhang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Ji
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, PR China
| | - Xu-Fa Ma
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kai-Jian Wei
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
19
|
Nie YJ, Wu SH, Xuan YH, Yan G. Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis. Mil Med Res 2022; 9:21. [PMID: 35550651 PMCID: PMC9102601 DOI: 10.1186/s40779-022-00382-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease with no established treatment and is characterized by progressive scarring of the lung tissue and an irreversible decline in lung function. Chronic inflammation has been demonstrated to be the pathological basis of fibrosis. Emerging studies have revealed that most interleukin-17 (IL-17) isoforms are essential for the mediation of acute and chronic inflammation via innate and adaptive immunity. Overexpression or aberrant expression of IL-17 cytokines contributes to various pathological outcomes, including the initiation and exacerbation of IPF. Here, we aim to provide an overview of IL-17 family members in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Yun-Juan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Shuo-Hua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515000, Shandong, China
| | - Ying-Hua Xuan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, 361000, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361000, Fujian, China.
| |
Collapse
|
20
|
Zhang N, Qian T, Sun S, Cao W, Wang Z, Liu D, Li P, Wu J, Li H, Yang J. IL-17 is a Potential Therapeutic Target in a Rodent Model of Otitis Media with Effusion. J Inflamm Res 2022; 15:635-648. [PMID: 35140496 PMCID: PMC8818970 DOI: 10.2147/jir.s338598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Otitis media with effusion (OME) is a non-suppurative inflammation of the middle ear that is characterized by middle ear effusion and hearing loss. However, the mechanisms of OME are not fully understood. The aim of this study was to determine the function and the mechanism of the IL-17 cytokine in the pathogenesis of OME and to investigate IL-17 as a potential strategy for the treatment of OME. Methods In this study, the OME rat model was induced by ovalbumin (OVA) as previously described. The severity of OME was determined with an oto-endoscope, by histochemical analysis, and by acoustic immittance. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of RNA-sequencing (RNA-seq) data was carried out to analyze the signaling pathways related to the pathogenesis of OME, which indicated that IL-17 is involved in OME. The anti-IL-17A monoclonal antibody was administrated by nasal drip to block IL-17 to treat OME in the rat model. The rats were finally injected intraperitoneally with the inhibitor of Notch signaling pathway to study the mechanisms of IL-17-induced inflammation. Serum and lavage fluid were collected for the detection of related cytokines, and middle ear tissue was collected for Western blot, quantitative real-time PCR (qRT-PCR), and immunohistochemical and immunofluorescence analysis. Results KEGG analysis of RNA-seq data suggested that the IL-17 signaling pathway might be involved in the onset of OME. IL-17 expression was confirmed to be increased in both the serum and the middle ear of the rat model. The monoclonal antibody against IL-17 neutralized IL-17, inhibited the inflammation in the middle ear, and reduced the overall severity of OME in vivo. Furthermore, the Notch signaling pathway was activated upon IL-17 upregulation in OME and was suppressed by IL-17 blockage. However, there was no change in IL-17 expression after Notch inhibitor treatment, which reduced the severity of OME in the rat middle ear. Conclusion IL-17 plays a key role in the pathogenesis of the OVA-induced OME rat model. IL-17 induced inflammatory responses via the Notch signaling pathway and targeting IL-17 might be an effective approach for OME therapy.
Collapse
Affiliation(s)
- Nanfeng Zhang
- Department of ENT, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, People’s Republic of China
| | - Tingting Qian
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wei Cao
- Department of ENT, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, People’s Republic of China
| | - Zhixian Wang
- Department of ENT, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, People’s Republic of China
| | - Danling Liu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Peifan Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jingfang Wu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Huawei Li
- Department of ENT, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, People’s Republic of China
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jianming Yang
- Department of ENT, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, People’s Republic of China
- Correspondence: Jianming Yang; Huawei Li, Email ;
| |
Collapse
|
21
|
Pu X, Li F, Lin X, Wang R, Chen Z. Oxidative stress and expression of inflammatory factors in lung tissue of acute mountain sickness rats. Mol Med Rep 2021; 25:49. [PMID: 34913080 PMCID: PMC8711020 DOI: 10.3892/mmr.2021.12565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/27/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of the present study was to investigate the changes in lung histomorphology and oxidative stress, as well as the expression of interleukin (IL)-17C and other inflammatory factors during acute mountain sickness (AMS) in male Sprague-Dawley rats and to explore the underlying mechanism. Rats were randomly divided into a control group (0 h) and three hypoxia stress groups, exposed to low-pressure oxygen storage at a simulated altitude of 6,000 m for 24, 48 and 72 h, respectively. Morphological changes in lung tissue were observed by hematoxylin and eosin staining under light microscopy and transmission electron microscopy. The expression of inflammatory factors IL-17C, nuclear factor-κB (NF-κB), IL-1β, IL-6 and tumor necrosis factor-α (TNF-α) in lung tissue was assessed by RNA sequencing and verified by reverse transcription-quantitative PCR (RT-qPCR) and western blotting (WB). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzyme activity and malondialdehyde (MDA) expression were also measured. Experimental groups were compared to the control group following 24, 48 and 72 h of hypoxic stress. Lung tissue suffered from different degrees of injury, and the damage was the most severe after 48 h of hypoxic stress. RNA sequencing data from the lung tissue of rats from each group suggested that the expression of IL-17C, NF-κB, IL-1β, IL-6, and TNF-α increased significantly after hypoxic stress. RT-qPCR and WB demonstrated that the expression of IL-17C and NF-κB increased significantly after hypoxia lasting 48 and 72 h. IL-1β expression increased significantly after hypoxia stress lasting 24 and 48 h, and the expressions of TNF-α and IL-6 increased significantly after hypoxia stress lasting 24, 48 and 72 h (P<0.01). The enzyme activity of SOD and GSH-Px decreased significantly after lasting 24, 48 and 72 h of hypoxia (P<0.01), and MDA increased significantly after hypoxic stress lasting 48 and 72 h (P<0.01). In conclusion, under hypoxic stress, rats quickly initiate oxidative stress and immune responses. However, with prolonged hypoxic stress time, excessive oxidative stress can further stimulate the immune system in vivo, and release a large quantity of inflammatory factors accumulating in the body. This, in turn, may lead to the occurrence of inflammatory storms and further damage the lung tissue resulting in AMS.
Collapse
Affiliation(s)
- Xiaoyan Pu
- Qinghai Normal University, Xining, Qinghai 810001, P.R. China
| | - Fuxin Li
- College of Medicine, Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Xue Lin
- College of Medicine, Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Rong Wang
- College of Medicine, Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Zhi Chen
- Qinghai Normal University, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
22
|
Patterson KM, Vajdic TG, Martinez GJ, Feller AG, Reynolds JM. IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses. Immune Netw 2021; 21:e35. [PMID: 34796039 PMCID: PMC8568910 DOI: 10.4110/in.2021.21.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.
Collapse
Affiliation(s)
- Kristen M. Patterson
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Tyler G. Vajdic
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Axel G. Feller
- Gastroenterology Section, Captain James A. Lovell Federal Health Care Center, North Chicago, IL 60064, USA
| | - Joseph M. Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Gastroenterology Section, Captain James A. Lovell Federal Health Care Center, North Chicago, IL 60064, USA
| |
Collapse
|
23
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Choi CY, Lee J. Molecular characterization of fish cytokine IL-17C from Amphiprion clarkii and its immunomodulatory effects on the responses to pathogen-associated molecular patterns and bacterial challenges. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110669. [PMID: 34428552 DOI: 10.1016/j.cbpb.2021.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022]
Abstract
Interleukin 17C (IL17C) is a cytokine that regulates innate immunity by recruiting antimicrobial peptides and pro-inflammatory cytokines. In this study, we characterized properties of IL-17C from Amphiprion clarkii also known as yellowtail clownfish (AcIL-17C). The AcIL-17C gene is 489 base pairs long and encodes a 163 amino acid long protein. AcIL-17C includes a signal peptide for localization in the extracellular space and comprises the IL-17 domain. The transcription analysis revealed that AcIL-17C mRNA was ubiquitously expressed in 12 tested tissues. Blood cells treated with polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharides (LPS), and Vibrio harveyi, AcIL-17C mRNA expression was upregulated at 6 h (following poly (I:C) and LPS treatments) and at 24 h post-injection (following all treatments). The downstream gene analysis of the epithelial fathead minnow (FHM) cells showed upregulated expression of genes, such as FHM_NK-Lysin, FHM_Hepcidin-1, FHM_Defensin-β, encoding antimicrobial peptides, as well as of FHM_IL-1β, FHM_TNF-A, FHM_IL-11, and FHM_STAT3 genes encoding inflammation-related proteins and IL-17C receptor genes FHM_IL-17RA, and FHM_IL-17RE at 12 and 24 h after treatment with AcIL-17C. The bacterial colony counting assay showed lower colony counts of Escherichia coli grown on FHM cells transfected with AcIL-17C carrying vector compared to those grown on control FHM cells. Further, AcIL-17C had a concentration-dependent positive effect on the survival of FHM cells infected with E. coli compared to the percentage of survived control cells. There has been a lack of studies characterizing the functions of teleost IL-17C. Therefore, these findings provide important information about the teleost host defense mechanisms and insights on the IL-17C-mediated antibacterial immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea.
| |
Collapse
|
24
|
Xue T, Liu Y, Cao M, Zhang X, Fu Q, Yang N, Li C. Genome-wide identification of interleukin-17 (IL-17) / interleukin-17 receptor (IL- 17R) in turbot (Scophthalmus maximus) and expression pattern analysis after Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104070. [PMID: 33757802 DOI: 10.1016/j.dci.2021.104070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Interleukin-17 (IL-17) is a cytokine secreted by a variety of immune cells that plays an important role in host defense against pathogens. IL-17 usually activates downstream immune signaling pathway by binding to heterodimeric or homodimeric complex formed by IL-17 receptors (IL-17R). Describing the characteristics, tissue distribution of IL-17 and IL-17 receptor family members and their expression after pathogen infection will provide a reference for host defense against disease of turbot. In this study, six IL-17 family members and nine IL-17 receptor family members were identified by analyzing the turbot (Scophthalmus maximus) genome. Different from other vertebrates, most members of the IL-17 receptor family own two copies. Protein structure analysis showed that the six IL-17 family members contained typical "IL-17" domains, and the nine IL-17 receptor family members contained typical "SEFIR domain" or "IL17_R_N domain". Syntenic analysis revealed that all IL-17s and IL-17Rs were chromosomally conserved compared with other fish. The phylogenetic analysis further confirmed the evolutionary conservatism of different copies of IL-17C and IL-17Rs. Tissue distribution results showed that IL-17 and IL-17R genes were highly expressed in immune-related tissues. The expression of IL-17C and its receptor in the mucosal immune tissues after infection with V. anguillarum were analyzed subsequently, which were significantly increased in the skin. The results are consistent with previous studies showing that IL-17 and IL-17 receptor play an important role in promoting innate immune response.
Collapse
Affiliation(s)
- Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
25
|
IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiquitination. Oncogene 2021; 40:2200-2216. [PMID: 33649532 PMCID: PMC7994204 DOI: 10.1038/s41388-021-01699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are characterized by robust self-renewal and tumorigenesis and are responsible for metastasis, drug resistance, and angiogenesis. However, the molecular mechanisms for the regulation of CSC homeostasis are incompletely understood. This study demonstrated that the interleukin-17 (IL-17)B/IL-17RB signaling cascade promotes the self-renewal and tumorigenesis of CSCs by inducing Beclin-1 ubiquitination. We found that IL-17RB expression was significantly upregulated in spheroid cells and Lgr5-positive cells from the same tumor tissues of patients with gastric cancer (GC), which was closely correlated with the degree of cancer cell differentiation. Recombinant IL-17B (rIL-17B) promoted the sphere-formation ability of CSCs in vitro and enhanced tumor growth and metastasis in vivo. Interestingly, IL-17B induced autophagosome formation and cleavage-mediated transformation of LC3 in CSCs and 293T cells. Furthermore, inhibition of autophagy activation by ATG7 knockdown reversed rIL-17B-induced self-renewal of GC cells. In addition, we showed that IL-17B also promoted K63-mediated ubiquitination of Beclin-1 by mediating the binding of tumor necrosis factor receptor-associated factor 6 to Beclin-1. Silencing IL-17RB expression abrogated the effects of IL-17B on Beclin-1 ubiquitination and autophagy activation in GC cells. Finally, we showed that IL-17B level in the serum of GC patients was positively correlated with IL-17RB expression in GC tissues, and IL-17B could induce IL-17RB expression in GC cells. Overall, the results elucidate the novel functions of IL-17B for CSCs and suggest that the intervention of the IL-17B/IL-17RB signaling pathway may provide new therapeutic targets for the treatment of cancer.
Collapse
|
26
|
Russell T, Bridgewood C, Rowe H, Altaie A, Jones E, McGonagle D. Cytokine "fine tuning" of enthesis tissue homeostasis as a pointer to spondyloarthritis pathogenesis with a focus on relevant TNF and IL-17 targeted therapies. Semin Immunopathol 2021; 43:193-206. [PMID: 33544244 PMCID: PMC7990848 DOI: 10.1007/s00281-021-00836-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
A curious feature of axial disease in ankylosing spondylitis (AS) and related non-radiographic axial spondyloarthropathy (nrAxSpA) is that spinal inflammation may ultimately be associated with excessive entheseal tissue repair with new bone formation. Other SpA associated target tissues including the gut and the skin have well established paradigms on how local tissue immune responses and proven disease relevant cytokines including TNF and the IL-23/17 axis contribute to tissue repair. Normal skeletal homeostasis including the highly mechanically stressed entheseal sites is subject to tissue microdamage, micro-inflammation and ultimately repair. Like the skin and gut, healthy enthesis has resident immune cells including ILCs, γδ T cells, conventional CD4+ and CD8+ T cells and myeloid lineage cells capable of cytokine induction involving prostaglandins, growth factors and cytokines including TNF and IL-17 that regulate these responses. We discuss how human genetic studies, animal models and translational human immunology around TNF and IL-17 suggest a largely redundant role for these pathways in physiological tissue repair and homeostasis. However, disease associated immune system overactivity of these cytokines with loss of tissue repair “fine tuning” is eventually associated with exuberant tissue repair responses in AS. Conversely, excessive biomechanical stress at spinal enthesis or peripheral enthesis with mechanically related or degenerative conditions is associated with a normal immune system attempts at cytokine fine tuning, but in this setting, it is commensurate to sustained abnormal biomechanical stressing. Unlike SpA, where restoration of aberrant and excessive cytokine “fine tuning” is efficacious, antagonism of these pathways in biomechanically related disease may be of limited or even no value.
Collapse
Affiliation(s)
- Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Hannah Rowe
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
27
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
29
|
Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med 2020; 217:133698. [PMID: 32023342 PMCID: PMC7062523 DOI: 10.1084/jem.20192048] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine with well-characterized biological effects on stromal cell activation, angiogenesis, and osteoclastogenesis. The presence of this cytokine in the inflamed joints of patients with rheumatoid arthritis (RA), together with compelling data from in vitro and experimental arthritis models demonstrating its pro-inflammatory effects, made this cytokine a strong candidate for therapeutic targeting. Clinical trials, however, have shown relatively modest success in RA as compared with other indications. Guided by recent insights in IL-17 biology, this review aims to explore possible reasons for the limited clinical efficacy of IL-17A blockade in RA, and what we can learn from these results going forward.
Collapse
Affiliation(s)
- Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
30
|
Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A Streptococcus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:3122-3129. [PMID: 33077643 DOI: 10.4049/jimmunol.1901482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse
Affiliation(s)
- Allen Washington
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
31
|
Liu X, Sun S, Liu D. IL-17D: A Less Studied Cytokine of IL-17 Family. Int Arch Allergy Immunol 2020; 181:618-623. [PMID: 32516792 DOI: 10.1159/000508255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
The interleukin-17 (IL-17) family is a relatively new family of cytokines consisting of 6 related factors (IL-17A-IL-17F), while the receptor family consists of 5 members: IL-17RA-IL-17RE. IL-17A is the prototype member of this family, which is also the signature cytokine of T helper 17 (Th17) cells. Th17 cells are involved in the development of autoimmune disease, inflammation, and tumors. Although IL-17D is similar to IL-17A in its ability to induce inflammatory cytokine production, there are fewer studies on IL-17D. Recently, the role of IL-17D in tumors and infections has attracted our attention. Some knowledge of function of IL-17D has been gained by studies using nonmammalian species. In this review, we introduce the structural characteristics, expression patterns, and biological characteristics of IL-17D along with its potential function in the pathogenesis of disease.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Sheng Jing Hospital of China Medical University, ShenYang, China
| | - Siyu Sun
- Department of Gastroenterology, ShengJing Hospital of China Medical University, ShenYang, China
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Sheng Jing Hospital of China Medical University, ShenYang, China,
| |
Collapse
|
32
|
Fletcher JM, Moran B, Petrasca A, Smith CM. IL-17 in inflammatory skin diseases psoriasis and hidradenitis suppurativa. Clin Exp Immunol 2020; 201:121-134. [PMID: 32379344 DOI: 10.1111/cei.13449] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
The skin is one of the most important organs in the body, providing integrity and acting as a barrier to exclude microbes, allergens and chemicals. However, chronic skin inflammation can result when barrier function is defective and immune responses are dysregulated or misdirected against harmless or self-antigens. During the last 15 years interleukin (IL)-17 cytokines have emerged as key players in multiple inflammatory disorders, and they appear to be especially prominent in skin inflammation. IL-17 cytokines produced by T cells and other cell types potently activate keratinocytes to promote inflammation in a feed-forward loop. Given this key pathogenic role of the IL-17 pathway in autoimmune and inflammatory disease, it has been the focus of intense efforts to target therapeutically. The inflammatory effects of IL-17 can be targeted directly by blocking the cytokine or its receptor, or indirectly by blocking cytokines upstream of IL-17-producing cells. Psoriasis has been the major success story for anti-IL-17 drugs, where they have proven more effective than in other indications. Hidradenitis suppurativa (HS) is another inflammatory skin disease which, despite carrying a higher burden than psoriasis, is poorly recognized and under-diagnosed, and current treatment options are inadequate. Recently, a key role for the IL-17 pathway in the pathogenesis of HS has emerged, prompting clinical trials with a variety of IL-17 inhibitors. In this review, we discuss the roles of IL-17A, IL-17F and IL-17C in psoriasis and HS and the strategies taken to target the IL-17 pathway therapeutically.
Collapse
Affiliation(s)
- J M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - B Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - A Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - C M Smith
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Wang F, Yin J, Lin Y, Zhang F, Liu X, Zhang G, Kong Y, Lu Z, Wu R, Wang N, Xing T, Qian Y. IL-17C has a pathogenic role in kidney ischemia/reperfusion injury. Kidney Int 2020; 97:1219-1229. [DOI: 10.1016/j.kint.2020.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
|
34
|
Bastid J, Dejou C, Docquier A, Bonnefoy N. The Emerging Role of the IL-17B/IL-17RB Pathway in Cancer. Front Immunol 2020; 11:718. [PMID: 32373132 PMCID: PMC7186465 DOI: 10.3389/fimmu.2020.00718] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Among inflammatory mediators, a growing body of evidence emphasizes the contribution of the interleukin 17 (IL-17) cytokine family in malignant diseases. Besides IL-17A, the prototypic member of the IL-17 family, several experimental findings strongly support the role of the IL-17B/IL-17 receptor B (IL-17RB) pathway in tumorigenesis and resistance to anticancer therapies. In mouse models, IL-17B signaling through IL-17RB directly promotes cancer cell survival, proliferation, and migration, and induces resistance to conventional chemotherapeutic agents. Importantly, recent work by our and other laboratories showed that IL-17B signaling dramatically alters the tumor microenvironment by promoting chemokine and cytokine secretion which foster tumor progression. Moreover, the finding that elevated IL-17B is associated with poor prognosis in patients with pancreatic, gastric, lung, and breast cancer strengthens the results obtained in pre-clinical studies and highlights its clinical relevance. Here, we review the current understanding on the IL-17B/IL-17RB expression patterns and biological activities in cancer and highlight issues that remain to be addressed to better characterize IL-17B and its receptor as potential targets for enhancing the effectiveness of the existing cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Nies JF, Panzer U. IL-17C/IL-17RE: Emergence of a Unique Axis in T H17 Biology. Front Immunol 2020; 11:341. [PMID: 32174926 PMCID: PMC7054382 DOI: 10.3389/fimmu.2020.00341] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned out to be a tremendous success in the treatment of several autoimmune conditions. As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to elucidate the biological function of these five other molecules to identify more potential targets. In the past decade, IL-17C has emerged as quite a unique member of this pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F, IL-17C is upregulated at very early timepoints of several disease settings. Also, the cellular source of the homodimeric cytokine differs from the other members of the family: Epithelial rather than hematopoietic cells were identified as the producers of IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial cells themselves. Numerous investigations led to the current understanding that IL-17C (a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has been described to be involved in the pathogenesis of several diseases ranging from infectious and autoimmune conditions to cancer development and progression. This body of evidence has paved the way for the first clinical trials attempting to neutralize IL-17C in patients. Here, we review the latest knowledge about identification, regulation, and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with a focus on the mechanisms underlying tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with immune-mediated disease.
Collapse
Affiliation(s)
- Jasper F Nies
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany
| | - Ulf Panzer
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany.,Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Nesmond S, Muller C, Le Naour R, Viguier M, Bernard P, Antonicelli F, Le Jan S. Characteristic Pattern of IL-17RA, IL-17RB, and IL-17RC in Monocytes/Macrophages and Mast Cells From Patients With Bullous Pemphigoid. Front Immunol 2019; 10:2107. [PMID: 31572359 PMCID: PMC6749098 DOI: 10.3389/fimmu.2019.02107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is largely implicated in bullous pemphigoid (BP), the most frequent skin auto-immune blistering disease. IL-17, essentially IL-17A/F, has been involved in blister formation through regulation of protease production, and its specific serum profile within BP was related to disease outcome. However, relationships between IL-17 family ligands and receptors are quite complex with six different IL-17 isoforms, and five different receptors. We here aimed at clarifying the contribution of the IL-17 axis in BP by characterizing not only the expression of IL-17 receptor (IL-17R) members within immune cells isolated from BP patients (PMNs, n = 9; T-lymphocytes, n = 10; and monocytes, n = 10) but also the expression of IL-17 isoforms in sera (n = 83), and blister fluid (n = 31) of BP patients. We showed that at diagnosis, IL-17RA and IL-17RC expression were significantly increased in monocytes isolated from BP patients as compared to those from control subjects (p = 0.006 and p = 0.016, respectively). Notably, both IL-17RA and IL-17RC mRNA expression remained elevated in BP monocytes at time of relapse. We further demonstrated a significant increase of all IL-17 isoforms tested in BP blister fluid compared with BP serum (IL-17A, p < 0.0001; IL-17A/F, p < 0.0001; IL-17B, p = 0.0023; IL-17C, p = 0.0022; IL-17E, p < 0.0001). Among all, IL-17B was the only cytokine for which a significant decreased concentration within blister fluid was observed in BP patients with severe disease compared to patients with moderate disease (p = 0.012). We further evidenced a significant negative correlation between IL-17B levels and blister/erosion BPDAI subscore (r = −0.52, p = 0.003). We finally identified mast cells as a potential target of IL-17B in lesional skin of BP patients. In conclusion, we showed here that IL-17RA and IL-17RC expression in monocyte was associated with disease activity and evidenced in situ a negative correlation between BP disease activity and IL-17B, whose effects could be mediated by IL-17RB expressed by mast cell in BP lesional skin.
Collapse
Affiliation(s)
- Stéphane Nesmond
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Céline Muller
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, UFR Pharmacy, University of Reims Champagne-Ardenne, Reims, France
| | - Manuelle Viguier
- Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims-Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
37
|
Sakkas LI, Zafiriou E, Bogdanos DP. Mini Review: New Treatments in Psoriatic Arthritis. Focus on the IL-23/17 Axis. Front Pharmacol 2019; 10:872. [PMID: 31447673 PMCID: PMC6691125 DOI: 10.3389/fphar.2019.00872] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
Psoriasis, an inflammatory skin disease, and psoriatic arthritis (PsA), an inflammatory arthritis, share clinical, genetic, and pathogenic factors and may be summed as one disease, the psoriatic disease. Interleukin (IL)-17 plays a major role in the development of both psoriasis and PsA. IL-23 is important in the proliferation and maintenance of IL-17, and therefore, cytokines of the IL-23/IL-17 axis attracted much interest as therapeutic targets in psoriasis and PsA. Therapeutic agents targeting the IL-23/IL-17 axis have been proven to be very effective in psoriasis and PsA, some are already in the therapeutic armamentarium and others are in the development. Some agents, target IL-23 and others IL-17 and include anti-IL-12/IL-23 p40 (ustekinumab, briankizumab), anti-IL-23p19 (guselkumab, tildrakizumab, risankizumab, brazikumab, mirikizumab), anti-IL-17A (secukinumab, ixekizumab), dual anti-IL-17A and anti-IL-17F (bimekizumab), or anti-IL-17 receptor (brodalumab) monoclonal antibodies. Janus tyrosine kinase(JAK) inhibitors also directly affect IL-23 and, thus, IL-17. After the first-generation pan-JAK inhibitors have been shown efficacy (tofacitinib, baricitinib), new-generation selective JAK inhibitors (filgotinib, upadacitinib) are under investigation in psoriasis and PsA.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
38
|
Dai Q, Wang M, Li Y, Li J. Amelioration of CIA by Asarinin Is Associated to a Downregulation of TLR9/NF-κB and Regulation of Th1/Th2/Treg Expression. Biol Pharm Bull 2019; 42:1172-1178. [DOI: 10.1248/bpb.b19-00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qiaomei Dai
- Department of Pathology, Heilongjiang University of Chinese Medicine
| | - Meiqiao Wang
- Department of Pathology, Heilongjiang University of Chinese Medicine
| | - Yaozhang Li
- Department of Pathology, Heilongjiang University of Chinese Medicine
| | - Ji Li
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine
| |
Collapse
|
39
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
40
|
Robak E, Gerlicz-Kowalczuk Z, Dziankowska-Bartkowiak B, Wozniacka A, Bogaczewicz J. Serum concentrations of IL-17A, IL-17B, IL-17E and IL-17F in patients with systemic sclerosis. Arch Med Sci 2019; 15:706-712. [PMID: 31110538 PMCID: PMC6524200 DOI: 10.5114/aoms.2019.84738] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Immune system activation, microvascular abnormalities and extracellular matrix deposition in tissues play roles in systemic sclerosis (SSc). Th17 cells producing interleukin (IL)-17 are involved in the pathogenesis of many autoimmune-mediated inflammatory diseases; however, the role of IL-17 in SSc remains unclear. MATERIAL AND METHODS The concentrations of IL-17A, IL-17B, IL-17E, and IL-17F in the serum of patients with SSc and in the healthy control group were assessed with regard to type of the disease - whether limited (lSSc) or diffuse (dSSc) - and symptoms. RESULTS No difference was found between patients with SSc and the control group as regards the serum concentration of IL-17A. However, IL-17B and IL-17E levels in patients with SSc, and its types diffuse and limited were higher (p < 0.001) compared to the control. The serum level of IL-17F was higher in SSc (p < 0.005) and lSSc (p < 0.05) compared to the control. Serum concentration of IL-17B was elevated in SSc patients with renal abnormalities (p < 0.05) compared to those without. Serum levels of IL-17B correlated with the levels of IL-17E in patients with SSc (r = 0.54, p < 0.05). CONCLUSIONS Increased synthesis of IL-17B, IL-17E and IL-17F appears to play a role in the pathogenesis of SSc, in contrast to IL-17A. Higher levels of IL-17B and IL-17E are associated with the development of both lSSc and dSSc, whereas IL-17F is associated with lSSc only. Further studies are needed to elucidate their role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Ewa Robak
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | | | | | - Anna Wozniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | - Jaroslaw Bogaczewicz
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia 2019; 33:2379-2392. [DOI: 10.1038/s41375-019-0441-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
|
42
|
Ramirez-Carrozzi V, Ota N, Sambandam A, Wong K, Hackney J, Martinez-Martin N, Ouyang W, Pappu R. Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce Type 2 Inflammation from Human Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1935-1941. [PMID: 30770417 DOI: 10.4049/jimmunol.1800696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/25/2019] [Indexed: 12/26/2022]
Abstract
IL-17 family cytokines are critical to host defense responses at cutaneous and mucosal surfaces. Whereas IL-17A, IL-17F, and IL-17C induce overlapping inflammatory cascades to promote neutrophil-mediated immunity, IL-17E/IL-25 drives type 2 immune pathways and eosinophil activity. Genetic and pharmacological studies reveal the significant contribution these cytokines play in antimicrobial and autoimmune mechanisms. However, little is known about the related family member, IL-17B, with contrasting reports of both pro- and anti-inflammatory function in rodents. We demonstrate that in the human immune system, IL-17B is functionally similar to IL-25 and elicits type 2 cytokine secretion from innate type 2 lymphocytes, NKT, and CD4+ CRTH2+ Th2 cells. Like IL-25, this activity is dependent on the IL-17RA and IL-17RB receptor subunits. Furthermore, IL-17B can augment IL-33-driven type 2 responses. These data position IL-17B as a novel component in the regulation of human type 2 immunity.
Collapse
Affiliation(s)
| | - Naruhisa Ota
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080
| | | | - Kit Wong
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080
| | - Jason Hackney
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Nadia Martinez-Martin
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080; and
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080;
| |
Collapse
|
43
|
Pandit AA, Gandham RK, Mukhopadhyay CS, Verma R, Sethi RS. Transcriptome analysis reveals the role of the PCP pathway in fipronil and endotoxin-induced lung damage. Respir Res 2019; 20:24. [PMID: 30709343 PMCID: PMC6359862 DOI: 10.1186/s12931-019-0986-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arif Ahmad Pandit
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India. National Institute of Animal Biotechnology, Hyderabad, India
| | - C S Mukhopadhyay
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - Ramneek Verma
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - R S Sethi
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
44
|
Dai Q, Li J, Yun Y, Wang J. Toll-Like Receptor 4-Myeloid Differentiation Primary Response Gene 88 Pathway Is Involved in the Shikonin Treatment of CIA by Regulating Treg/Th17 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2428546. [PMID: 30643526 PMCID: PMC6311288 DOI: 10.1155/2018/2428546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/17/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the effect of shikonin on (CIA) collagen-induced arthritis and its influence and mechanism on the balance between Th17 cells and Treg cells. METHODS Three doses of shikonin were administered orally to mice before the onset of CIA, and celecoxib was used as positive control drug. The arthritis response was monitored visually by macroscopic scoring and hindpaw swelling. Histology of knee was used to assess the occurrence of cartilage destruction and bone erosion. Serum collagen type II (C II) antibody levels associated with CIA were assessed with ELISAs. RT-PCR and quantitative PCR were employed to determine the mRNA expression of cytokines and TLRs in the surface of DCs in the patella with adjacent synovium and spleen in CIA. The expression of cytokines and transcription factors in the peripheral immune organs was tested by Western blotting. RESULTS Shikonin treatment suppressed the macroscopic score and incidence of arthritis. Swelling of hind paws, cartilage destruction, and serum anti-C II concentration were delayed with shikonin when compared to controls. Shikonin treatment suppressed the arthritis in a dose-dependent manner. Moreover, the expression of Th17 cytokines (IL-17A) was greatly inhibited both in the synovium and spleen in treated groups compared with those in control groups. The mRNA and protein levels of IL-10 and TGF-β, however, were upregulated after shikonin treatment. The expression of Foxp3 in the synovium and spleen was upregulated, and the expression of ROR-γt in the synovium and spleen was downregulated after shikonin treatment through RT-PCR, quantitative PCR, and Western blotting. The DCs in the spleen of shikonin-treated mice had lower expression of TLR4 and MyD88, and the expression of TLR2 and TLR9 in the spleen was not different between the two groups. CONCLUSION Shikonin has anti-inflammatory effects on CIA. Shikonin treatment can inhibit Th17 cytokines expression and induce Treg responses through inhibiting the activation of TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Qiaomei Dai
- Department of Pathology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ji Li
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Yun
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County, Jiangsu, China
| | - Jianwei Wang
- Department of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
45
|
Jamieson KC, Traves SL, Kooi C, Wiehler S, Dumonceaux CJ, Maciejewski BA, Arnason JW, Michi AN, Leigh R, Proud D. Rhinovirus and Bacteria Synergistically Induce IL-17C Release from Human Airway Epithelial Cells To Promote Neutrophil Recruitment. THE JOURNAL OF IMMUNOLOGY 2018; 202:160-170. [PMID: 30504421 DOI: 10.4049/jimmunol.1800547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Virus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood. In this study, we examine the mechanisms regulating IL-17C production and its potential role in COPD exacerbations. Human bronchial epithelial cells (HBE) obtained from normal, nontransplanted lungs or from brushings of nonsmokers, healthy smokers, or COPD patients were exposed to bacteria and/or human rhinovirus (HRV). RNA and protein were collected for analysis, and signaling pathways were assessed with pharmacological agonists, inhibitors, or small interfering RNAs. HBE were also stimulated with IL-17C to assess function. HRV-bacterial coinfections synergistically induced IL-17C expression. This induction was dependent on HRV replication and required NF-κB-mediated signaling. Synergy was lost in the presence of an inhibitor of the p38 MAP kinase pathway. HBE exposed to IL-17C show increased gene expression of CXCL1, CXCL2, NFKBIZ, and TFRC, and release CXCL1 protein, a neutrophil chemoattractant. Knockdown of IL-17C significantly reduced induction of CXCL1 in response to HRV-bacterial coinfection as well as neutrophil chemotaxis. HBE from healthy smokers release less IL-17C than cells from nonsmokers, but cells from COPD patients release significantly more IL-17C compared with either nonsmokers or healthy smokers. These data suggest that IL-17C may contribute to microbial-induced COPD exacerbations by promoting neutrophil recruitment.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Suzanne L Traves
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Cora Kooi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Curtis J Dumonceaux
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Barbara A Maciejewski
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Jason W Arnason
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Richard Leigh
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| |
Collapse
|
46
|
The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Sci Rep 2018; 8:15750. [PMID: 30356086 PMCID: PMC6200819 DOI: 10.1038/s41598-018-34054-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using Il17c−/− mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.
Collapse
|
47
|
Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9:1682. [PMID: 30127781 PMCID: PMC6088173 DOI: 10.3389/fimmu.2018.01682] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.
Collapse
Affiliation(s)
| | - Luisa Senra
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
48
|
Liu J, Wang L, Wang T, Wang J. Expression of IL-23R and IL-17 and the pathology and prognosis of urinary bladder carcinoma. Oncol Lett 2018; 16:4325-4330. [PMID: 30214568 PMCID: PMC6126236 DOI: 10.3892/ol.2018.9145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Expression of interleukin-23 receptor (IL-23R) and IL-17 in urinary bladder carcinoma (UBC) was investigated to explore the correlations with prognosis. IL-23/IL-17 axis significantly inhibited the development of inflammatory bowel disease. Thirty patients with UBC were enrolled in Zhengzhou Central Hospital Affiliated to Zhengzhou University from September 2013 to September 2014. Tumor tissue and adjacent healthy tissue were collected, and the levels of IL-23R and IL-17 mRNA were detected by RT-PCR. Thirty healthy people were also selected to serve as normal control group. Serum levels of IL-23R and IL-17 in serum of UBC patients and normal controls were detected by ELISA, and the correlations with clinical features of UBC were analyzed. Pearson's correlation analysis was used to analyze the correlation between IL-23R and IL-17 protein expression. Follow-up study was performed by phone or during patient's visit to out-patient department. Overall survival (OS) and disease-free survival (DFS) curves were plotted by Kaplan-Meier method to analyze the correlation between expression of IL-23R and IL-17 and survival time. ROC curve was used to detect the diagnostic values of IL-23R and IL-17 protein for UBC. Levels of IL-23R and IL-17 mRNA in UBC tissue were 3.26 and 2.65 times higher than those in adjacent tissue (P<0.05), and serum levels of IL-23R and IL-17 protein in UBC patients were significantly higher than those in normal control group. Protein expression levels of IL-23R and IL-17 were correlated with clinical stage and lymph node metastasis in UBC patients (P<0.05), and Cox hazard model showed that L-23R and IL-17 expression may be independent factors for UBC (P<0.05), and high expression levels of IL-23R and IL-17 significantly shortened the OS and DFS (P<0.05). Serum levels of IL-23R and IL-17 can be used to effectively diagnose clinical stage and lymph node metastasis of UBC patients, and the combined diagnosis has a higher sensitivity and specificity than the diagnosis using a single factor. These findings indicated that expression levels of IL-23R and IL-17 were increased in tumor tissue and serum of UBC patients, and the increased expression levels of IL-23R and IL-17 were correlated with poor prognosis. Detection of IL-23R and IL-17 levels has certain clinical significance in the diagnosis and prognosis of UBC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lei Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Tongqing Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jizheng Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
49
|
Zhou S, Qi Q, Wang X, Zhang L, Xu L, Dong L, Zhu J, Li Y, Wang X, Xu Z, Liu F, Hu W, Zhou L, Chen X, Su C. SjHSP60 induces CD4 + CD25 + Foxp3 + Tregs via TLR4-Mal-drived production of TGF-β in macrophages. Immunol Cell Biol 2018; 96:958-968. [PMID: 29697865 DOI: 10.1111/imcb.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/25/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) play a pivotal role in limiting immunopathological damage to host organs after schistosome infection. Transforming growth factor-β (TGF-β) is an essential factor for the periphery conversion of CD4+ CD25- T cells into CD4+ CD25+ Foxp3+ Tregs by inducing the key transcription factor Foxp3. Antigen presenting cells (APCs), which highly express TGF-β, are involved in parasite antigen-induced Treg conversion in peripheral. However, the mechanisms underlying high TGF-β induction in APCs by parasite antigens remain to be clarified during schistosome infection. Here, we demonstrated that Schistosoma japonicum stress protein, heat shock protein 60 (SjHSP60), promoted TGF-β production in macrophages (Mφ). Furthermore, we showed that activation of TLR4-Mal (MyD88 adaptor-like protein) signaling by SjHSP60 is necessary for induction of TGF-β expression in Mφ, which subsequently promoted Treg induction. Our results not only demonstrate a novel mechanism of TGF-β production in Mφ for inducing Tregs in mice with schistosomiasis, but also allude to the possibility of targeting parasite stress protein for potential therapeutics.
Collapse
Affiliation(s)
- Sha Zhou
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Qi
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofan Wang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lina Zhang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liyang Dong
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuefeng Wang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Xiaojun Chen
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Krohn S, Nies JF, Kapffer S, Schmidt T, Riedel JH, Kaffke A, Peters A, Borchers A, Steinmetz OM, Krebs CF, Turner JE, Brix SR, Paust HJ, Stahl RAK, Panzer U. IL-17C/IL-17 Receptor E Signaling in CD4 + T Cells Promotes T H17 Cell-Driven Glomerular Inflammation. J Am Soc Nephrol 2018; 29:1210-1222. [PMID: 29483158 DOI: 10.1681/asn.2017090949] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
The IL-17 cytokine family and the cognate receptors thereof have a unique role in organ-specific autoimmunity. Most studies have focused on the founding member of the IL-17 family, IL-17A, as the central mediator of diseases. Indeed, although pathogenic functions have been ascribed to IL-17A and IL-17F in the context of immune-mediated glomerular diseases, the specific functions of the other IL-17 family members in immunity and inflammatory kidney diseases is largely unknown. Here, we report that compared with healthy controls, patients with acute Anti-neutrophil cytoplasmatic antibody (ANCA)-associated crescentic glomerulonephritis (GN) had significantly elevated serum levels of IL-17C (but not IL-17A, F, or E). In mouse models of crescentic GN (nephrotoxic nephritis) and pristane-induced lupus nephritis, deficiency in IL-17C significantly ameliorated the course of GN in terms of renal tissue injury and kidney function. Deficiency of the unique IL-17C receptor IL-17 receptor E (IL-17RE) provided similar protection against crescentic GN. These protective effects associated with a reduced TH17 response. Bone marrow transplantation experiments revealed that IL-17C is produced by tissue-resident cells, but not by lymphocytes. Finally, IL-17RE was highly expressed by CD4+ TH17 cells, and loss of this expression prevented the TH17 responses and subsequent tissue injury in crescentic GN. Our findings indicate that IL-17C promotes TH17 cell responses and immune-mediated kidney disease via IL-17RE expressed on CD4+ TH17 cells. Targeting the IL-17C/IL-17RE pathway may present an intriguing therapeutic strategy for TH17-induced autoimmune disorders.
Collapse
Affiliation(s)
- Sonja Krohn
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jasper F Nies
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Kapffer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tilman Schmidt
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Riedel
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anett Peters
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Borchers
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver M Steinmetz
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Silke R Brix
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf A K Stahl
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|