1
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
2
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
3
|
Klein F, Mitrovic M, Roux J, Engdahl C, von Muenchow L, Alberti-Servera L, Fehling HJ, Pelczar P, Rolink A, Tsapogas P. The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection. J Exp Med 2019; 216:638-655. [PMID: 30765463 PMCID: PMC6400535 DOI: 10.1084/jem.20181444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
During β-selection, T cells without productive TCRβ rearrangements are eliminated. Klein et al. show that the transcription factor Duxbl regulates this process by inducing apoptosis through activation of the Oas/RNaseL pathway. Successful TCRβ rearrangement rescues cells by pre-TCR–mediated Duxbl suppression. T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the β-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their β-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through β-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before β-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of β-selection by inducing apoptosis in cells with a nonfunctional rearrangement.
Collapse
Affiliation(s)
- Fabian Klein
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
de Greef JC, Krom YD, den Hamer B, Snider L, Hiramuki Y, van den Akker RFP, Breslin K, Pakusch M, Salvatori DCF, Slütter B, Tawil R, Blewitt ME, Tapscott SJ, van der Maarel SM. Smchd1 haploinsufficiency exacerbates the phenotype of a transgenic FSHD1 mouse model. Hum Mol Genet 2019; 27:716-731. [PMID: 29281018 DOI: 10.1093/hmg/ddx437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 11/12/2022] Open
Abstract
In humans, a copy of the DUX4 retrogene is located in each unit of the D4Z4 macrosatellite repeat that normally comprises 8-100 units. The D4Z4 repeat has heterochromatic features and does not express DUX4 in somatic cells. Individuals with facioscapulohumeral muscular dystrophy (FSHD) have a partial failure of somatic DUX4 repression resulting in the presence of DUX4 protein in sporadic muscle nuclei. Somatic DUX4 derepression is caused by contraction of the D4Z4 repeat to 1-10 units (FSHD1) or by heterozygous mutations in genes responsible for maintaining the D4Z4 chromatin structure in a repressive state (FSHD2). One of the FSHD2 genes is the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene. SMCHD1 mutations have also been identified in FSHD1; patients carrying a contracted D4Z4 repeat and a SMCHD1 mutation are more severely affected than relatives with only a contracted repeat or a SMCHD1 mutation. To evaluate the modifier role of SMCHD1, we crossbred mice carrying a contracted D4Z4 repeat (D4Z4-2.5 mice) with mice that are haploinsufficient for Smchd1 (Smchd1MommeD1 mice). D4Z4-2.5/Smchd1MommeD1 mice presented with a significantly reduced body weight and developed skin lesions. The same skin lesions, albeit in a milder form, were also observed in D4Z4-2.5 mice, suggesting that reduced Smchd1 levels aggravate disease in the D4Z4-2.5 mouse model. Our study emphasizes the evolutionary conservation of the SMCHD1-dependent epigenetic regulation of the D4Z4 repeat array and further suggests that the D4Z4-2.5/Smchd1MommeD1 mouse model may be used to unravel the function of DUX4 in non-muscle tissues like the skin.
Collapse
Affiliation(s)
- Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yosuke Hiramuki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rob F P van den Akker
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Miha Pakusch
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Bram Slütter
- Divisions of Biopharmaceutics & Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
5
|
Dmitriev P, Kiseleva E, Kharchenko O, Ivashkin E, Pichugin A, Dessen P, Robert T, Coppée F, Belayew A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vasiliev A, Vassetzky YS. Dux4 controls migration of mesenchymal stem cells through the Cxcr4-Sdf1 axis. Oncotarget 2018; 7:65090-65108. [PMID: 27556182 PMCID: PMC5323140 DOI: 10.18632/oncotarget.11368] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
We performed transcriptome profiling of human immortalized myoblasts (MB) transiently expressing double homeobox transcription factor 4 (DUX4) and double homeobox transcription factor 4 centromeric (DUX4c) and identified 114 and 70 genes differentially expressed in DUX4- and DUX4c-transfected myoblasts, respectively. A significant number of differentially expressed genes were involved in inflammation, cellular migration and chemotaxis suggesting a role for DUX4 and DUX4c in these processes. DUX4 but not DUX4c overexpression resulted in upregulation of the CXCR4 (C-X-C motif Receptor 4) and CXCL12 (C-X-C motif ligand 12 also known as SDF1) expression in human immortalized myoblasts. In a Transwell cell migration assay, human bone marrow-derived mesenchymal stem cells (BMSCs) were migrating more efficiently towards human immortalized myoblasts overexpressing DUX4 as compared to controls; the migration efficiency of DUX4-transfected BMSCs was also increased. DUX4c overexpression in myoblasts or in BMSCs had no impact on the rate of BMSC migration. Antibodies against SDF1 and CXCR4 blocked the positive effect of DUX4 overexpression on BMSC migration. We propose that DUX4 controls the cellular migration of mesenchymal stem cells through the CXCR4 receptor.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France
| | - Ekaterina Kiseleva
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Olga Kharchenko
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Evgeny Ivashkin
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Andrei Pichugin
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Philippe Dessen
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Thomas Robert
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | | | - Marc Lipinski
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France
| | - Andrei Vasiliev
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Yegor S Vassetzky
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
6
|
Passagem-Santos D, Bonnet M, Sobral D, Trancoso I, Silva JG, Barreto VM, Athanasiadis A, Demengeot J, Pereira-Leal JB. RAG Recombinase as a Selective Pressure for Genome Evolution. Genome Biol Evol 2016; 8:3364-3376. [PMID: 27979968 PMCID: PMC5203794 DOI: 10.1093/gbe/evw261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RAG recombinase is a domesticated transposable element co-opted in jawed vertebrates to drive the process of the so-called V(D)J recombination, which is the hallmark of the adaptive immune system to produce antigen receptors. RAG targets, namely, the Recombination Signal Sequences (RSS), are rather long and degenerated sequences, which highlights the ability of the recombinase to interact with a wide range of target sequences, including outside of antigen receptor loci. The recognition of such cryptic targets by the recombinase threatens genome integrity by promoting aberrant DNA recombination, as observed in lymphoid malignancies. Genomes evolution resulting from RAG acquisition is an ongoing discussion, in particular regarding the counter-selection of sequences resembling the RSS and the modifications of epigenetic regulation at these potential cryptic sites. Here, we describe a new bioinformatics tool to map potential RAG targets in all jawed vertebrates. We show that our REcombination Classifier (REC) outperforms the currently available tool and is suitable for full genomes scans from species other than human and mouse. Using the REC, we document a reduction in density of potential RAG targets at the transcription start sites of genes co-expressed with the rag genes and marked with high levels of the trimethylation of the lysine 4 of the histone 3 (H3K4me3), which correlates with the retention of functional RAG activity after the horizontal transfer.
Collapse
Affiliation(s)
| | - M Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - I Trancoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J G Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - V M Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - J Demengeot
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
7
|
Manesso E, Kueh HY, Freedman G, Rothenberg EV, Peterson C. Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture. PLoS One 2016; 11:e0161260. [PMID: 27551921 PMCID: PMC4995000 DOI: 10.1371/journal.pone.0161260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/OBJECTIVES A cascade of gene activations under the control of Notch signalling is required during T-cell specification, when T-cell precursors gradually lose the potential to undertake other fates and become fully committed to the T-cell lineage. We elucidate how the gene/protein dynamics for a core transcriptional module governs this important process by computational means. METHODS We first assembled existing knowledge about transcription factors known to be important for T-cell specification to form a minimal core module consisting of TCF-1, GATA-3, BCL11B, and PU.1 aiming at dynamical modeling. Model architecture was based on published experimental measurements of the effects on each factor when each of the others is perturbed. While several studies provided gene expression measurements at different stages of T-cell development, pure time series are not available, thus precluding a straightforward study of the dynamical interactions among these genes. We therefore translate stage dependent data into time series. A feed-forward motif with multiple positive feed-backs can account for the observed delay between BCL11B versus TCF-1 and GATA-3 activation by Notch signalling. With a novel computational approach, all 32 possible interactions among Notch signalling, TCF-1, and GATA-3 are explored by translating combinatorial logic expressions into differential equations for BCL11B production rate. RESULTS Our analysis reveals that only 3 of 32 possible configurations, where GATA-3 works as a dimer, are able to explain not only the time delay, but very importantly, also give rise to irreversibility. The winning models explain the data within the 95% confidence region and are consistent with regard to decay rates. CONCLUSIONS This first generation model for early T-cell specification has relatively few players. Yet it explains the gradual transition into a committed state with no return. Encoding logics in a rate equation setting allows determination of binding properties beyond what is possible in a Boolean network.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
| | - Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - George Freedman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Ellen V. Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
- * E-mail: (EVR); (CP)
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
- * E-mail: (EVR); (CP)
| |
Collapse
|
8
|
Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppée F. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS One 2016; 11:e0146893. [PMID: 26816005 PMCID: PMC4729438 DOI: 10.1371/journal.pone.0146893] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Christel Matteotti
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cassandre Yip
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jian Liu
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Hubeau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cécile Gerbaux
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Samuel Cloet
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sabrina Zorbo
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Pierre Meyer
- Pediatric Department, CHRU Montpellier, Montpellier, France
| | - Isabelle Pirson
- I.R.I.B.H.M., Free University of Brussels, Brussels, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Scott Q. Harper
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
9
|
Wu SL, Li GZ, Chou CY, Tsai MS, Chen YP, Li CJ, Liou GG, Chang WW, Chen SL, Wang SH. Double homeobox gene, Duxbl, promotes myoblast proliferation and abolishes myoblast differentiation by blocking MyoD transactivation. Cell Tissue Res 2014; 358:551-66. [PMID: 25130140 DOI: 10.1007/s00441-014-1974-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023]
Abstract
Homeobox genes encode transcription factors that regulate embryonic development programs including organogenesis, axis formation and limb development. Previously, we identified and cloned a mouse double homeobox gene, Duxbl, whose homeodomain exhibits the highest identity (67 %) to human DUX4, a candidate gene of facioscapulohumeral muscular dystrophy (FSHD). Duxbl proteins have been shown to be expressed in elongated myocytes and myotubes of trunk and limb muscles during embryogenesis. In this study, we found that Duxbl maintained low expression levels in various adult muscles. Duxbl proteins were induced to express in activated satellite cells and colocalized with MyoG, a myogenic differentiating marker. Furthermore, Duxbl proteins were not detected in quiescent satellite cells but detected in regenerated myocytes and colocalized with MyoD and MyoG following cardiotoxin-induced muscle injury. Ectopic Duxbl overexpressions in C2C12 myoblast cells promoted cell proliferation through mainly enhancing cyclin D1 and hyper-phosphorylated retinoblastoma protein but reducing p21 expression. However, Duxbl overexpression in C2C12 cells inhibited myogenic differentiation by decreasing MyoD downstream gene expressions, including M-cadherin, MyoG, p21 and cyclin D3 but not MyoD itself. Duxbl overexpressions also promoted cell proliferation but blocked MyoD-induced myogenic conversion in multipotent mesenchymal C3H10T1/2 cells. In addition, results of a luciferase reporter assay suggest that Duxbl negatively regulated MyoG promoter activity through the proximal two E boxes. In conclusion, these results indicate that Duxbl may play a crucial role in myogenesis and postnatal muscle regeneration by activating and proliferating satellite and myoblast cells.
Collapse
Affiliation(s)
- Shey-Lin Wu
- Department of Neurology, Chang-Hua Christian Hospital, Changhua, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Rothenberg EV. The chromatin landscape and transcription factors in T cell programming. Trends Immunol 2014; 35:195-204. [PMID: 24703587 PMCID: PMC4039984 DOI: 10.1016/j.it.2014.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
T cell development from multipotent progenitors to specialized effector subsets of mature T cells is guided by the iterative action of transcription factors. At each stage, transcription factors interact not only with an existing landscape of histone modifications and nucleosome packing, but also with other bound factors, while they modify the landscape for later-arriving factors in ways that fundamentally affect the control of gene expression. This review covers insights from genome-wide analyses of transcription factor binding and resulting chromatin conformation changes that reveal roles of cytokine signaling in effector T cell programming, the ways in which one factor can completely transform the impacts of previously bound factors, and the ways in which the baseline chromatin landscape is established during early T cell lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125 USA.
| |
Collapse
|
12
|
Rothenberg EV, Champhekar A, Damle S, Del Real MM, Kueh HY, Li L, Yui MA. Transcriptional establishment of cell-type identity: dynamics and causal mechanisms of T-cell lineage commitment. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:31-41. [PMID: 24135716 DOI: 10.1101/sqb.2013.78.020271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Precursor cell entry into the T-cell developmental pathway can be divided into two phases by the closure of T-lineage commitment. As cells decide against the last alternative options to the T-cell fate, they turn on the transcription factor Bcl11b and silence expression of a group of multipotent progenitor regulatory factors that include hematopoietic transcription factor PU.1. Functional perturbation tests show that Bcl11b is needed for commitment while PU.1 actively participates in keeping open access to alternative fates, until it is silenced; however, PU.1 and Bcl11b both contribute positively to T-cell development. Our recent work reviewed here sheds light on the transcriptional regulatory network that determines the timing and irreversibility of Bcl11b activation, the ways that Notch signaling from the thymic microenvironment restricts the action of PU.1 to prevent it from diverting cells to non-T fates, and the target genes that PU.1 still regulates under the influence of Notch signaling to contribute to T-cell generation. We argue that T-cell development depends on the sequential operation of two interlaced, but mutually antagonistic, gene regulatory networks, one initially supporting expansion before commitment and the other imposing a "terminal" differentiation process on committed cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Ameya Champhekar
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Sagar Damle
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | | | - Hao Yuan Kueh
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Long Li
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
13
|
Rothenberg EV. Epigenetic mechanisms and developmental choice hierarchies in T-lymphocyte development. Brief Funct Genomics 2013; 12:512-24. [PMID: 23922132 DOI: 10.1093/bfgp/elt027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three interlocking problems in gene regulation are: how to explain genome-wide targeting of transcription factors in different cell types, how prior transcription factor action can establish an 'epigenetic state' that changes the options for future transcription factor action, and how directly a sequence of developmental decisions can be memorialized in a hierarchy of repression structures applied to key genes of the 'paths not taken'. This review uses the finely staged process of T-cell lineage commitment as a test case in which to examine how changes in developmental status are reflected in changes in transcription factor expression, transcription factor binding distribution across genomic sites, and chromatin modification. These are evaluated in a framework of reciprocal effects of previous chromatin structure features on transcription factor access and of transcription factor binding on other factors and on future chromatin structure.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. Tel.: +1 626 395 4992; Fax: +1 626 449 0756;
| |
Collapse
|
14
|
DUXO, a novel double homeobox transcription factor, is a regulator of the gastrula organizer in human embryonic stem cells. Stem Cell Res 2012; 9:261-9. [PMID: 23010573 DOI: 10.1016/j.scr.2012.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells differentiate into gastrula organizer cells that express typical markers and induce secondary axes when injected into frog embryos. Here, we report that these human organizer cells express DUXO (DUX of the Organizer), a novel member of the double-homeobox (DUX) family of transcription factors, a group of genes unique to placental mammals. Both of DUXO's homeodomains share high similarity with those of Siamois and Twin, the initial inducers of the amphibian gastrula organizer. DUXO overexpression in human embryoid bodies induces organizer related genes, whereas its knock down hampers formation of the organizer and its derivatives. Finally, we show that DUXO regulates GOOSECOID, the canonical organizer marker, in a direct manner, suggesting that DUXO is a major regulator of human organizer formation.
Collapse
|
15
|
Abstract
DUX4, a homeobox-containing gene present in a tandem array, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant autosomal disease. New findings about DUX4 have raised as many fundamental questions about the molecular pathology of this unique disease as they have answered. This review discusses recent studies addressing the question of whether there is extensive FSHD-related transcription dysregulation in adult-derived myoblasts and myotubes, the precursors for muscle repair. Two models for the role of DUX4 in FSHD are presented. One involves transient pathogenic expression of DUX4 in many cells in the muscle lineage before the myoblast stage resulting in a persistent, disease-related transcription profile ('Majority Rules'), which might be enhanced by subsequent oscillatory expression of DUX4. The other model emphasizes the toxic effects of inappropriate expression of DUX4 in only an extremely small percentage of FSHD myoblasts or myotube nuclei ('Minority Rules'). The currently favored Minority Rules model is not supported by recent studies of transcription dysregulation in FSHD myoblasts and myotubes. It also presents other difficulties, for example, explaining the expression of full-length DUX4 transcripts in FSHD fibroblasts. The Majority Rules model is the simpler explanation of findings about FSHD-associated gene expression and the DUX4-encoded homeodomain-type protein.
Collapse
|
16
|
Wen X, Liu H, Xiao G, Liu X. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells. Cell Res 2011; 21:1701-10. [PMID: 22105482 DOI: 10.1038/cr.2011.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The roles of the reprogramming factors Oct4, Sox2, c-Myc and Klf4 in early T cell development are incompletely defined. Here, we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells. Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development, including genes involved in microenvironmental signaling (IL-7Rα), Notch target genes (Deltex1), and essential T cell lineage regulatory or inhibitory genes (Bcl11a, SpiB, and Id1). The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression. The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene, but was partially rescued by restoring the expression of IL-7Rα. Thus, our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.
Collapse
Affiliation(s)
- Xiaomin Wen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
17
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
18
|
Abstract
T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change.
Collapse
|
19
|
Wu SL, Tsai MS, Wong SH, Hsieh-Li HM, Tsai TS, Chang WT, Huang SL, Chiu CC, Wang SH. Characterization of genomic structures and expression profiles of three tandem repeats of a mouse double homeobox gene: Duxbl. Dev Dyn 2010; 239:927-40. [PMID: 20063414 DOI: 10.1002/dvdy.22210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We identified and cloned a mouse double homeobox gene (Duxbl), which encodes two homeodomains. Duxbl gene, a tandem triplicate produces two major transcripts, Duxbl and Duxbl-s. The amino acid sequences of Duxbl homeodomains are most similar to those of human DUX4 protein, associated with facioscapulohumeral muscular dystrophy. In adult tissues, Duxbl is predominantly expressed in female reproductive organs and eyes, and slightly expressed in brain and testes. During gonad development, Duxbl is expressed from embryonic to adult stages and specifically expressed in oocytes and spermatogonia. During embryonic development, Duxbl is transcribed in limbs and tail. However, Duxbl proteins were only detected in trunk and limb muscles and in elongated myocytes and myotubes. In C2C12 muscle cell line, Duxbl expression pattern is similar to differentiated marker gene, Myogenin, increased in expression from 2 days onward in differentiating medium. We suggest that Duxbl proteins play regulatory roles during myogenesis and reproductive developments.
Collapse
Affiliation(s)
- Shey-Lin Wu
- Department of Neurology, Chang-Hua Christian Hospital, and Department of Bioindustry Technology, Da-Yeh University, Dacun, Changhua, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leidenroth A, Hewitt JE. A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 2010; 10:364. [PMID: 21110847 PMCID: PMC3004920 DOI: 10.1186/1471-2148-10-364] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/26/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND DUX4 is causally involved in the molecular pathogenesis of the neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD). It has previously been proposed to have arisen by retrotransposition of DUXC, one of four known intron-containing DUX genes. Here, we investigate the evolutionary history of this multi-member double-homeobox gene family in eutherian mammals. RESULTS Our analysis of the DUX family shows the distribution of different homologues across the mammalian class, including events of secondary loss. Phylogenetic comparison, analysis of gene structures and information from syntenic regions confirm the paralogous relationship of Duxbl and DUXB and characterize their relationship with DUXA and DUXC. We further identify Duxbl pseudogene orthologues in primates. A survey of non-mammalian genomes identified a single-homeobox gene (sDUX) as a likely representative homologue of the mammalian DUX ancestor before the homeobox duplication. Based on the gene structure maps, we suggest a possible mechanism for the generation of the DUX gene structure. CONCLUSIONS Our study underlines how secondary loss of orthologues can obscure the true ancestry of individual gene family members. Their relationships should be considered when interpreting the relevance of functional data from DUX4 homologues such as Dux and Duxbl to FSHD.
Collapse
Affiliation(s)
- Andreas Leidenroth
- Centre for Genetics and Genomics, School of Biology, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Jane E Hewitt
- Centre for Genetics and Genomics, School of Biology, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
21
|
Virts EL, Thoman ML. Age-associated changes in miRNA expression profiles in thymopoiesis. Mech Ageing Dev 2010; 131:743-8. [PMID: 20934450 DOI: 10.1016/j.mad.2010.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/20/2010] [Accepted: 09/30/2010] [Indexed: 11/29/2022]
Abstract
During adult life, the thymus involutes and thymic output of mature T cells drastically declines. The molecular events underlying this process are not well understood. Here, we present evidence of the importance of miRNAs in regulating T cell differentiation in the aged. miRNAs are a wide-ranging regulatory element influencing gene expression throughout the lifetime of the organism. To establish whether they play a role in the age-specific thymic decline, the miRNA expression pattern was examined in TN subsets of young and aged mice. Fifty-two percent of the miRNAs exhibited elevated expression levels in the aged TN1 cells. This expression profile leads us to hypothesize that the large number of highly expressed miRNAs, indicative of rigidly controlled protein expression, limits the developmental potential of this population and results in the age-induced decline in thymopoiesis.
Collapse
|
22
|
Cell-type-specific activation and repression of PU.1 by a complex of discrete, functionally specialized cis-regulatory elements. Mol Cell Biol 2010; 30:4922-39. [PMID: 20696839 DOI: 10.1128/mcb.00354-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor PU.1 is critical for multiple hematopoietic lineages, but different leukocyte types require strictly distinct patterns of PU.1 regulation. PU.1 is required early for T-cell lineage development but then must be repressed by a stage-specific mechanism correlated with commitment. Other lineages require steady, low expression or upregulation. Until now, only the promoter plus a distal upstream regulatory element (URE) could be invoked to explain nearly all Sfpi1 (PU.1) activation and repression, including bifunctional effects of Runx1. However, the URE is dispensable for most Sfpi1 downregulation in early T cells, and we show that it retains enhancer activity in immature T-lineage cells even where endogenous Sfpi1 is repressed. We now present evidence for another complex of conserved noncoding elements that mediate discrete, cell-type-specific regulatory features of Sfpi1, including a myeloid cell-specific activating element and a separate, pro-T-cell-specific silencer element. These elements yield opposite, cell-type-specific responses to Runx1. T-cell-specific repression requires Runx1 acting through multiple nonconsensus sites in the silencer core. These newly characterized sites recruit Runx1 binding in early T cells in vivo and define a functionally specific scaffold for dose-dependent, Runx-mediated repression.
Collapse
|
23
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2009; 325:444-67. [PMID: 19013443 PMCID: PMC2663971 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|
24
|
Rothenberg EV, Scripture-Adams DD. Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin Immunol 2008; 20:236-46. [PMID: 18768329 PMCID: PMC2634812 DOI: 10.1016/j.smim.2008.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/06/2008] [Accepted: 07/10/2008] [Indexed: 12/15/2022]
Abstract
T-cell precursors remain developmentally plastic for multiple cell generations after entering the thymus, preserving access to developmental alternatives of macrophage, dendritic-cell, and even mast-cell fates. The underlying regulatory basis of this plasticity is that early T-cell differentiation depends on transcription factors which can also promote alternative developmental programs. Interfactor competition, together with environmental signals, keep these diversions under control. Here the pathways leading to several lineage alternatives for early pro-T-cells are reviewed, with close focus on the mechanisms of action of three vital factors, GATA-3, PU.1, and Notch-Delta signals, whose counterbalance appears to be essential for T-cell specification.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|