1
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
2
|
Gautam R, Lal M, Carroll MC, Mrozek Z, Trachsel T, Beers J, Ruffner MA. Proton pump inhibitors modulate esophageal epithelial barrier function and crosstalk with eosinophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609219. [PMID: 39229135 PMCID: PMC11370561 DOI: 10.1101/2024.08.22.609219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Eosinophilic esophagitis (EoE) is a chronic allergic disease characterized by esophageal dysfunction, type-2 inflammation, and esophageal eosinophilic infiltrate. While proton pump inhibitor (PPI) therapy is commonly used for EoE management, the underlying mechanism of action remains unclear. Methods Air-liquid interface culture of esophageal epithelial cells was employed to investigate the impact of the PPI omeprazole on barrier integrity in IL-13-treated cultures. Epithelial chemokine secretion was assessed following stimulation with IL-13 and omeprazole, and the migration of eosinophils from healthy human donors was evaluated using 3 μm pore-sized transwells. A co-culture system of epithelial cells and eosinophils was employed to study chemokine secretion and eosinophil adhesion and activation markers. Results Omeprazole treatment in the IL-13-treated air-liquid interface (ALI) model resulted in 186 differentially expressed genes and restored barrier integrity compared to ALI treated with IL-13 alone. Omeprazole treatment reduced STAT6 phosphorylation, downregulated calpain 14, and upregulated desmoglein-1 in the IL-13-treated air-liquid interface samples. IL-13-induced upregulation of Eotaxin-3, CXCL10, and periostin, but this was downregulated by omeprazole. Further, the expression of CD11b, CD18, and CD69 was lower on eosinophils from omeprazole-treated epithelial-eosinophil co-cultures, which also had lower levels of eotaxin-3, CXCL10, CCL2, and CCL4. Conclusion Omeprazole reduced the effects of IL-13 in both the epithelial air-liquid interface model and eosinophil-epithelial co-cultures, reducing barrier dysfunction, chemokine expression, and upregulation of eosinophil adhesion markers.
Collapse
Affiliation(s)
- Ravi Gautam
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
| | - Megha Lal
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
| | | | - Zoe Mrozek
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
| | - Tina Trachsel
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
- Division of Allergy, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jarad Beers
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
| | - Melanie A. Ruffner
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania
| |
Collapse
|
3
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Podolska MJ, Grützmann R, Pilarsky C, Bénard A. IL-3: key orchestrator of inflammation. Front Immunol 2024; 15:1411047. [PMID: 38938573 PMCID: PMC11208316 DOI: 10.3389/fimmu.2024.1411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Interleukin (IL)-3 has long been known for its hematopoietic properties. However, recent evidence has expanded our understanding of IL-3 function by identifying IL-3 as a critical orchestrator of inflammation in a wide array of diseases. Depending on the type of disease, the course of inflammation, the cell or the tissue involved, IL-3 promotes either pathologic inflammation or its resolution. Here, we describe the cell-specific functions of IL-3 and summarize its role in diseases. We discuss the current treatments targeting IL-3 or its receptor, and highlight the potential and the limitations of targeting IL-3 in clinics.
Collapse
Affiliation(s)
| | | | | | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Gurtner A, Crepaz D, Arnold IC. Emerging functions of tissue-resident eosinophils. J Exp Med 2023; 220:e20221435. [PMID: 37326974 PMCID: PMC10276195 DOI: 10.1084/jem.20221435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Eosinophils are typically considered tissue-damaging effector cells in type 2 immune-related diseases. However, they are also increasingly recognized as important modulators of various homeostatic processes, suggesting they retain the ability to adapt their function to different tissue contexts. In this review, we discuss recent progress in our understanding of eosinophil activities within tissues, with particular emphasis on the gastrointestinal tract, where a large population of these cells resides under non-inflammatory conditions. We further examine evidence of their transcriptional and functional heterogeneity and highlight environmental signals emerging as key regulators of their activities, beyond classical type 2 cytokines.
Collapse
Affiliation(s)
- Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Daniel Crepaz
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| |
Collapse
|
6
|
Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma. Int J Mol Sci 2023; 24:ijms24043469. [PMID: 36834879 PMCID: PMC9958882 DOI: 10.3390/ijms24043469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Airway remodeling is a hallmark feature of asthma, and one of its key structural changes is increased airway smooth muscle (ASM) mass and disturbed extracellular matrix (ECM) homeostasis. Eosinophil functions in asthma are broadly defined; however, we lack knowledge about eosinophil subtypes' interaction with lung structural cells and their effect on the airway's local microenvironment. Therefore, we investigated the effect of blood inflammatory-like eosinophils (iEOS-like) and lung resident-like eosinophils (rEOS-like) on ASM cells via impact on their migration and ECM-related proliferation in asthma. A total of 17 non-severe steroid-free allergic asthma (AA), 15 severe eosinophilic asthma (SEA) patients, and 12 healthy control subjects (HS) were involved in this study. Peripheral blood eosinophils were enriched using Ficoll gradient centrifugation and magnetic separation, subtyped by using magnetic separation against CD62L. ASM cell proliferation was assessed by AlamarBlue assay, migration by wound healing assay, and gene expression by qRT-PCR analysis. We found that blood iEOS-like and rEOS-like cells from AA and SEA patients' upregulated genes expression of contractile apparatus proteins, COL1A1, FN, TGF-β1 in ASM cells (p < 0.05), and SEA eosinophil subtypes demonstrated the highest effect on sm-MHC, SM22, and COL1A1 gene expression. Moreover, AA and SEA patients' blood eosinophil subtypes promoted migration of ASM cells and their ECM-related proliferation, compared with HS (p < 0.05) with the higher effect of rEOS-like cells. In conclusion, blood eosinophil subtypes may contribute to airway remodeling by upregulating contractile apparatus and ECM component production in ASM cells, further promoting their migration and ECM-related proliferation, with a stronger effect of rEOS-like cells and in SEA.
Collapse
|
7
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
8
|
Yao Y, Liu H, Yuan L, Du X, Yang Y, Zhou K, Wu X, Qin L, Yang M, Xiang Y, Qu X, Qin X, Liu C. Integrins are double-edged swords in pulmonary infectious diseases. Biomed Pharmacother 2022; 153:113300. [PMID: 35728353 DOI: 10.1016/j.biopha.2022.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Integrins are an important family of adhesion molecules that are widely distributed on immune cells in the lungs. Of note, accumulating evidences have shown that integrins are double-edged swords in pulmonary infectious diseases. On one hand, integrins promote the migration of immune cells to remove the invaded pathogens in the infected lungs. However, on the other hand, integrins also act as the targets for pathogens to escape from host immune system, which is a potential factor leading to further tissue damage. Thus, the innovative therapeutic strategies based on integrins has inspired well-founded hopes to treat pulmonary infectious diseases. In this review, we illustrate the involvement of integrins in pulmonary infectious diseases, and further discuss the innovative therapeutic targets based on integrins.
Collapse
Affiliation(s)
- Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Larsen LD, Dockstader K, Olbrich CL, Cartwright IM, Spencer LA. Modulation of surface CD11c expression tracks plasticity in murine intestinal tissue eosinophils. J Leukoc Biol 2022; 111:943-952. [PMID: 35141942 PMCID: PMC9829035 DOI: 10.1002/jlb.3hi0821-432rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intestinal eosinophils are implicated in the inflammatory pathology of eosinophilic gastrointestinal diseases and inflammatory bowel diseases. Eosinophils also contribute to intestinal immunologic and tissue homeostasis and host defense. Recent studies in allergic airway disease suggest functional subphenotypes of eosinophils may underly their pathogenic versus protective roles. However, subphenotypes of intestinal eosinophils have not been defined and are complicated by their constitutive expression of the putative eosinophil inflammatory marker CD11c. Here, we propose a framework for subphenotype characterization of intestinal eosinophils based on relative intensity of surface CD11c expression. Using this flow cytometry framework in parallel with histology and BrdU tracing, we characterize intestinal eosinophil subphenotypes and monitor their plasticity at baseline and within the context of acute allergic and chronic systemic inflammation. Data reveal a conserved continuum of CD11c expression amongst intestinal eosinophils in health and acute disease states that overall tracked with other markers of activation. Oral allergen challenge induced recruitment of eosinophils into small intestinal lamina propria surrounding crypts, followed by in situ induction of CD11c expression in parallel with eosinophil redistribution into intestinal villi. Allergen challenge also elicited eosinophil transepithelial migration and the appearance of CD11clo CD11bhi eosinophils in the intestinal lumen. Chronic inflammation driven by overexpression of TNFα led to a qualitative shift in the relative abundance of CD11c-defined eosinophil subphenotypes favoring CD11chi -expressing eosinophils. These findings provide new insights into heterogeneity of intestinal tissue eosinophils and offer a framework for measuring and tracking eosinophil subphenotype versatility in situ in health and disease.
Collapse
Affiliation(s)
- Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Karen Dockstader
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Courtney L. Olbrich
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA,GI and Liver Innate Immune Program (GALIIP), and Mucosal Inflammation Program (MIP), University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ian M. Cartwright
- GI and Liver Innate Immune Program (GALIIP), and Mucosal Inflammation Program (MIP), University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA,GI and Liver Innate Immune Program (GALIIP), and Mucosal Inflammation Program (MIP), University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Design of α/β-Hybrid Peptide Ligands of α4β1 Integrin Equipped with a Linkable Side Chain for Chemoselective Biofunctionalization of Microstructured Materials. Biomedicines 2021; 9:biomedicines9111737. [PMID: 34829965 PMCID: PMC8615975 DOI: 10.3390/biomedicines9111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Arg-Gly-Asp (RGD)-binding integrins, e.g., αvβ3, αvβ1, αvβ5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4β1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4β1 integrin, we designed hybrid α/β peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide–zeolite MLs were able to capture selectively α4β1 integrin-expressing cells. In perspective, the α4β1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4β1 integrin-correlated diseases.
Collapse
|
11
|
Bartig KA, Lee KE, Mosher DF, Mathur SK, Johansson MW. Platelet association with leukocytes in active eosinophilic esophagitis. PLoS One 2021; 16:e0250521. [PMID: 33891621 PMCID: PMC8064567 DOI: 10.1371/journal.pone.0250521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
We previously demonstrated that the percentage of blood eosinophils that are associated with platelets and thus positive for CD41 (integrin αIIb-subunit) correlates with and predicts peak eosinophil count (PEC) in biopsies of eosinophilic esophagitis (EoE) patients after treatment. Thus, flow cytometric determination of CD41+ eosinophils is a potential measure of EoE disease activity. Determinants of association of platelets with eosinophils and other leukocytes in EoE are largely unknown. The objectives of this study were to test the hypotheses that platelets associate with blood leukocytes other than eosinophils in EoE and that such associations also predict EoE activity. Whole blood flow cytometry was performed on samples from 25 subjects before and after two months of standard of care EoE treatment. CD41 positivity of cells within gates for eosinophils, neutrophils, monocytes, lymphocytes, and natural killer cells was compared. We found that percent CD41+ neutrophils, monocytes, and eosinophils correlated with one another such that principal component analysis of the five cell types identified “myeloid” and “lymphoid” factors. Percent CD41+ neutrophils or monocytes, or the myeloid factor, like CD41+ eosinophils, correlated with PEC after treatment, and CD41+ neutrophils or the myeloid factor predicted PEC < 6/high power field after treatment, albeit with lower area under the curve than for CD41+ eosinophils. We conclude that the processes driving platelets to associate with eosinophils in EoE also drive association of platelets with neutrophils and monocytes and that association of platelets with all three cell types is related to disease activity. Clinicaltrials.gov identifier: NCT02775045.
Collapse
Affiliation(s)
- Kelly A. Bartig
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristine E. Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Sameer K. Mathur
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
12
|
Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells 2021; 10:cells10040895. [PMID: 33919759 PMCID: PMC8070740 DOI: 10.3390/cells10040895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are well known to contribute significantly to Th2 immunity, such as allergic inflammations. Although basophils have often not been considered in the pathogenicity of allergic dermatitis and asthma, their role in Th2 immunity has become apparent in recent years. Eosinophils and basophils are present at sites of allergic inflammations. It is therefore reasonable to speculate that these two types of granulocytes interact in vivo. In various experimental allergy models, basophils and eosinophils appear to be closely linked by directly or indirectly influencing each other since they are responsive to similar cytokines and chemokines. Indeed, basophils are shown to be the gatekeepers that are capable of regulating eosinophil entry into inflammatory tissue sites through activation-induced interactions with endothelium. However, the direct evidence that eosinophils and basophils interact is still rarely described. Nevertheless, new findings on the regulation and function of eosinophils and basophils biology reported in the last 25 years have shed some light on their potential interaction. This review will focus on the current knowledge that basophils may regulate the biology of eosinophil in atopic dermatitis and allergic asthma.
Collapse
|
13
|
Masterson JC, Menard-Katcher C, Larsen LD, Furuta GT, Spencer LA. Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells 2021; 10:cells10020426. [PMID: 33671475 PMCID: PMC7922004 DOI: 10.3390/cells10020426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are implicated in the pathophysiology of a spectrum of eosinophil-associated diseases, including gastrointestinal eosinophilic diseases (EGIDs). Biologics that target the IL-5 pathway and are intended to ablate eosinophils have proved beneficial in severe eosinophilic asthma and may offer promise in treating some endotypes of EGIDs. However, destructive effector functions of eosinophils are only one side of the coin; eosinophils also play important roles in immune and tissue homeostasis. A growing body of data suggest tissue eosinophils represent a plastic and heterogeneous population of functional sub-phenotypes, shaped by environmental (systemic and local) pressures, which may differentially impact disease outcomes. This may be particularly relevant to the GI tract, wherein the highest density of eosinophils reside in the steady state, resident immune cells are exposed to an especially broad range of external and internal environmental pressures, and greater eosinophil longevity may uniquely enrich for co-expression of eosinophil sub-phenotypes. Here we review the growing evidence for functional sub-phenotypes of intestinal tissue eosinophils, with emphasis on the multifactorial pressures that shape and diversify eosinophil identity and potential targets to inform next-generation eosinophil-targeting strategies designed to restrain inflammatory eosinophil functions while sustaining homeostatic roles.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3277
| |
Collapse
|
14
|
The Enhanced Adhesion of Eosinophils Is Associated with Their Prolonged Viability and Pro-Proliferative Effect in Asthma. J Clin Med 2019; 8:jcm8091274. [PMID: 31443410 PMCID: PMC6780628 DOI: 10.3390/jcm8091274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Before eosinophils migrate into the bronchial lumen, they promote airway structural changes after contact with pulmonary cells and extracellular matrix components. We aimed to investigate the impact of eosinophil adhesion to their viability and pro-proliferative effect on airway smooth muscle (ASM) cells and pulmonary fibroblasts during different asthma phenotypes. A total of 39 individuals were included: 14 steroid-free non-severe allergic asthma (AA) patients, 10 severe non-allergic eosinophilic asthma (SNEA) patients, and 15 healthy control subjects (HS). For AA patients and HS groups, a bronchial allergen challenge with Dermatophagoides pteronysinnus was performed. Individual combined cells cultures were prepared between isolated peripheral blood eosinophils and ASM cells or pulmonary fibroblasts. Eosinophil adhesion was measured by evaluating their peroxidase activity, cell viability was performed by annexin V and propidium iodide staining, and proliferation by Alamar blue assay. We found that increased adhesion of eosinophils was associated with prolonged viability (p < 0.05) and an enhanced pro-proliferative effect on ASM cells and pulmonary fibroblasts in asthma (p < 0.05). However, eosinophils from SNEA patients demonstrated higher viability and inhibition of pulmonary structural cell apoptosis, compared to the AA group (p < 0.05), while their adhesive and pro-proliferative properties were similar. Finally, in the AA group, in vivo allergen-activated eosinophils demonstrated a higher adhesion, viability, and pro-proliferative effect on pulmonary structural cells compared to non-activated eosinophils (p < 0.05).
Collapse
|
15
|
Nelson RK, Brickner H, Panwar B, Ramírez-Suástegui C, Herrera-de la Mata S, Liu N, Diaz D, Alexander LEC, Ay F, Vijayanand P, Seumois G, Akuthota P. Human Eosinophils Express a Distinct Gene Expression Program in Response to IL-3 Compared with Common β-Chain Cytokines IL-5 and GM-CSF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:329-337. [PMID: 31175163 PMCID: PMC6616007 DOI: 10.4049/jimmunol.1801668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Despite recent advances in asthma management with anti-IL-5 therapies, many patients have eosinophilic asthma that remains poorly controlled. IL-3 shares a common β subunit receptor with both IL-5 and GM-CSF but, through α-subunit-specific properties, uniquely influences eosinophil biology and may serve as a potential therapeutic target. We aimed to globally characterize the transcriptomic profiles of GM-CSF, IL-3, and IL-5 stimulation on human circulating eosinophils and identify differences in gene expression using advanced statistical modeling. Human eosinophils were isolated from the peripheral blood of healthy volunteers and stimulated with either GM-CSF, IL-3, or IL-5 for 48 h. RNA was then extracted and bulk sequencing performed. DESeq analysis identified differentially expressed genes and weighted gene coexpression network analysis independently defined modules of genes that are highly coexpressed. GM-CSF, IL-3, and IL-5 commonly upregulated 252 genes and downregulated 553 genes, producing a proinflammatory and survival phenotype that was predominantly mediated through TWEAK signaling. IL-3 stimulation yielded the most numbers of differentially expressed genes that were also highly coexpressed (n = 119). These genes were enriched in pathways involving JAK/STAT signaling. GM-CSF and IL-5 stimulation demonstrated redundancy in eosinophil gene expression. In conclusion, IL-3 produces a distinct eosinophil gene expression program among the β-chain receptor cytokines. IL-3-upregulated genes may provide a foundation for research into therapeutics for patients with eosinophilic asthma who do not respond to anti-IL-5 therapies.
Collapse
Affiliation(s)
- Ryan K Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Howard Brickner
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Bharat Panwar
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | | | - Neiman Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Damaris Diaz
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161; and
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA 92037
- University of California San Diego School of Medicine, La Jolla, CA 92093
| | | | | | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037;
- La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
16
|
Barretto KT, Swanson CM, Nguyen CL, Annis DS, Esnault SJ, Mosher DF, Johansson MW. Control of cytokine-driven eosinophil migratory behavior by TGF-beta-induced protein (TGFBI) and periostin. PLoS One 2018; 13:e0201320. [PMID: 30048528 PMCID: PMC6062114 DOI: 10.1371/journal.pone.0201320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
Periostin, which is induced by interleukin (IL)-13, is an extracellular matrix (ECM) protein that supports αMβ2 integrin-mediated adhesion and migration of IL-5-stimulated eosinophils. Transforming growth factor (TGF)-β-induced protein (TGFBI) is a widely expressed periostin paralog known to support monocyte adhesion. Our objective was to compare eosinophil adhesion and migration on TGFBI and periostin in the presence of IL-5-family cytokines. Eosinophil adhesion after 1 h and random motility over 20 h in the presence of various concentrations of IL-5, IL-3, or granulocyte macrophage-colony stimulating factor (GM-CSF) were quantified in wells coated with various concentrations of TGFBI or periostin. Results were compared to video microscopy of eosinophils. Cytokine-stimulated eosinophils adhered equivalently well to TGFBI or periostin in a coating concentration-dependent manner. Adhesion was blocked by anti-αMβ2 and stimulated at the lowest concentration by GM-CSF. In the motility assay, periostin was more potent than TGFBI, the coating-concentration effect was bimodal, and IL-3 was the most potent cytokine. Video microscopy revealed that under the optimal coating condition of 5 μg/ml periostin, most eosinophils migrated persistently and were polarized and acorn-shaped with a ruffling forward edge and granules gathered together, in front of the nucleus. On 10 μg/ml periostin or TGFBI, more eosinophils adopted a flattened pancake morphology with dispersed granules and nuclear lobes, and slower migration. Conversion between acorn and pancake morphologies were observed. We conclude that TGFBI or periostin supports two modes of migration by IL-5 family cytokine-activated eosinophils. The rapid mode is favored by intermediate protein coatings and the slower by higher coating concentrations. We speculate that eosinophils move by haptotaxis up a gradient of adhesive ECM protein and then slow down to surveil the tissue.
Collapse
Affiliation(s)
- Karina T. Barretto
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Calvin M. Swanson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher L. Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Stephane J. Esnault
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Johansson MW, Kelly EA, Nguyen CL, Jarjour NN, Bochner BS. Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge. Int Arch Allergy Immunol 2018; 177:16-28. [PMID: 29879704 DOI: 10.1159/000488951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Siglec-8 is present at a high level on human blood eosinophils and low level on blood basophils. Engagement of Siglec-8 on blood eosinophils causes its internalization and results in death. Siglec-8 is a potential therapeutic target in eosinophilic asthma. OBJECTIVES The aim of this study was to determine Siglec-8 levels on eosinophils and basophils recruited during lung inflammation. METHOD We analyzed surface Siglec-8 by flow cytometry on cells obtained by bronchoalveolar lavage (BAL) 48 h after segmental lung allergen challenge of human subjects with mild allergic asthma and used confocal microscopy to compare Siglec-8 distribution on BAL and blood eosinophils. RESULTS Like their blood counterparts, BAL eosinophils had high unimodal surface Siglec-8, while BAL basophils had lower but detectable surface Siglec-8. BAL macrophages, monocytes, neutrophils, and plasmacytoid dendritic cells did not express surface Siglec-8. Microscopy of freshly isolated blood eosinophils demonstrated homogeneous Siglec-8 distribution over the cell surface. Upon incubation with IL-5, Siglec-8 on the surface of eosinophils became localized in patches both at the nucleopod tip and at the opposite cell pole. BAL eosinophils also had a patchy Siglec-8 distribution. CONCLUSIONS We conclude that 48 h after segmental allergen challenge, overall levels of Siglec-8 expression on airway eosinophils resemble those on blood eosinophils, but with a patchier distribution, a pattern consistent with activation. Thus, therapeutic targeting of Siglec-8 has the potential to impact blood as well as lung eosinophils, which may be associated with an improved outcome in eosinophilic lung diseases.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Elizabeth A Kelly
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christopher L Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nizar N Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Esnault S, Hebert AS, Jarjour NN, Coon JJ, Mosher DF. Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. J Proteome Res 2018; 17:2102-2111. [PMID: 29706072 DOI: 10.1021/acs.jproteome.8b00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purified human eosinophils treated for 18-24 h with IL-3 adopt a unique activated phenotype marked by increased reactivity to aggregated immunoglobulin-G (IgG). To characterize this phenotype, we quantified protein abundance and phosphorylation by multiplexed isobaric labeling combined with high-resolution mass spectrometry. Purified blood eosinophils of five individuals were treated with IL-3 or no cytokine for 20 h, and comparative data were obtained on abundance of 5385 proteins and phosphorylation at 7330 sites. The 1150 proteins that were significantly up-regulated ( q < 0.05, pairwise t test with Benjamini-Hochberg correction) by IL-3 included the IL3RA and CSF2RB subunits of the IL-3 receptor, the low-affinity receptor for IgG (FCGR2B), 96 proteins involved in protein translation, and 55 proteins involved in cytoskeleton organization. Among the 703 proteins that decreased were 78 mitochondrial proteins. Dynamic regulation of protein phosphorylation was detected at 4218 sites. These included multiple serines in CSF2RB; Y694 of STAT5, a key site of activating phosphorylation downstream of IL3RA/CSF2RB; and multiple sites in RPS6KA1, RPS6, and EIF4B, which are responsible for translational initiation. We conclude that IL-3 up-regulates overall protein synthesis and targets specific proteins for up-regulation, including its own receptor.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States
| | - Alexander S Hebert
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Nizar N Jarjour
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States
| | - Joshua J Coon
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States.,Department of Biomolecular Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States.,Morgridge Institute for Research , Madison , Wisconsin 53715 , United States.,Genome Center of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Deane F Mosher
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States.,Department of Biomolecular Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| |
Collapse
|
19
|
Beute J, Lukkes M, Koekoek EP, Nastiti H, Ganesh K, de Bruijn MJ, Hockman S, van Nimwegen M, Braunstahl GJ, Boon L, Lambrecht BN, Manganiello VC, Hendriks RW, KleinJan A. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight 2018; 3:94888. [PMID: 29367458 DOI: 10.1172/jci.insight.94888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite-driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach.
Collapse
Affiliation(s)
- Jan Beute
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Ewout P Koekoek
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Hedwika Nastiti
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Keerthana Ganesh
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Steve Hockman
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Louis Boon
- Epirus Biopharmaceuticals Netherlands Yalelaan, Utrecht, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands.,VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Vince C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| |
Collapse
|
20
|
Esnault S, Kelly EA. Essential Mechanisms of Differential Activation of Eosinophils by IL-3 Compared to GM-CSF and IL-5. Crit Rev Immunol 2018; 36:429-444. [PMID: 28605348 DOI: 10.1615/critrevimmunol.2017020172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Compelling evidence has demonstrated that the eosinophils bring negative biological outcomes in several diseases, including eosinophilic asthma and hypereosinophilic syndromes. Eosinophils produce and store a broad range of toxic proteins and other mediators that enhance the inflammatory response and lead to tissue damage. For instance, in asthma, a close relationship has been demonstrated between increased lung eosinophilia, asthma exacerbation, and loss of lung function. The use of an anti-IL-5 therapy in severe eosinophilic asthmatic patients is efficient to reduce exacerbations. However, anti-IL-5-treated patients still display a relatively high amount of functional lung tissue eosinophils, indicating that supplemental therapies are required to damper the eosinophil functions. Our recent published works suggest that compared to IL-5, IL-3 can more strongly and differentially affect eosinophil functions. In this review, we summarize our and other investigations that have compared the effects of the three β-chain receptor cytokines (IL-5, GM-CSF and IL-3) on eosinophil biology. We focus on how IL-3 differentially activates eosinophils compared to IL-5 or GM-CSF.
Collapse
Affiliation(s)
- Stephane Esnault
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| | - Elizabeth A Kelly
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| |
Collapse
|
21
|
De Marco R, Greco A, Calonghi N, Dattoli SD, Baiula M, Spampinato S, Picchetti P, De Cola L, Anselmi M, Cipriani F, Gentilucci L. Selective detection of α4β1 integrin (VLA-4)-expressing cells using peptide-functionalized nanostructured materials mimicking endothelial surfaces adjacent to inflammatory sites. Biopolymers 2017; 110. [PMID: 29178262 DOI: 10.1002/bip.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Persistent accumulation of immune cells mediated by α4β1 integrin (VLA-4) is a hallmark of the inflammatory diseases and of chronic inflammation observed in the affected tissues of autoimmune diseases. Aiming at exploring new methods for monitoring the course of the inflammatory processes, we designed the first peptide-functionalized nanostructured devices capable to mimic the high-density multivalency binding between the α4β1 integrin-expressing cells and the ligands overexpressed on the endothelial surfaces, in the proximity of the sites of inflammation. Specifically, we describe the first examples of monolayers constituted by dye-loaded zeolite L crystals, coated with α4β1 integrin peptide ligands, and we analyze the adhesion of model Jurkat cells in comparison to non-α4β1 integrin-expressing cells. In particular, the peptidomimetic diphenylurea-Leu-Asp-Val-diamine allows significant and selective detection of α4β1 integrin-expressing Jurkat cells, after very rapid incubation time, supporting the possible implementation in a diagnostic device capable to detect the desired cells from biological fluids, obtainable from patients in a noninvasive way.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Arianna Greco
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Samantha D Dattoli
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Pierre Picchetti
- Institut de science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg and CNR UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Luisa De Cola
- Institut de science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg and CNR UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Institut fűr Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT) - Campus Nord, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Francesca Cipriani
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 11, Bologna, 40138, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
22
|
Esnault S, Shen ZJ, Malter JS. Protein Translation and Signaling in Human Eosinophils. Front Med (Lausanne) 2017; 4:150. [PMID: 28971096 PMCID: PMC5609579 DOI: 10.3389/fmed.2017.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023] Open
Abstract
We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Abstract
With the advent of novel therapies targeting eosinophils, there has been renewed interest in understanding the basic biology of this unique cell. In this context, murine models and human studies have continued to highlight the role of the eosinophil in homeostatic functions and immunoregulation. This review will focus on recent advances in our understanding of eosinophil biology that are likely to have important consequences on the development and consequences of eosinophil-targeted therapies. Given the breadth of the topic, the discussion will be limited to three areas of interest: the eosinophil life cycle, eosinophil heterogeneity, and mechanisms of cell-cell communication.
Collapse
Affiliation(s)
- Amy Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
McBrien CN, Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 2017; 4:93. [PMID: 28713812 PMCID: PMC5491677 DOI: 10.3389/fmed.2017.00093] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
This review will describe the structure and function of the eosinophil. The roles of several relevant cell surface molecules and receptors will be discussed. We will also explore the systemic and local processes triggering eosinophil differentiation, maturation, and migration to the lungs in asthma, as well as the cytokine-mediated pathways that result in eosinophil activation and degranulation, i.e., the release of multiple pro-inflammatory substances from eosinophil-specific granules, including cationic proteins, cytokines, chemokines growth factors, and enzymes. We will discuss the current understanding of the roles that eosinophils play in key asthma processes such as airway hyperresponsiveness, mucus hypersecretion, and airway remodeling, in addition to the evidence relating to eosinophil–pathogen interactions within the lungs.
Collapse
Affiliation(s)
| | - Andrew Menzies-Gow
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
25
|
Johansson MW. Eosinophil Activation Status in Separate Compartments and Association with Asthma. Front Med (Lausanne) 2017; 4:75. [PMID: 28660189 PMCID: PMC5466952 DOI: 10.3389/fmed.2017.00075] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Asthma is frequently characterized by eosinophil-rich airway inflammation. Airway eosinophilia is associated with asthma exacerbations and likely plays a part in airway remodeling. Eosinophil recruitment from the bloodstream depends on circulating eosinophils becoming activated, which leads to eosinophil arrest on activated endothelium, extravasation, and continued movement through the bronchial tissue by interaction with the extracellular matrix (ECM). Circulating eosinophils can exist at different activation levels, which include non-activated or pre-activated (sensitized or “primed”). Further, the bloodstream may lack pre-activated cells, due to such eosinophils having arrested on endothelium or extravasated into tissue. Increased expression, and in some instances, decreased expression of cell-surface proteins, including CD44, CD45, CD45R0, CD48, CD137, neuropeptide S receptor, cytokine receptors, Fc receptors, and integrins (receptors mediating cell adhesion and migration by interacting with ligands on other cells or in the ECM), and activated states of integrins or Fc receptors on blood eosinophils have been reported to correlate with aspects of asthma. A subset of these proteins has been reported to respond to intervention, e.g., with anti-interleukin (IL)-5. How these surface proteins and the activation state of the eosinophil respond to other interventions, e.g., with anti-IL-4 receptor alpha or anti-IL-13, is unknown. Eosinophil surface proteins suggested to be biomarkers of activation, particularly integrins, and reports on correlations between eosinophil activation and aspects of asthma are described in this review. Intermediate activation of beta1 and beta2 integrins on circulating eosinophils correlates with decreased pulmonary function, airway inflammation, or airway lumen eosinophils in non-severe asthma. The correlation does not appear in severe asthma, likely due to a higher degree of extravasation of pre-activated eosinophils in more severe disease. Bronchoalveolar lavage (BAL) eosinophils have highly activated integrins and other changes in surface proteins compared to blood eosinophils. The activation state of eosinophils in lung tissue, although likely very important in asthma, is largely unknown. However, some recent articles, mainly on mice but partly on human cells, indicate that tissue eosinophils may have a surface phenotype(s) different from that of sputum or BAL eosinophils.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
26
|
Radonjic-Hoesli S, Wang X, de Graauw E, Stoeckle C, Styp-Rekowska B, Hlushchuk R, Simon D, Spaeth PJ, Yousefi S, Simon HU. Adhesion-induced eosinophil cytolysis requires the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J Allergy Clin Immunol 2017; 140:1632-1642. [PMID: 28412393 DOI: 10.1016/j.jaci.2017.01.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils are a subset of granulocytes that can be involved in the pathogenesis of different diseases, including allergy. Their effector functions are closely linked to their cytotoxic granule proteins. Release takes place through several different mechanisms, one of which is cytolysis, which is associated with release of intact granules, so-called clusters of free eosinophil granules. The mechanism underlying this activation-induced form of cell death in eosinophils has remained unclear. OBJECTIVE We aimed to elucidate the molecular mechanism of eosinophil cytolysis. METHODS Isolated blood eosinophils were incubated on glass coverslips coated with intravenous immunoglobulin and inactive complement component 3b. A morphologic characterization of the distinct stages of the proposed cascade was addressed by means of time-lapse automated fluorescence microscopy, electron microscopy, and immunohistochemistry. Experiments with pharmacologic inhibitors were performed to elucidate the sequence of events within the cascade. Tissue samples of patients with eosinophilic skin diseases or eosinophilic esophagitis were used for in vivo analyses. RESULTS After eosinophil adhesion, we observed reactive oxygen species production, early degranulation, and granule fusion processes, leading to a distinct morphology exhibiting cytoplasmic vacuolization and, finally, cytolysis. Using a pharmacologic approach, we demonstrate the presence of a receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway in eosinophils, which, after its activation, leads to the production of high levels of reactive oxygen species in a p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase-dependent manner. All these steps are required for cytoplasmic vacuolization and subsequent cytolysis to occur. Interestingly, triggering cytolysis is associated with an induction of autophagy in eosinophils, and additional stimulation of autophagy by means of pharmacologic inhibition of the mechanistic target of rapamycin counterregulates cell death. Moreover, MLKL phosphorylation, cytoplasmic vacuolization, and cytolysis were observed in eosinophils under in vivo inflammatory conditions. CONCLUSION We report that adhesion-induced eosinophil cytolysis takes place through RIPK3-MLKL-dependent necroptosis, which can be counterregulated by autophagy.
Collapse
Affiliation(s)
- Susanne Radonjic-Hoesli
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Esnault S, Johansson MW, Kelly EA, Koenderman L, Mosher DF, Jarjour NN. IL-3 up-regulates and activates human eosinophil CD32 and αMβ2 integrin causing degranulation. Clin Exp Allergy 2017; 47:488-498. [PMID: 28000949 DOI: 10.1111/cea.12876] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eosinophils contribute to the pathogenesis of multiple diseases, including asthma. Treatment with antibodies targeting IL-5 or IL-5 receptor α reduces the frequency of asthma exacerbations. Eosinophil receptors for IL-5 share a common ß-chain with IL-3 and GM-CSF receptors. We recently reported that IL-3 is more potent than IL-5 or GM-CSF in maintaining the ERK/p90S6K/RPS6 ribosome-directed signaling pathway, leading to increased protein translation. OBJECTIVE We aimed to determine disease-relevant consequences of prolonged eosinophil stimulation with IL-3. RESULTS Human blood eosinophils were used to establish the impact of activation with IL-3 on IgG-driven eosinophil degranulation. When compared to IL-5, continuing exposure to IL-3 further induced degranulation of eosinophils on aggregated IgG via increased production and activation of both CD32 (low affinity IgG receptor) and αMß2 integrin. In addition, unlike IL-5 or GM-CSF, IL-3 induced expression of CD32B/C (FCGRIIB/C) subtype proteins, without changing CD32A (FCGRIIA) protein and CD32B/C mRNA expression levels. Importantly, these in vitro IL-3-induced modifications were recapitulated in vivo on airway eosinophils. CONCLUSIONS AND CLINICAL RELEVANCE We observed for the first time upregulation of CD32B/C on eosinophils, and identified IL-3 as a potent inducer of CD32- and αMß2-mediated eosinophil degranulation.
Collapse
Affiliation(s)
- S Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - E A Kelly
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - L Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - N N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
28
|
Maselli DJ, Velez MI, Rogers L. Reslizumab in the management of poorly controlled asthma: the data so far. J Asthma Allergy 2016; 9:155-62. [PMID: 27621657 PMCID: PMC5012840 DOI: 10.2147/jaa.s94164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Interleukin-5, an important cytokine in the pathophysiology of asthma, participates in terminal maturation and increases chemotaxis, endothelial adhesion, and activation of eosinophils. Blockade of interleukin-5 activity with monoclonal antibodies have been successful in decreasing eosinophil counts. Reslizumab, a monoclonal antibody that targets interleukin-5, has been studied for the treatment of severe asthma. Several studies have shown that reslizumab can effectively treat severe asthma with an eosinophilic phenotype. Compared to placebo, patients treated with reslizumab had a reduction in the rates of asthma exacerbations and experienced improvement in FEV1 and asthma control questionnaires scores as early as 4 weeks after the therapy was initiated. Reslizumab was not effective in various asthma outcomes in patients without eosinophilia. The adverse events reported were similar in both treatment and placebo groups. Patients should be observed immediately after treatment because anaphylaxis may occur rarely (0.3%) after exposure to reslizumab. Future surveillance studies are still needed to establish the risks of malignancy and safety during pregnancy.
Collapse
Affiliation(s)
- Diego Jose Maselli
- Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Maria Ines Velez
- Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Linda Rogers
- Pulmonary, Critical Care, and Sleep Division, Mount Sinai-National Jewish Health Respiratory Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Esnault S, Kelly EAB, Shen ZJ, Johansson MW, Malter JS, Jarjour NN. IL-3 Maintains Activation of the p90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils. THE JOURNAL OF IMMUNOLOGY 2015; 195:2529-39. [PMID: 26276876 DOI: 10.4049/jimmunol.1500871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
IL-5 is a major therapeutic target to reduce eosinophilia. However, all of the eosinophil-activating cytokines, such as IL-5, IL-3, and GM-CSF, are typically present in atopic diseases, including allergic asthma. As a result of the functional redundancy of these three cytokines on eosinophils and the loss of IL-5R on airway eosinophils, it is important to take IL-3 and GM-CSF into account to efficiently reduce tissue eosinophil functions. Moreover, these three cytokines signal through a common β-chain receptor but yet differentially affect protein production in eosinophils. Notably, the increased ability of IL-3 to induce the production of proteins, such as semaphorin-7A, without affecting mRNA levels suggests a unique influence of IL-3 on translation. The purpose of this study was to identify the mechanisms by which IL-3 distinctively affects eosinophil function compared with IL-5 and GM-CSF, with a focus on protein translation. Peripheral blood eosinophils were used to study intracellular signaling and protein translation in cells activated with IL-3, GM-CSF, or IL-5. We establish that, unlike GM-CSF or IL-5, IL-3 triggers prolonged signaling through activation of ribosomal protein S6 (RPS6) and the upstream kinase 90-kDa ribosomal S6 kinase (p90S6K). Blockade of p90S6K activation inhibited phosphorylation of RPS6 and IL-3-enhanced semaphorin-7A translation. Furthermore, in an allergen-challenged environment, in vivo phosphorylation of RPS6 and p90S6K was enhanced in human airway compared with circulating eosinophils. Our findings provide new insights into the mechanisms underlying differential activation of eosinophils by IL-3, GM-CSF, and IL-5. These observations identify IL-3 and its downstream intracellular signals as novel targets that should be considered to modulate eosinophil functions.
Collapse
Affiliation(s)
- Stephane Esnault
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Elizabeth A B Kelly
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
30
|
Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J Allergy Clin Immunol 2015; 137:268-277.e8. [PMID: 26139511 DOI: 10.1016/j.jaci.2015.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. OBJECTIVES To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. METHODS Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. RESULTS Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the expression of PLA2G10 by eosinophils. CONCLUSIONS These results demonstrate that sPLA2-X plays a significant role in the formation of CysLTs by human eosinophils. The predominant role of the enzyme is the regulation of MAPK activation that leads to the phosphorylation of cPLA2α. The sPLA2-X protein is regulated by proteolytic cleavage, suggesting that an inflammatory environment may promote the formation of CysLTs through this mechanism. These results have important implications for the treatment of eosinophilic disorders such as asthma.
Collapse
|
31
|
Abstract
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
32
|
Ramirez-Velazquez C, Beristain-Covarrubias N, Guido-Bayardo L, Ortiz-Navarrete V. Peripheral blood T cells and neutrophils from asthma patients express class-I MHC-restricted T cell-associated molecule. Allergy Asthma Clin Immunol 2014; 10:46. [PMID: 25221604 PMCID: PMC4163162 DOI: 10.1186/1710-1492-10-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022] Open
Abstract
Background Class-I MHC-restricted T cell-associated molecule (CRTAM) is a protein expressed by activated natural killer T (NKT) cells, natural killer (NK) cells, CD8 T cells, and certain CD4 T lymphocytes. It is also expressed in Purkinje neurons and epithelial cells. However, no studies have examined the expression of CRTAM in peripheral blood cells during homeostasis or disease. Therefore, we explored whether CRTAM expression is influenced by the presence of allergic asthma. Methods We collected whole peripheral blood cells from non-asthmatic control subjects (n = 17) and patients with asthma (n = 17). All patients with asthma tested positive in allergen skin prick tests. We analyzed CRTAM expression in CD4+ and CD8+ T lymphocyte populations. CRTAM expression was also analyzed in CD177+ neutrophils and IL5Rα+ eosinophils. Findings The percentage of CD4+CRTAM+ and CD8+CRTAM+T lymphocytes in peripheral blood was higher in allergic asthma patients compared with healthy controls. Furthermore, the percentage of CD177+CRTAM+ neutrophils in peripheral blood was also elevated in patients with allergic asthma. However, the percentage of IL5Rα+CRTAM+ eosinophils in peripheral blood was not significantly different in patients with allergic asthma compared with healthy controls. Conclusions CRTAM expression on T cells, eosinophils, and neutrophils may be involved in bronchial inflammation in allergic asthma. Determination of CRTAM expression in peripheral blood may be useful for the diagnosis of bronchial inflammation and/or to identify recently activated immune cells.
Collapse
Affiliation(s)
- Carlos Ramirez-Velazquez
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México ; Allergy Department, Hospital General Dr. Fernando Quiroz Gutiérrez, ISSSTE. Calle Felipe Angeles y Canario. Colonia Bellavista, Mexico, DF CP 01140 Mexico
| | - Nonantzin Beristain-Covarrubias
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México
| | - Leopoldo Guido-Bayardo
- Allergy Department, Centro Médico Nacional 20 de Noviembre ISSSTE, Felix Cuevas 540, Colonia del Valle, Mexico, DF CP 03229 Mexico
| | - Vianney Ortiz-Navarrete
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México
| |
Collapse
|
33
|
Steinke JW, Negri J, Payne SC, Borish L. Biological effects of leukotriene E4 on eosinophils. Prostaglandins Leukot Essent Fatty Acids 2014; 91:105-10. [PMID: 24768603 PMCID: PMC4127125 DOI: 10.1016/j.plefa.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 01/21/2023]
Abstract
Studies demonstrate the existence of novel receptors for cysteinyl leukotrienes (CysLTs) that are responsive to leukotriene (LT) E4 and might be pathogenic in asthma. Given the eosinophilic infiltration in this disorder, we investigated eosinophil expression of P2Y12 and gpr99 and their capacity to respond to LTE4. Receptor transcript expression was investigated via quantitative PCR and surface protein expression via flow cytometry. We investigated LTE4 influences on eosinophils including Ca(+2) flux, cAMP induction, modulation of adhesion molecule expression, apoptosis and degranulation. Eosinophils displayed both transcript and surface protein expression of P2Y12 and gpr99. We could not find evidence of LTE4 activation of eosinophils, however, LTE4 induced cAMP expression, and preincubation of eosinophils with LTE4 inhibited degranulation. Even though eosinophils are an important source of CysLTs in AERD, eosinophils are not themselves the pro-inflammatory biological target and, in contrast, LTE4 via cAMP primarily elicits anti-inflammatory responses.
Collapse
Affiliation(s)
- John W Steinke
- Carter Immunology Center Asthma and Allergic Disease Center Departments of Medicine, University of Virginia Health Systems, Charlottesville, VA 22908-1355, USA
| | - Julie Negri
- Carter Immunology Center Asthma and Allergic Disease Center Departments of Medicine, University of Virginia Health Systems, Charlottesville, VA 22908-1355, USA
| | - Spencer C Payne
- Carter Immunology Center Asthma and Allergic Disease Center Departments of Medicine, University of Virginia Health Systems, Charlottesville, VA 22908-1355, USA; Carter Immunology Center Asthma and Allergic Disease Center Departments of Otolaryngology, University of Virginia Health Systems, Charlottesville, VA 22908-1355, USA
| | - Larry Borish
- Carter Immunology Center Asthma and Allergic Disease Center Departments of Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908-1355, USA.
| |
Collapse
|
34
|
Han ST, Mosher DF. IL-5 induces suspended eosinophils to undergo unique global reorganization associated with priming. Am J Respir Cell Mol Biol 2014; 50:654-64. [PMID: 24156300 DOI: 10.1165/rcmb.2013-0181oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The experiments described herein define a unique program of polarization of suspended human eosinophils stimulated with IL-5 family cytokines. We found that eosinophil granules and the nucleus move in opposite directions to form, respectively, a granular compartment and the nucleopod, a specialized uropod occupied by the nucleus and covered with adhesion receptors, including P-selectin glycoprotein ligand-1, CD44, and activated αMβ2 integrin. Ligated IL-5 family receptors localize specifically at the tip of the nucleopod in proximity to downstream signaling partners Janus tyrosine kinase 2, signal transducer and activator of transcription-1 and -5, and extracellular signal-regulated kinase. Microscopy and effects of cytochalasin B and nocodazole indicate that remodeling of filamentous actin and reorientation of the microtubule network are required for eosinophil polarization and nucleopod formation. IL-5 induces persistent polarization and extracellular signal-regulated kinase redistribution that are associated with eosinophil priming, a robust response on subsequent stimulation with N-formyl-methionyl-leucyl-phenylalanine. Global reorganization of cytoskeleton, organelles, adhesion receptors, and signaling molecules likely facilitates vascular arrest, extravasation, migration, granule release, and survival of eosinophils entering inflamed tissues from the bloodstream.
Collapse
|
35
|
Affiliation(s)
- M. W. Johansson
- Department of Biomolecular Chemistry; University of Wisconsin; Madison WI USA
| |
Collapse
|
36
|
Hallstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM, Knight DA. Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol 2014; 151:1-15. [PMID: 24503171 DOI: 10.1016/j.clim.2013.12.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022]
Abstract
Recent genetic, structural and functional studies have identified the airway and lung epithelium as a key orchestrator of the immune response. Further, there is now strong evidence that epithelium dysfunction is involved in the development of inflammatory disorders of the lung. Here we review the characteristic immune responses that are orchestrated by the epithelium in response to diverse triggers such as pollutants, cigarette smoke, bacterial peptides, and viruses. We focus in part on the role of epithelium-derived interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), as well as CC family chemokines as critical regulators of the immune response. We cite examples of the function of the epithelium in host defense and the role of epithelium dysfunction in the development of inflammatory diseases.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Gustavo Matute-Bello
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
37
|
Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clin Immunol 2013; 150:90-100. [PMID: 24333536 DOI: 10.1016/j.clim.2013.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022]
Abstract
Semaphorin 7A (sema7a) plays a major role in TGF-β1-induced lung fibrosis. Based on the accumulating evidence that eosinophils contribute to fibrosis/remodeling in the airway, we hypothesized that airway eosinophils may be a significant source of sema7a. In vivo, sema7a was expressed on the surface of circulating eosinophils and upregulated on bronchoalveolar lavage eosinophils obtained after segmental bronchoprovocation with allergen. Based on mRNA levels in unfractionated and isolated bronchoalveolar cells, eosinophils are the predominant source of sema7a. In vitro, among the members of the IL-5-family cytokines, sema7a protein on the surface of blood eosinophils was increased more by IL-3 than by GM-CSF or IL-5. Cytokine-induced expression of cell surface sema7a required translation of newly synthesized protein. Finally, a recombinant sema7a induced alpha-smooth muscle actin production in human bronchial fibroblasts. semaphorin 7A is a potentially important modulator of eosinophil profibrotic functions in the airway remodeling of patients with chronic asthma.
Collapse
|
38
|
Vijverberg SJH, Hilvering B, Raaijmakers JAM, Lammers JWJ, Maitland-van der Zee AH, Koenderman L. Clinical utility of asthma biomarkers: from bench to bedside. Biologics 2013; 7:199-210. [PMID: 24009412 PMCID: PMC3762671 DOI: 10.2147/btt.s29976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Asthma is a chronic disease characterized by airway inflammation, bronchial hyperresponsiveness, and recurrent episodes of reversible airway obstruction. The disease is very heterogeneous in onset, course, and response to treatment, and seems to encompass a broad collection of heterogeneous disease subtypes with different underlying pathophysiological mechanisms. There is a strong need for easily interpreted clinical biomarkers to assess the nature and severity of the disease. Currently available biomarkers for clinical practice - for example markers in bronchial lavage, bronchial biopsies, sputum, or fraction of exhaled nitric oxide (FeNO) - are limited due to invasiveness or lack of specificity. The assessment of markers in peripheral blood might be a good alternative to study airway inflammation more specifically, compared to FeNO, and in a less invasive manner, compared to bronchoalveolar lavage, biopsies, or sputum induction. In addition, promising novel biomarkers are discovered in the field of breath metabolomics (eg, volatile organic compounds) and (pharmaco)genomics. Biomarker research in asthma is increasingly shifting from the assessment of the value of single biomarkers to multidimensional approaches in which the clinical value of a combination of various markers is studied. This could eventually lead to the development of a clinically applicable algorithm composed of various markers and clinical features to phenotype asthma and improve diagnosis and asthma management.
Collapse
Affiliation(s)
- Susanne JH Vijverberg
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart Hilvering
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan AM Raaijmakers
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jan-Willem J Lammers
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
39
|
Burnham ME, Koziol-White CJ, Esnault S, Bates ME, Evans MD, Bertics PJ, Denlinger LC. Human airway eosinophils exhibit preferential reduction in STAT signaling capacity and increased CISH expression. THE JOURNAL OF IMMUNOLOGY 2013; 191:2900-6. [PMID: 23956426 DOI: 10.4049/jimmunol.1300297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of IL-5 family cytokines and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOS(PB)) viability, recruit EOS(PB) to the airways, and, at higher concentrations, induce degranulation and reactive oxygen species generation. Although airway EOS (EOS(A)) remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOS(A) with IL-5 family cytokines no longer confers a survival advantage. Because the IL-5 family receptors have common signaling capacity, but are uncoupled from EOS(A) survival, whereas other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOS(A) possess a JAK/STAT-specific regulatory mechanism (because JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOS(A) relative to blood EOS from airway allergen-challenged donors. However, IL-5 family-induced ERK1/2 phosphorylation is not altered between EOS(A) and EOS from airway allergen-challenged donors. These observations suggest EOS(A) possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOS(PB), IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOS(A) express significantly more CISH and SOCS1 mRNA and CISH protein than EOS(PB) counterparts. In EOS(PB), long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family-induced STAT5 phosphorylation. These data support a model in which IL-5 family cytokines trigger a selective downregulation mechanism in EOS(A) for JAK/STAT pathways.
Collapse
Affiliation(s)
- Mandy E Burnham
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Johansson MW, Gunderson KA, Kelly EAB, Denlinger LC, Jarjour NN, Mosher DF. Anti-IL-5 attenuates activation and surface density of β(2) -integrins on circulating eosinophils after segmental antigen challenge. Clin Exp Allergy 2013; 43:292-303. [PMID: 23414537 DOI: 10.1111/j.1365-2222.2012.04065.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND IL-5 activates α(M) β(2) integrin on blood eosinophils in vitro. Eosinophils in bronchoalveolar lavage (BAL) following segmental antigen challenge have activated β(2) -integrins. OBJECTIVE To identify roles for IL-5 in regulating human eosinophil integrins in vivo. METHODS Blood and BAL eosinophils were analysed by flow cytometry in ten subjects with allergic asthma who underwent a segmental antigen challenge protocol before and after anti-IL-5 administration. RESULTS Blood eosinophil reactivity with monoclonal antibody (mAb) KIM-127, which recognizes partially activated β(2) -integrins, was decreased after anti-IL-5. Before anti-IL-5, surface densities of blood eosinophil β(2) , α(M) and α(L) integrin subunits increased modestly post challenge. After anti-IL-5, such increases did not occur. Before or after anti-IL-5, surface densities of β(2) , α(M) , α(L) and α(D) and reactivity with KIM-127 and mAb CBRM1/5, which recognizes high-activity α(M) β(2) , were similarly high on BAL eosinophils 48 h post-challenge. Density and activation state of β(1) -integrins on blood and BAL eosinophils were not impacted by anti-IL-5, even though anti-IL-5 ablated a modest post-challenge increase on blood or BAL eosinophils of P-selectin glycoprotein ligand-1 (PSGL-1), a receptor for P-selectin that causes activation of β(1) -integrins. Forward scatter of blood eosinophils post-challenge was less heterogeneous and on the average decreased after anti-IL-5; however, anti-IL-5 had no effect on the decreased forward scatter of eosinophils in post-challenge BAL compared with eosinophils in blood. Blood eosinophil KIM-127 reactivity at the time of challenge correlated with the percentage of eosinophils in BAL post-challenge. CONCLUSION AND CLINICAL RELEVANCE IL-5 supports a heterogeneous population of circulating eosinophils with partially activated β(2) -integrins and is responsible for up-regulation of β(2) -integrins and PSGL-1 on circulating eosinophils following segmental antigen challenge but has minimal effects on properties of eosinophils in BAL. Dampening of β(2) -integrin function of eosinophils in transit to inflamed airway may contribute to the decrease in lung inflammation caused by anti-IL-5.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Esnault S, Kelly EA, Schwantes EA, Liu LY, DeLain LP, Hauer JA, Bochkov YA, Denlinger LC, Malter JS, Mathur SK, Jarjour NN. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One 2013; 8:e67560. [PMID: 23844029 PMCID: PMC3699655 DOI: 10.1371/journal.pone.0067560] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
Background The mechanism for the contribution of eosinophils (EOS) to asthma pathophysiology is not fully understood. Genome-wide expression analysis of airway EOS by microarrays has been limited by the ability to generate high quality RNA from sufficient numbers of airway EOS. Objective To identify, by genome-wide expression analyses, a compendium of expressed genes characteristic of airway EOS following an in vivo allergen challenge. Methods Atopic, mild asthmatic subjects were recruited for these studies. Induced sputum was obtained before and 48h after a whole lung allergen challenge (WLAC). Individuals also received a segmental bronchoprovocation with allergen (SBP-Ag) 1 month before and after administering a single dose of mepolizumab (anti-IL-5 monoclonal antibody) to reduce airway EOS. Bronchoalveolar lavage (BAL) was performed before and 48 h after SBP-Ag. Gene expression of sputum and BAL cells was analyzed by microarrays. The results were validated by qPCR in BAL cells and purified BAL EOS. Results A total of 299 transcripts were up-regulated by more than 2-fold in total BAL cells following SBP-Ag. Mepolizumab treatment resulted in a reduction of airway EOS by 54.5% and decreased expression of 99 of the 299 transcripts. 3 of 6 post-WLAC sputum samples showed increased expression of EOS-specific genes, along with the expression of 361 other genes. Finally, the intersection of the 3 groups of transcripts (increased in BAL post SBP-Ag (299), decreased after mepolizumab (99), and increased in sputum after WLAC (365)) was composed of 57 genes characterizing airway EOS gene expression. Conclusion We identified 57 genes that were highly expressed by BAL EOS compared to unseparated BAL cells after in vivo allergen challenge. 41 of these genes had not been previously described in EOS and are thus potential new candidates to elucidate EOS contribution to airway biology.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johansson MW, Annis DS, Mosher DF. α(M)β(2) integrin-mediated adhesion and motility of IL-5-stimulated eosinophils on periostin. Am J Respir Cell Mol Biol 2013; 48:503-10. [PMID: 23306834 DOI: 10.1165/rcmb.2012-0150oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Periostin is an extracellular matrix protein that is up-regulated by T helper cell type 2 cytokines in the asthmatic airway and implicated in mouse studies as promoting eosinophil recruitment. We asked whether periostin modulates eosinophil adhesion and motility in vitro. Periostin adsorbed to polystyrene supported adhesion of purified human blood eosinophils stimulated by IL-5, IL-3, or granulocyte/macrophage colony-stimulating factor, but did not support adhesion of eosinophils treated with IL-4 or IL-13. The degree of adhesion depended on the concentrations of periostin during coating and activating cytokine during the adhesion assay. Both full-length periostin and alternatively spliced periostin, lacking C-terminal exons 17, 18, 19, and 21, supported adhesion. Adhesion was inhibited by monoclonal antibody to α(M) or β(2) integrin subunits, but not by antibodies to other eosinophil integrin subunits. Adsorbed periostin also supported α(M)β(2)-dependent random motility of IL-5-stimulated eosinophils with optimal movement at an intermediate coating concentration. In the presence of IL-5, eosinophils adherent on periostin formed punctate structures positive for filamentous actin, gelsolin, and phosphotyrosine. These structures fit the criteria for podosomes, highly dynamic adhesive contacts that are distinct from classical focal adhesions. The results establish α(M)β(2) (CD11b/CD18, Mac-1) as an adhesive and promigratory periostin receptor on cytokine-stimulated eosinophils, and suggest that periostin may function as a haptotactic stimulus able to guide eosinophils to areas of high periostin density in the asthmatic airway.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
43
|
Johansson MW, Mosher DF. Integrin activation States and eosinophil recruitment in asthma. Front Pharmacol 2013; 4:33. [PMID: 23554594 PMCID: PMC3612688 DOI: 10.3389/fphar.2013.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Eosinophil arrest and recruitment to the airway in asthma are mediated, at least in part, by integrins. Eosinophils express α4β1, α6β1, αLβ2, αMβ2, αXβ2, αDβ2, and α4β7 integrins, which interact with counter-receptors on other cells or ligands in the extracellular matrix. Whether a given integrin-ligand pair mediates cell adhesion and migration depends on the activation state of the integrin. Integrins exist in an inactive bent, an intermediate-activity extended closed, and a high-activity extended open conformation. Integrin activation states can be monitored by conformation-specific monoclonal antibodies (mAbs). Studies in mice indicate that both β1 and β2 integrins mediate eosinophil recruitment to the lung. In vitro studies indicate that α4β1 and αMβ2 are the principal integrins mediating eosinophil adhesion, including to vascular cell adhesion molecule-1 and the novel αMβ2 ligand periostin. In vivo, blood eosinophils have intermediate-activity β1 integrins, as judged by mAb N29, apparently resulting from eosinophil binding of P-selectin on the surface of activated platelets, and have a proportion of their β2 integrins in the intermediate conformation, as judged by mAb KIM-127, apparently due to exposure to low concentrations of interleukin-5 (IL-5). Airway eosinophils recovered by bronchoalveolar lavage (BAL) after segmental antigen challenge have high-activity β1 integrins and high-activity αMβ2 that does not require IL-5. Here we review information on how the activation states of eosinophil β1 and β2 integrins correlate with measurements of eosinophil recruitment and pulmonary function in asthma. Blood eosinophil N29 reactivity is associated with decreased lung function under various circumstances in non-severe asthma and KIM-127 with BAL eosinophil numbers, indicating that intermediate-activity α4β1 and αMβ2 of blood eosinophils are important for eosinophil arrest and consequently for recruitment and aspects of asthma.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
44
|
Lo Tam Loi AT, Hoonhorst SJM, Franciosi L, Bischoff R, Hoffmann RF, Heijink I, van Oosterhout AJM, Boezen HM, Timens W, Postma DS, Lammers JW, Koenderman L, ten Hacken NHT. Acute and chronic inflammatory responses induced by smoking in individuals susceptible and non-susceptible to development of COPD: from specific disease phenotyping towards novel therapy. Protocol of a cross-sectional study. BMJ Open 2013; 3:e002178. [PMID: 23377993 PMCID: PMC3586075 DOI: 10.1136/bmjopen-2012-002178] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with pulmonary and extra-pulmonary manifestations. Although COPD is a complex disease, diagnosis and staging are still based on simple spirometry measurements. Different COPD phenotypes exist based on clinical, physiological, immunological and radiological observations. Cigarette smoking is the most important risk factor for COPD, but only 15-20% of smokers develop the disease, suggesting a genetic predisposition. Unfortunately, little is known about the pathogenesis of COPD, and even less on the very first steps that are associated with an aberrant response to smoke exposure. This study aims to investigate the underlying local and systemic inflammation of different clinical COPD phenotypes, and acute effects of cigarette smoke exposure in individuals susceptible and non-susceptible for the development of COPD. Furthermore, we will investigate mechanisms associated with corticosteroid insensitivity. Our study will provide valuable information regarding the pathogenetic mechanisms underlying the natural course of COPD. METHODS AND ANALYSIS This cross-sectional study will include young and old individuals susceptible or non-susceptible to develop COPD. At a young age (18-40 years) 60 'party smokers' will be included who are called susceptible or non-susceptible based on COPD prevalence in smoking family members. In addition, 30 healthy smokers (age 40-75 years) and 110 COPD patients will be included. Measurements will include questionnaires, pulmonary function, low-dose CT scanning of the lung, body composition, 6 min walking distance and biomarkers in peripheral blood, sputum, urine, exhaled breath condensate, epithelial lining fluid, bronchial brushes and biopsies. Non-biased approaches such as proteomics will be performed in blood and epithelial lining fluid. ETHICS AND DISSEMINATION This multicentre study was approved by the medical ethical committees of UMC Groningen and Utrecht, the Netherlands. The study findings will be presented at conferences and will be reported in peer-reviewed journals. TRIAL REGISTRATION ClinicalTrials.gov, NCT00807469 (study 1) and NCT00850863 (study 2).
Collapse
Affiliation(s)
- Adèle T Lo Tam Loi
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan J M Hoonhorst
- Department of Pulmonary Disease, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Lorenza Franciosi
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Roland F Hoffmann
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Heijink
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon J M van Oosterhout
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- Department of Pulmonary Disease, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem Lammers
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nick H T ten Hacken
- Department of Pulmonary Disease, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Na HJ, Hamilton RG, Klion AD, Bochner BS. Biomarkers of eosinophil involvement in allergic and eosinophilic diseases: review of phenotypic and serum markers including a novel assay to quantify levels of soluble Siglec-8. J Immunol Methods 2012; 383:39-46. [PMID: 22683541 DOI: 10.1016/j.jim.2012.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 03/01/2012] [Accepted: 05/29/2012] [Indexed: 01/21/2023]
Abstract
There remains considerable controversy in the management of eosinophilic disorders, mainly due to a paucity of information regarding the clinical interpretation of total blood eosinophil counts versus surface activation markers versus eosinophil-derived or eosinophil-influencing mediator levels. Regrettably, few tests have been validated that define a unique clinical or prognostic phenotype that is more useful than simply monitoring total blood eosinophil counts. In this manuscript, phenotypic (cell surface) markers, along with serum and tissue-based markers that have been examined in the context of disease activity, are reviewed. We also report the development of a novel assay for detecting soluble Siglec-8 (sSiglec-8), a protein likely derived largely from eosinophils, as a potential serum biomarker. The assay consists of a competitive ELISA using a recombinant Siglec-8-Fc fusion protein. The goal of this preliminary study was to determine if sSiglec-8 is a useful biomarker that differentiates among patients with various eosinophil-associated diseases. In the final analysis, it is fair to say that further research is sorely needed to fully understand and validate the utility of various biomarkers, including sSiglec-8, before their use in clinical practice can be recommended with confidence.
Collapse
Affiliation(s)
- Ho Jeong Na
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
46
|
Johansson MW, Han ST, Gunderson KA, Busse WW, Jarjour NN, Mosher DF. Platelet activation, P-selectin, and eosinophil β1-integrin activation in asthma. Am J Respir Crit Care Med 2012; 185:498-507. [PMID: 22227382 DOI: 10.1164/rccm.201109-1712oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RATIONALE Eosinophil β1-integrin activation correlates inversely with FEV1 and directly with eosinophil-bound P-selectin in subjects with nonsevere allergic asthma. OBJECTIVES Determine the relationships between β1-integrin activation and pulmonary function or eosinophil-bound P-selectin in subjects with asthma of varying severity and discern the source of eosinophil-bound P-selectin. METHODS Blood was assayed by flow cytometry for P-selectin and activated β1-integrin on eosinophils and platelets. Plasma was analyzed with ELISA for soluble P-selectin, platelet factor 4, and thrombospondin-1. MEASUREMENTS AND MAIN RESULTS Activated β1-integrin correlated with eosinophil-bound P-selectin among all subjects with asthma even though activated β1-integrin was higher in subjects with nonsevere asthma than severe asthma. Activated β1-integrin correlated inversely with FEV1 corrected for FVC only in younger subjects with nonsevere asthma. Paradoxically, platelet surface P-selectin, a platelet activation marker, was low in subjects with severe asthma, whereas plasma platelet factor 4, a second platelet activation marker, was high. Correlations indicated that P-selectin-positive platelets complexed to eosinophils are the major source of the eosinophil-bound P-selectin associated with β1-integrin activation. After whole-lung antigen challenge of subjects with nonsevere asthma, a model of asthma exacerbation known to cause platelet activation, circulating eosinophils bearing P-selectin and activated β1-integrin disappeared. CONCLUSIONS The relationship between eosinophil β1-integrin activation and pulmonary function was replicated only for younger subjects with nonsevere asthma. However, we infer that platelet activation and binding of activated platelets to eosinophils followed by P-selectin-mediated eosinophil β1-integrin activation occur in both nonsevere and severe asthma with rapid movement of platelet-eosinophil complexes into the lung in more severe disease.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, 53706, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Eosinophils are leukocytes resident in mucosal tissues. During T-helper 2 (Th2)-type inflammation, eosinophils are recruited from bone marrow and blood to the sites of immune response. While eosinophils have been considered end-stage cells involved in host protection against parasite infection and immunopathology in hypersensitivity disease, recent studies changed this perspective. Eosinophils are now considered multifunctional leukocytes involved in tissue homeostasis, modulation of adaptive immune responses, and innate immunity to certain microbes. Eosinophils are capable of producing immunoregulatory cytokines and are actively involved in regulation of Th2-type immune responses. However, such new information does not preclude earlier observations showing that eosinophils, in particular human eosinophils, are also effector cells with proinflammatory and destructive capabilities. Eosinophils with activation phenotypes are observed in biological specimens from patients with disease, and deposition of eosinophil products is readily seen in the affected tissues from these patients. Therefore, it would be reasonable to consider the eosinophil a multifaceted leukocyte that contributes to various physiological and pathological processes depending on their location and activation status. This review summarizes the emerging concept of the multifaceted immunobiology of eosinophils and discusses the roles of eosinophils in health and disease and the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Mullane K. Asthma translational medicine: report card. Biochem Pharmacol 2011; 82:567-85. [PMID: 21741955 DOI: 10.1016/j.bcp.2011.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/21/2023]
Abstract
Over the last 30 years, scientific research into asthma has focused almost exclusively on one component of the disorder - airway inflammation - as being the key underlying feature. These studies have provided a remarkably detailed and comprehensive picture of the events following antigen challenge that lead to an influx of T cells and eosinophils in the airways. Indeed, in basic research, even the term "asthma" has become synonymous with a T helper 2 cell-mediated disorder. From this cascade of cellular activation processes and mediators that have been identified it has been possible to pinpoint critical junctures for therapeutic intervention, leading experimentalists to produce therapies that are very effective in decreasing airway inflammation in animal models. Many of these compounds have now completed early Phase 2 "proof-of-concept" clinical trials so the translational success of the basic research model can be evaluated. This commentary discusses clinical results from 39 compounds and biologics acting at 23 different targets, and while 6 of these drugs can be regarded as a qualified success, none benefit the bulk of asthma sufferers. Despite this disappointing rate of success, the same immune paradigm and basic research models, with a few embellishments to incorporate newly identified cells and mediators, continue to drive target identification and drug discovery efforts. It is time to re-evaluate the focus of these efforts.
Collapse
Affiliation(s)
- Kevin Mullane
- Profectus Pharma Consulting, Inc, San Jose, CA 95125, United States.
| |
Collapse
|
49
|
Johansson MW, Mosher DF. Activation of beta1 integrins on blood eosinophils by P-selectin. Am J Respir Cell Mol Biol 2011; 45:889-97. [PMID: 21441381 DOI: 10.1165/rcmb.2010-0402oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of β(1) integrins of blood eosinophils, assessed by mAb N29, correlates inversely with FEV(1) in two paradigms for studying control of human asthma. We asked whether P-selectin causes eosinophil β(1) integrin activation and results in increased adhesivity. By dual-label flow cytometry, eosinophils with high levels of surface-associated P-selectin had higher reactivity with the activation-sensitive anti-β(1) mAbs N29, 8E3, and 9EG7 than eosinophils with no or with a low-level of surface-associated P-selectin. Among patients with nonsevere asthma, surface P-selectin correlated with N29, 8E3, and 9EG7 signals. By immunofluorescence microscopy, surface-associated P-selectin was present in patches on eosinophils, some of which stained for the platelet marker thrombospondin-1. Activated β(1) and P-selectin partially colocalized on eosinophils. Soluble P-selectin added to whole blood enhanced activation of eosinophil β(1), but not β(2), integrins. In contrast, IL-5 activated eosinophil β(2), but not β(1), integrins. Eosinophils that did not attach to vascular cell adhesion molecule-1 (VCAM-1) in a static adhesion assay had a lower N29 signal than the original population. Soluble P-selectin added to whole blood enhanced eosinophil adhesion to VCAM-1. These findings are compatible with a scenario whereby P-selectin, on eosinophil-associated activated platelets or acquired from plasma or from prior interactions with endothelial cells or platelets, activates eosinophil α(4)β(1) integrin and stimulates eosinophils to adhere to VCAM-1 and move to the airway in asthma.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, 4285A, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
50
|
Delayed asthmatic response: a new phenotype of bronchial response to allergen challenge and soluble adhesion molecules in the serum. Ann Allergy Asthma Immunol 2011; 106:119-30. [PMID: 21277513 DOI: 10.1016/j.anai.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Patients with bronchial asthma develop various types of asthmatic response to bronchial challenge with allergen, such as immediate asthmatic response, late asthmatic response, or delayed asthmatic response (DYAR), due to different immunologic mechanisms. OBJECTIVES To investigate the appearance and possible changes in the concentrations of soluble cell adhesion molecules during the DYAR, to explore the involvement of particular cell types in the mechanism(s) leading to DYAR, and to contribute to a fuller understanding of this clinical phenomenon. METHODS The DYAR recorded in 28 patients (P < .001), appearing within 26 to 32 hours, reaching maximum within 32 to 48 hours, and resolving within 56 hours after the allergen challenge, was repeated 2 to 6 weeks later. The repeated DYAR (P < .001) was supplemented with blood cell counts and measurement of serum concentrations of soluble adhesion molecules by an enzyme-linked immunoassay. RESULTS The prechallenge concentrations of soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble platelet endothelial cell adhesion molecule (sPECAM-1), soluble E-selectin, soluble L-selectin, soluble P-selectin, and soluble E-cadherin did not differ significantly from healthy controls. The DYAR was associated with the following changes in the serum: an increase of sICAM-1 at 6 and 12 hours and a decrease at 24 hours; an increase of sVCAM-1 at 24 and 36 hours; an increase of sPECAM-1 at 36 and 48 hours and a decrease at 56 and 72 hours; an increase of soluble E-selectin at 56 hours; an increase of soluble L-selectin at 56 and 72 hours; a decrease of soluble E-cadherin at 48 and 56 hours; and increased counts of blood leukocytes at 36, 48, and 56 hours, neutrophils at 24, 36, 48, and 56 hours, lymphocytes at 24, 36, and 48 hours, and monocytes at 6, 12, and 24 hours. The Th1/Th2 ratio in blood increased at 24, 36, 48, and 56 hours. The intracellular concentration of interferon γ, but not of interleukin 4, increased at 24, 36, 48, and 56 hours. CONCLUSIONS These results provide evidence of the involvement of neutrophils, Th1 lymphocytes, monocytes, platelets, and endothelial cells, upon participation of various adhesion molecules, in mechanisms(s) underlying the clinical DYAR.
Collapse
|