1
|
David C, Verney C, Si-Tahar M, Guillon A. Evaluating the evidence for GM-CSF as a host-directed therapy in respiratory infections. Cytokine 2025; 189:156902. [PMID: 39999678 DOI: 10.1016/j.cyto.2025.156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Novel therapeutic approaches are needed to treat respiratory infections due to the rising antimicrobial resistance and the lack of effective antiviral therapies. A promising avenue to overcome treatment failure is to develop strategies that target the host immune response rather than the pathogen itself. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical role in controlling homeostasis in lungs, alveolar macrophages being the most sensitive cells to GM-CSF signaling. In this review, we discuss the importance of GM-CSF secretion for lung homeostasis and its alteration during respiratory infections. We also present the pre-clinical evidence and clinical investigations evaluating GM-CSF-based treatments (administration or inhibition) as a therapeutic strategy for treating respiratory infections, highlighting both supporting and contradictory findings.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France.
| |
Collapse
|
2
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
3
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Llibre A, Smith N, Rouilly V, Musvosvi M, Nemes E, Posseme C, Mabwe S, Charbit B, Mbandi SK, Filander E, Africa H, Saint-André V, Bondet V, Bost P, Mulenga H, Bilek N, Albert ML, Scriba TJ, Duffy D. Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses. Front Immunol 2022; 13:897193. [PMID: 36591308 PMCID: PMC9795069 DOI: 10.3389/fimmu.2022.897193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels. At baseline, we identified a novel immune-metabolic association between pregnane steroids, the PPARγ pathway and elevated plasma IL-1ra in TB. We observed dysregulated IL-1 responses after BCG stimulation in TB patients, with elevated IL-1ra responses being explained by upstream TNF differences. Additionally, distinct secretion of IL-1α/IL-1β in LTBI/TB after BCG stimulation was associated with downstream differences in granzyme mediated cleavage. Finally, IL-1β driven signalling was dramatically perturbed in TB disease but was completely restored after successful treatment. This study improves our knowledge of how immune responses are altered during TB disease, and may support the design of improved preventive and therapeutic tools, including host-directed strategies.
Collapse
Affiliation(s)
- Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Filander
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Bioinformatics and Biostatistics HUB, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Bost
- Sorbonne Université, Complexité du vivant, Paris, France,Systems Biology Group, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Darragh Duffy,
| |
Collapse
|
5
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
6
|
van Heeckeren AM, Sutton MT, Fletcher DR, Hodges CA, Caplan AI, Bonfield TL. Enhancing Cystic Fibrosis Immune Regulation. Front Pharmacol 2021; 12:573065. [PMID: 34054509 PMCID: PMC8155373 DOI: 10.3389/fphar.2021.573065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
In cystic fibrosis (CF), sustained infection and exuberant inflammation results in debilitating and often fatal lung disease. Advancement in CF therapeutics has provided successful treatment regimens for a variety of clinical consequences in CF; however effective means to treat the pulmonary infection and inflammation continues to be problematic. Even with the successful development of small molecule cystic fibrosis transmembrane conductance regulator (CFTR) correctors and potentiators, there is only a modest effect on established infection and inflammation in CF patients. In the pursuit of therapeutics to treat inflammation, the conundrum to address is how to overcome the inflammatory response without jeopardizing the required immunity to manage pathogens and prevent infection. The key therapeutic would have the capacity to dull the inflammatory response, while sustaining the ability to manage infections. Advances in cell-based therapy have opened up the avenue for dynamic and versatile immune interventions that may support this requirement. Cell based therapy has the capacity to augment the patient’s own ability to manage their inflammatory status while at the same time sustaining anti-pathogen immunity. The studies highlighted in this manuscript outline the potential use of cell-based therapy for CF. The data demonstrate that 1) total bone marrow aspirates containing Cftr sufficient hematopoietic and mesenchymal stem cells (hMSCs) provide Cftr deficient mice >50% improvement in survival and improved management of infection and inflammation; 2) myeloid cells can provide sufficient Cftr to provide pre-clinical anti-inflammatory and antimicrobial benefit; 3) hMSCs provide significant improvement in survival and management of infection and inflammation in CF; 4) the combined interaction between macrophages and hMSCs can potentially enhance anti-inflammatory and antimicrobial support through manipulating PPARγ. These data support the development of optimized cell-based therapeutics to enhance CF patient’s own immune repertoire and capacity to maintain the balance between inflammation and pathogen management.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Morgan T Sutton
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, United States
| | - David R Fletcher
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Craig A Hodges
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tracey L Bonfield
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
7
|
AMORUSO A, BALBO PE, PATRUCCO F, GAVELLI F, CASTELLO LM, BARDELLI C, NERI T, CELI A, FOCI V, FRESU LG, BRUNELLESCHI S. Monocyte-derived microparticles stimulate alveolar macrophages from patients with sarcoidosis: modulation by PPARγ. MINERVA BIOTECNOL 2021. [DOI: 10.23736/s1120-4826.20.02632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Mukherjee S, Aseer KR, Yun JW. Roles of Macrophage Colony Stimulating Factor in White and Brown Adipocytes. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0023-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ. Pharmacol Res 2019; 147:104355. [DOI: 10.1016/j.phrs.2019.104355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
10
|
Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O’Donnell VB, Renshaw SA, Johnston SA. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog 2019; 15:e1007597. [PMID: 30921435 PMCID: PMC6438442 DOI: 10.1371/journal.ppat.1007597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis. Cryptococcus neoformans is an opportunistic fungal pathogen that is responsible for significant numbers of deaths in the immunocompromised population worldwide. Here we address whether eicosanoids produced by C. neoformans manipulate host innate immune cells during infection. Cryptococcus neoformans produces several eicosanoids that are notable for their similarity to vertebrate eicosanoids, it is therefore possible that fungal-derived eicosanoids may provoke physiological effects in the host. Using a combination of in vitro and in vivo infection models we identify a specific eicosanoid species—prostaglandin E2 –that is required by C. neoformans for growth during infection. We subsequently show that prostaglandin E2 must be converted to 15-keto-prostaglandin E2 within the host before it has these effects. Furthermore, we find that prostaglandin E2/15-keto-prostaglandin E2 mediated virulence is via activation of host PPAR-γ –an intracellular eicosanoid receptor known to interact with 15-keto-PGE2.
Collapse
Affiliation(s)
- Robert J. Evans
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Katherine Pline
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Catherine A. Loynes
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Sarah Needs
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rachel E. Rubino
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Henry M. Krause
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Stephen A. Renshaw
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Simon A. Johnston
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
T'Jonck W, Guilliams M, Bonnardel J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol 2018; 330:43-53. [PMID: 29463401 PMCID: PMC6108424 DOI: 10.1016/j.cellimm.2018.02.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/25/2022]
Abstract
Tissue-resident macrophages form an essential part of the first line of defense in all tissues of the body. Next to their immunological role, they play an important role in maintaining tissue homeostasis. Recently, it was shown that they are primarily of embryonic origin. During embryogenesis, precursors originating in the yolk sac and fetal liver colonize the embryonal tissues where they develop into mature tissue-resident macrophages. Their development is governed by two distinct sets of transcription factors. First, in the pre-macrophage stage, a core macrophage program is established by lineage-determining transcription factors. Under the influence of tissue-specific signals, this core program is refined by signal-dependent transcription factors. This nurturing by the niche allows the macrophages to perform tissue-specific functions. In the last 15 years, some of these niche signals and transcription factors have been identified. However, detailed insight in the exact mechanism of development is still lacking.
Collapse
Affiliation(s)
- Wouter T'Jonck
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| |
Collapse
|
12
|
Kumar A, Abdelmalak B, Inoue Y, Culver DA. Pulmonary alveolar proteinosis in adults: pathophysiology and clinical approach. THE LANCET RESPIRATORY MEDICINE 2018; 6:554-565. [PMID: 29397349 DOI: 10.1016/s2213-2600(18)30043-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022]
Abstract
Pulmonary alveolar proteinosis (PAP) is a diffuse lung disease that results from the accumulation of lipoproteinaceous material in the alveoli and alveolar macrophages due to abnormal surfactant homoeostasis. Identification of the granulocyte-macrophage colony-stimulating factor (GM-CSF) as an indispensable mediator of macrophage maturation and surfactant catabolism was the key discovery leading to the current understanding of the pathogenesis of most forms of PAP. Impaired GM-CSF bioavailability due to anti-GM-CSF autoimmunity is the cause of approximately 90% of adult PAP cases. Abnormal macrophage function due to endogenous or exogenous triggers, GM-CSF receptor defects, and other genetic abnormalities of surfactant production account for the remainder of causes. The usual physiological consequence of PAP is impairment of gas exchange, which can lead to dyspnoea, hypoxaemia, or even respiratory failure and death. Pulmonary fibrosis occurs occasionally in patients with PAP. For patients with moderate to severe disease, whole lung lavage is still the first-line treatment of choice. Supplemental GM-CSF is also useful, but details about indications, choice of agent, and dosing remain unclear. Other therapies, including rituximab, plasmapheresis, and lung transplantation have been described but should be reserved for refractory cases.
Collapse
Affiliation(s)
- Anupam Kumar
- Division of Pulmonary & Critical Care Medicine, Spectrum Health-Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Basem Abdelmalak
- Departments of General Anesthesiology and Outcomes Research, Anesthesiology Institute, Cleveland, OH, USA
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Daniel A Culver
- Department of Pulmonary Medicine, Respiratory Institute, and Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Nieto C, Bragado R, Municio C, Sierra-Filardi E, Alonso B, Escribese MM, Domínguez-Andrés J, Ardavín C, Castrillo A, Vega MA, Puig-Kröger A, Corbí AL. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Front Immunol 2018; 9:31. [PMID: 29434585 PMCID: PMC5796898 DOI: 10.3389/fimmu.2018.00031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro, macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages (in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A. These results suggest that activin A, through enhancement of PPARγ expression, help macrophages to switch from a proinflammatory to an anti-inflammatory polarization state, thus contributing to limit tissue damage and restore homeostasis.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Bragado
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Cristina Municio
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elena Sierra-Filardi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Bárbara Alonso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María M Escribese
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Domínguez-Andrés
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ardavín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols" (IIBM), and Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (ICSIC-UAM), Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), IIBM-Universidad Las Palmas de Gran Canaria (ULPGC), and Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Miguel A Vega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Amaya Puig-Kröger
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Angel L Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
14
|
Chang CL, Garcia-Arcos I, Nyrén R, Olivecrona G, Kim JY, Hu Y, Agrawal RR, Murphy AJ, Goldberg IJ, Deckelbaum RJ. Lipoprotein Lipase Deficiency Impairs Bone Marrow Myelopoiesis and Reduces Circulating Monocyte Levels. Arterioscler Thromb Vasc Biol 2018; 38:509-519. [PMID: 29371243 DOI: 10.1161/atvbaha.117.310607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery. APPROACH AND RESULTS We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF-macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density. CONCLUSIONS LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.
Collapse
Affiliation(s)
- Chuchun L Chang
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Itsaso Garcia-Arcos
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Rakel Nyrén
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Gunilla Olivecrona
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Ji Young Kim
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Yunying Hu
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Rishi R Agrawal
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Andrew J Murphy
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Ira J Goldberg
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.).
| | - Richard J Deckelbaum
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.).
| |
Collapse
|
15
|
Wang K, Li YF, Lv Q, Li XM, Dai Y, Wei ZF. Bergenin, Acting as an Agonist of PPARγ, Ameliorates Experimental Colitis in Mice through Improving Expression of SIRT1, and Therefore Inhibiting NF-κB-Mediated Macrophage Activation. Front Pharmacol 2018; 8:981. [PMID: 29375382 PMCID: PMC5770370 DOI: 10.3389/fphar.2017.00981] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Bergenin, isolated from the herb of Saxifraga stolonifera Curt. (Hu-Er-Cao), has anti-inflammatory, antitussive and wound healing activities. The aim of the present study was to identify the effect of bergenin on experimental colitis, and explored the related mechanisms. Our results showed that oral administration of bergenin remarkably alleviated disease symptoms of mice with dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced DAI scores, shortening of colon length, MPO activity and pathologic abnormalities in colons. Bergenin obviously inhibited the mRNA and protein expressions of IL-6 and TNF-α in colon tissues, but not that of mucosal barrier-associated proteins occludin, E-cadherin and MUC-2. In vitro, bergenin significantly inhibited the expressions of IL-6 and TNF-α as well as nuclear translocation and DNA binding activity of NF-κB-p65 in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and RAW264.7 cells, which was almost reversed by addition of PPARγ antagonist GW9662 and siPPARγ. Subsequently, bergenin was identified as a PPARγ agonist. It could enter into macrophages, bind with PPARγ, promote nuclear translocation and transcriptional activity of PPARγ, and increase mRNA expressions of CD36, LPL and ap2. In addition, bergenin significantly up-regulated expression of SIRT1, inhibited acetylation of NF-κB-p65 and increased association NF-κB-p65 and IκBα. Finally, the correlation between activation of PPARγ and attenuation of colitis, inhibition of IL-6 and TNF-α expressions, NF-κB-p65 acetylation and nuclear translocation, and up-regulation of SIRT1 expression by bergenin was validated in mice with DSS-induced colitis and/or LPS-stimulated macrophages. In summary, bergenin could ameliorate colitis in mice through inhibiting the activation of macrophages via regulating PPARγ/SIRT1/NF-κB-p65 pathway. The findings can provide evidence for the further development of bergenin as an anti-UC drug, and offer a paradigm for the recognization of anti-UC mechanisms of compound with similar structure occurring in traditional Chinese medicines.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yun-Fan Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Xi-Ming Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection. mBio 2017; 8:mBio.01514-17. [PMID: 29066547 PMCID: PMC5654932 DOI: 10.1128/mbio.01514-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF−/−) are highly susceptible to infection with Mycobacterium tuberculosis, and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis. However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4+ T cells as the infection progresses. M. tuberculosis-specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis. Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis. While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis. In this study, we demonstrate that CD4+, CD8+, and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs.
Collapse
|
17
|
Sutton MT, Fletcher D, Episalla N, Auster L, Kaur S, Gwin MC, Folz M, Velasquez D, Roy V, van Heeckeren R, Lennon DP, Caplan AI, Bonfield TL. Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. ACTA ACUST UNITED AC 2017; 7. [PMID: 29291140 DOI: 10.4172/2157-7633.1000400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human Mesenchymal stem cells (hMSCs) secrete products (supernatants) that are anti-inflammatory and antimicrobial. We have previously shown that hMSCs decrease inflammation and Pseudomonas aeruginosa infection in the in vivo murine model of Cystic Fibrosis (CF). Cystic Fibrosis (CF) is a genetic disease in which pulmonary infection and inflammation becomes the major cause of morbidity and mortality. Our studies focus on determining how MSCs contribute to improved outcomes in the CF mouse model centering on how the MSCs impact the inflammatory response to pathogenic organisms. We hypothesize that MSCs secrete products that are anti-inflammatory in scenarios of chronic pulmonary infections using the murine model of infection and inflammation with a specific interest in Pseudomonas aeruginosa (gram negative). Further, our studies will identify whether the MSCs are impacting this inflammatory response through the regulation of peroxisome proliferator activator receptor gamma (PPARγ) which aides in decreasing inflammation.
Collapse
Affiliation(s)
- Morgan T Sutton
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - David Fletcher
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Nicole Episalla
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Lauren Auster
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Sukhmani Kaur
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122
| | - Mary Chandler Gwin
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - Michael Folz
- School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Dante Velasquez
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Varun Roy
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Rolf van Heeckeren
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Donald P Lennon
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| |
Collapse
|
18
|
Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2016; 36:583-603. [PMID: 28007893 DOI: 10.15252/embj.201694591] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.
Collapse
Affiliation(s)
- Anna Daria
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
19
|
Mavromatis CH, Bokil NJ, Totsika M, Kakkanat A, Schaale K, Cannistraci CV, Ryu T, Beatson SA, Ulett GC, Schembri MA, Sweet MJ, Ravasi T. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions. Cell Microbiol 2015; 17:730-46. [PMID: 25410299 PMCID: PMC4950338 DOI: 10.1111/cmi.12397] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/01/2014] [Accepted: 11/11/2014] [Indexed: 12/26/2022]
Abstract
Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co‐transcriptome analyses using RNA sequencing. Mouse bone marrow‐derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow‐derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up‐regulated at 24 h post‐infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co‐cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.
Collapse
Affiliation(s)
- Charalampos Harris Mavromatis
- Division of Biological and Environmental Sciences and Engineering, Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jouneau S, Kerjouan M, Briens E, Lenormand JP, Meunier C, Letheulle J, Chiforeanu D, Lainé-Caroff C, Desrues B, Delaval P. La protéinose alvéolaire pulmonaire. Rev Mal Respir 2014; 31:975-91. [DOI: 10.1016/j.rmr.2014.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
|
21
|
Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 2014; 15:1026-37. [PMID: 25263125 DOI: 10.1038/ni.3005] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Tissue-resident macrophages constitute heterogeneous populations with unique functions and distinct gene-expression signatures. While it has been established that they originate mostly from embryonic progenitor cells, the signals that induce a characteristic tissue-specific differentiation program remain unknown. We found that the nuclear receptor PPAR-γ determined the perinatal differentiation and identity of alveolar macrophages (AMs). In contrast, PPAR-γ was dispensable for the development of macrophages located in the peritoneum, liver, brain, heart, kidneys, intestine and fat. Transcriptome analysis of the precursors of AMs from newborn mice showed that PPAR-γ conferred a unique signature, including several transcription factors and genes associated with the differentiation and function of AMs. Expression of PPAR-γ in fetal lung monocytes was dependent on the cytokine GM-CSF. Therefore, GM-CSF has a lung-specific role in the perinatal development of AMs through the induction of PPAR-γ in fetal monocytes.
Collapse
|
22
|
Zhang F, Zhang Z, Chen L, Kong D, Zhang X, Lu C, Lu Y, Zheng S. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 2014; 18:1392-406. [PMID: 24779927 PMCID: PMC4124023 DOI: 10.1111/jcmm.12286] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Schneider C, Nobs SP, Heer AK, Kurrer M, Klinke G, van Rooijen N, Vogel J, Kopf M. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog 2014; 10:e1004053. [PMID: 24699679 PMCID: PMC3974877 DOI: 10.1371/journal.ppat.1004053] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
Alveolar macrophages (AM) are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2−/−) mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2−/− mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2−/− mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb−/− mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Ppargfl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality. Acute respiratory viral infections can cause severe morbidity and pneumonia in infected individuals. Alveolar macrophages and various subsets of dendritic cells have been implicated in innate immunity and induction of anti-viral T cell responses that contribute to host defense against influenza virus infection. However, their relative importance in protection from pathology and disease severity has never been compared side by side. In this report, we demonstrate that mice lacking alveolar macrophages succumb to infection with low dose influenza virus and vaccinia virus infection due to respiratory failure. In contrast, mice lacking lymphoid CD8α+ and lung CD103+ DCs survived and showed little if any differences in disease severity compared to infected wild-type mice. These results indicate that therapies supporting AM and lung function may be beneficial during severe respiratory viral infection.
Collapse
Affiliation(s)
- Christoph Schneider
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Samuel P. Nobs
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alex K. Heer
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Glynis Klinke
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Free University Medical Center, Amsterdam, The Netherlands
| | - Johannes Vogel
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Zhang F, Kong D, Chen L, Zhang X, Lian N, Zhu X, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ interrupts angiogenic signal transduction by transrepression of platelet-derived growth factor-β receptor in hepatic stellate cells. J Cell Sci 2013; 127:305-14. [PMID: 24259663 DOI: 10.1242/jcs.128306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cells (HSCs) are liver-specific pericytes that are recruited to vessels and secret pro-angiogenic cytokines, and thus actively involved in pathological vascularization during liver fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) is a switch molecule controlling HSC activation. We investigated PPARγ regulation of angiogenic signal transduction and the molecular mechanisms involved in HSCs. Primary rat HSCs and liver sinusoidal endothelial cells (LSECs) were isolated and used in this study. Boyden chamber and tubulogenesis assays, identified that focal adhesion kinase (FAK)-RhoA signaling activated by platelet-derived growth factor (PDGF) was required for HSC motility and the associated vascularization. PDGF also stimulated vascular endothelial growth factor (VEGF) expression and HSC-driven vascularization through signals mediated by extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Gain- and loss-of-function analyses demonstrated that activation of PPARγ interrupted FAK-RhoA, ERK and mTOR cascades and inhibited HSC-based vascularization. Molecular evidence further revealed that PPARγ attenuation of HSC angiogenic properties was dependent on inhibition of PDGF-β receptor expression. We concluded that PPARγ inhibited angiogenic signal transduction through transrepression of PDGF-β receptor leading to reduced HSC motility, reduced VEGF expression, and thereby attenuated HSC-driven angiogenesis. PPARγ could be a molecular target for preventing vascular remolding in hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dalrymple H, Barna BP, Malur A, Malur AG, Kavuru MS, Thomassen MJ. Alveolar macrophages of GM-CSF knockout mice exhibit mixed M1 and M2 phenotypes. BMC Immunol 2013; 14:41. [PMID: 24044676 PMCID: PMC3848434 DOI: 10.1186/1471-2172-14-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Background Activin A is a pleiotrophic regulatory cytokine, the ablation of which is neonatal lethal. Healthy human alveolar macrophages (AMs) constitutively express activin A, but AMs of patients with pulmonary alveolar proteinosis (PAP) are deficient in activin A. PAP is an autoimmune lung disease characterized by neutralizing autoantibodies to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF). Activin A can be stimulated, however, by GM-CSF treatment of AMs in vitro. To further explore pulmonary activin A regulation, we examined AMs in bronchoalveolar lavage (BAL) from wild-type C57BL/6 compared to GM-CSF knockout mice which exhibit a PAP-like histopathology. Both human PAP and mouse GM-CSF knockout AMs are deficient in the transcription factor, peroxisome proliferator activated receptor gamma (PPARγ). Results In sharp contrast to human PAP, activin A mRNA was elevated in mouse GM-CSF knockout AMs, and activin A protein was increased in BAL fluid. Investigation of potential causative factors for activin A upregulation revealed intrinsic overexpression of IFNγ, a potent inducer of the M1 macrophage phenotype, in GM-CSF knockout BAL cells. IFNγ mRNA was not elevated in PAP BAL cells. In vitro studies confirmed that IFNγ stimulated activin A in wild-type AMs while antibody to IFNγ reduced activin A in GM-CSF knockout AMs. Both IFNγ and Activin A were also reduced in GM-CSF knockout mice in vivo after intratracheal instillation of lentivirus-PPARγ compared to control lentivirus vector. Examination of other M1 markers in GM-CSF knockout mice indicated intrinsic elevation of the IFNγ-regulated gene, inducible Nitrogen Oxide Synthetase (iNOS), CCL5, and interleukin (IL)-6 compared to wild-type. The M2 markers, IL-10 and CCL2 were also intrinsically elevated. Conclusions Data point to IFNγ as the primary upregulator of activin A in GM-CSF knockout mice which in addition, exhibit a unique mix of M1-M2 macrophage phenotypes.
Collapse
Affiliation(s)
- Heidi Dalrymple
- Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care Medicine and Sleep Medicine, East Carolina University, Brody School of Medicine, 3E-149 Brody Medical Sciences Building, Greenville, NC 27834, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Wells EM, Bonfield TL, Dearborn DG, Jackson LW. The relationship of blood lead with immunoglobulin E, eosinophils, and asthma among children: NHANES 2005-2006. Int J Hyg Environ Health 2013; 217:196-204. [PMID: 23726529 DOI: 10.1016/j.ijheh.2013.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 03/30/2013] [Accepted: 04/22/2013] [Indexed: 01/01/2023]
Abstract
Early life lead exposure may alter immune function and predispose a child to develop asthma. In an initial exploration of this hypothesis, we examined the association between blood lead, and serum immunoglobulin E (IgE), eosinophils, and asthma prevalence in a cross-sectional study of 1788 children from the National Health and Nutrition Examination Survey 2005-2006. Geometric mean blood lead, serum IgE, and percent eosinophils were 1.13 μg/dL (95% confidence interval (CI): 1.04, 1.22), 46.3 kU/L (95% CI: 40.3, 53.1), and 2.82 percent (95% CI 2.67, 2.98), respectively. Prevalence of asthma, atopic asthma, and atopy were 11.8% (95% CI: 9.5, 14.2), 8.1% (6.2, 9.9), and 44.4% (40.1, 48.7), respectively. Regression models controlled for season, age, sex, race/ethnicity, education, passive smoke exposure, and body mass index. Based on these models, there was an 11.1% (95% CI: 5.6, 16.9) increase in IgE and a 4.9% (95% CI: 2.3, 7.6) increase in eosinophils per 1 μg/dL increase in blood lead. In independent stratified analyses, lead was found to increase IgE and eosinophils among non-Hispanic whites, but not other children; and stronger associations were observed among children who lived with a smoker vs. not. Lead was not associated with asthma, atopic asthma, or general atopy. This study provides additional evidence of a cross-sectional association between lead with IgE and new evidence for eosinophils. This may be a mechanism for development of downstream allergic disease. The mechanisms that determine ultimate development of allergic disease are currently unknown, but are the focus of ongoing studies.
Collapse
Affiliation(s)
- Ellen M Wells
- Department of Environmental Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dorr G Dearborn
- Department of Environmental Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Leila W Jackson
- Department of Environmental Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Applied Public Health Research and Evaluation, Cleveland, OH, USA
| |
Collapse
|
27
|
Barnett MPG, Cooney JM, Dommels YEM, Nones K, Brewster DT, Park Z, Butts CA, McNabb WC, Laing WA, Roy NC. Modulation of colonic inflammation in Mdr1a(-/-) mice by green tea polyphenols and their effects on the colon transcriptome and proteome. J Nutr Biochem 2013; 24:1678-90. [PMID: 23643524 DOI: 10.1016/j.jnutbio.2013.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
Animal models are an important tool to understand the complex pathogenesis of inflammatory bowel diseases (IBDs). This study tested the anti-inflammatory potential of a green tea extract rich in polyphenols (GrTP) in the colon of the multidrug resistance targeted mutation (Mdr1a(-/-)) mouse model of IBD. Insights into mechanisms responsible for this reduction in inflammation were gained using transcriptome and proteome analyses. Mice were randomly assigned to an AIN-76A (control) or GrTP-enriched diet. At 21 or 24 weeks of age, a colonic histological injury score was determined for each mouse, colon mRNA transcript levels were assessed using microarrays, and colon protein expression was measured using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry protein identification. Mean colonic histological injury score of GrTP-fed Mdr1a(-/-) mice was significantly lower compared to those fed the control diet. Microarray and proteomics analyses showed reduced abundance of transcripts and proteins associated with immune and inflammatory response and fibrinogenesis pathways, and increased abundance of those associated with xenobiotic metabolism pathways in response to GrTP, suggesting that its anti-inflammatory activity is mediated by multiple molecular pathways. Peroxisome proliferator-activated receptor-α and signal transducer and activator of transcription 1 appear to be two key molecules which regulate these effects. These results support the view that dietary intake of polyphenols derived from green tea can ameliorate intestinal inflammation in the colon of a mouse model of IBD, and are in agreement with studies suggesting that consumption of green tea may reduce IBD symptoms and therefore play a part in an overall IBD treatment regimen.
Collapse
Affiliation(s)
- Matthew P G Barnett
- Food Nutrition and Health Team, Food and Bio-based Products Group, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Cell Mol Life Sci 2013; 70:259-76. [PMID: 22699820 PMCID: PMC11113701 DOI: 10.1007/s00018-012-1046-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis is a dynamic chronic liver disease occurring as a consequence of wound-healing responses to various hepatic injuries. This disorder is one of primary predictors for liver-associated morbidity and mortality worldwide. To date, no pharmacological agent has been approved for hepatic fibrosis or could be recommended for routine use in clinical context. Cellular and molecular understanding of hepatic fibrosis has revealed that peroxisome proliferator-activated receptor-γ (PPARγ), the functioning receptor for antidiabetic thiazolidinediones, plays a pivotal role in the pathobiology of hepatic stellate cells (HSCs), whose activation is the central event in the pathogenesis of hepatic fibrosis. Activation of PPARγ inhibits HSC collagen production and modulates HSC adipogenic phenotype at transcriptional and epigenetic levels. These molecular insights indicate PPARγ as a promising drug target for antifibrotic chemotherapy. Intensive animal studies have demonstrated that stimulation of PPARγ regulatory system through gene therapy approaches and PPARγ ligands has therapeutic promise for hepatic fibrosis induced by a variety of etiologies. At the same time, thiazolidinedione agents have been investigated for their clinical benefits primarily in patients with nonalcoholic steatohepatitis, a common metabolic liver disorder with high potential to progress to fibrosis and liver-related death. Although some studies have shown initial promise, none has established long-term efficacy in well-controlled randomized clinical trials. This comprehensive review covers the 10-year discoveries of the molecular basis for PPARγ regulation of HSC pathophysiology and then focuses on the animal investigations and clinical trials of various therapeutic modalities targeting PPARγ for hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Desong Kong
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| | - Shizhong Zheng
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| |
Collapse
|
29
|
Preventive effect of G-CSF on acute lung injury via alveolar macrophage regulation. J Surg Res 2012; 178:378-84. [DOI: 10.1016/j.jss.2011.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022]
|
30
|
Bonfield TL, Hodges CA, Cotton CU, Drumm ML. Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection. J Leukoc Biol 2012; 92:1111-22. [PMID: 22859830 DOI: 10.1189/jlb.0412188] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The absence or reduction of CFTR function causes CF and results in a pulmonary milieu characterized by bacterial colonization and unresolved inflammation. The ineffectiveness at controlling infection by species such as Pseudomonas aeruginosa suggests defects in innate immunity. Macrophages, neutrophils, and DCs have all been shown to express CFTR mRNA but at low levels, raising the question of whether CFTR has a functional role in these cells. Bone marrow transplants between CF and non-CF mice suggest that these cells are inherently different; we confirm this observation using conditional inactivation of Cftr in myeloid-derived cells. Mice lacking Cftr in myeloid cells overtly appear indistinguishable from non-CF mice until challenged with bacteria instilled into the lungs and airways, at which point, they display survival and inflammatory profiles intermediate in severity as compared with CF mice. These studies demonstrate that Cftr is involved directly in myeloid cell function and imply that these cells contribute to the pathophysiological phenotype of the CF lung.
Collapse
Affiliation(s)
- T L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4948, USA.
| | | | | | | |
Collapse
|
31
|
Gautier EL, Chow A, Spanbroek R, Marcelin G, Greter M, Jakubzick C, Bogunovic M, Leboeuf M, van Rooijen N, Habenicht AJ, Merad M, Randolph GJ. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. THE JOURNAL OF IMMUNOLOGY 2012; 189:2614-24. [PMID: 22855714 DOI: 10.4049/jimmunol.1200495] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although peroxisome proliferator-activated receptor γ (PPARγ) has anti-inflammatory actions in macrophages, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation remains unclear. We now show that lung and spleen macrophages selectively expressed PPARγ among resting tissue macrophages. In addition, Ly-6C(hi) monocytes recruited to an inflammatory site induced PPARγ as they differentiated to macrophages. When PPARγ was absent in Ly-6C(hi)-derived inflammatory macrophages, initiation of the inflammatory response was unaffected, but full resolution of inflammation failed, leading to chronic leukocyte recruitment. Conversely, PPARγ activation favored resolution of inflammation in a macrophage PPARγ-dependent manner. In the steady state, PPARγ deficiency in red pulp macrophages did not induce overt inflammation in the spleen. By contrast, PPARγ deletion in lung macrophages induced mild pulmonary inflammation at the steady state and surprisingly precipitated mortality upon infection with Streptococcus pneumoniae. This accelerated mortality was associated with impaired bacterial clearance and inability to sustain macrophages locally. Overall, we uncovered critical roles for macrophage PPARγ in promoting resolution of inflammation and maintaining functionality in lung macrophages where it plays a pivotal role in supporting pulmonary host defense. In addition, this work identifies specific macrophage populations as potential targets for the anti-inflammatory actions of PPARγ agonists.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cury-Boaventura MF, Torrinhas RSMDM, Godoy ABPD, Curi R, Waitzberg DL. Human Leukocyte Death After a Preoperative Infusion of Medium/Long-Chain Triglyceride and Fish Oil Parenteral Emulsions. JPEN J Parenter Enteral Nutr 2012; 36:677-84. [DOI: 10.1177/0148607111432759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Faculty of Medicine, University of São Paulo (LIM 35), São Paulo, Brazil
| |
Collapse
|
33
|
Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis. PLoS One 2011; 6:e28133. [PMID: 22145026 PMCID: PMC3228753 DOI: 10.1371/journal.pone.0028133] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/01/2011] [Indexed: 01/15/2023] Open
Abstract
Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits growth of cancer cells including non-small cell lung cancer (NSCLC). Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγflox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Macneg), or control PPARγflox/flox mice. In both models, mice receiving PPARγ-Macneg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.
Collapse
|
34
|
Onoprienko LV. [Molecular mechanisms regulating the activity of macrophages]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:437-51. [PMID: 22096986 DOI: 10.1134/s1068162011040091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.
Collapse
|
35
|
Seno T, Hamaguchi M, Ashihara E, Kohno M, Ishino H, Yamamoto A, Kadoya M, Nakamura K, Murakami K, Matoba S, Maekawa T, Kawahito Y. 15-Deoxy-Δ¹²,¹⁴ prostaglandin J₂ reduces the formation of atherosclerotic lesions in apolipoprotein E knockout mice. PLoS One 2011; 6:e25541. [PMID: 22003398 PMCID: PMC3189199 DOI: 10.1371/journal.pone.0025541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 09/07/2011] [Indexed: 01/18/2023] Open
Abstract
Aim 15-Deoxy-Δ12,14 Prostaglandin J2 (15d-PGJ2) is a ligand of peroxisome proliferator-activated receptor γ (PPARγ) having diverse effects such as the differentiation of adipocytes and atherosclerotic lesion formation. 15d-PGJ2 can also regulate the expression of inflammatory mediators on immune cells independent of PPARγ. We investigated the antiatherogenic effect of 15d-PGJ2. Methods We fed apolipoprotein (apo) E-deficient female mice a Western-type diet from 8 to 16 wk of age and administered 1 mg/kg/day 15d-PGJ2 intraperitoneally. We measured atherosclerotic lesions at the aortic root, and examined the expression of macrophage and inflammatory atherosclerotic molecules by immunohistochemical and real-time PCR in the lesion. Results Atherosclerotic lesion formation was reduced in apo E-null mice treated with 15d-PGJ2, as compared to in the controls. Immunohistochemical and real-time PCR analyses showed that the expression of MCP-1, TNF-α, and MMP-9 in atherosclerotic lesions was significantly decreased in 15d-PGJ2 treated mice. The 15d-PGJ2 also reduced the expression of macrophages and RelA mRNA in atherosclerotic lesions. Conclusion This is the first report 15d-PGJ2, a natural PPARγ agonist, can improve atherosclerotic lesions in vivo. 15d-PGJ2 may be a beneficial therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Takahiro Seno
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eishi Ashihara
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidetaka Ishino
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aihiro Yamamoto
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kadoya
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaoru Nakamura
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Murakami
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Yutaka Kawahito
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
36
|
Soltzberg J, Frischmann S, van Heeckeren C, Brown N, Caplan A, Bonfield TL. Quantitative microscopy in murine models of lung inflammation. ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY 2011; 33:245-252. [PMID: 22611751 PMCID: PMC4195243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To develop a quantitative means to measure lung inflammation using the murine models of chronic asthma and cystic fibrosis (CF). STUDY DESIGN Translational-based medicine often utilizes animal models to study new and innovative therapeutics. In asthma and CF, the animal models focus on airway inflammation and remodeling. The asthma model is based on hypersensitivity-induced airway disease, whereas the CF model focuses on the inflammatory response to infection with Pseudomonas aeruginosa. Qualitative measures of inflammation and lung pathophysiology introduce significant variability and difficulty in interpreting interventional outcomes. The highly sensitive and reproducible quantitative computational program interfaced with Image Pro Microscopy to monitor changes in lung inflammation and lung pathophysiology. The software interfaces with image microscopy and automates the lung section review process. RESULTS Results from this program recapitulated data obtained by manual point counting of inflammation, bronchoalveolar lavage differential, and histology. The data show a low coefficient of variation and high reproducibility between slides and sections. CONCLUSION Utilization of this new microscopy program will enhance the quantitative means of establishing changes in lung structure and inflammation as a measure of therapeutic intervention with the ability of refining interpretation of in vivo models potentially short-circuiting translation into the clinical setting.
Collapse
Affiliation(s)
- Joseph Soltzberg
- Hawken School, Gates Mills, Ohio
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | - Sarah Frischmann
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | | | - Nicole Brown
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | - Arnold Caplan
- Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Tracey L. Bonfield
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 2011; 23:343-52. [PMID: 20712478 DOI: 10.1089/vim.2010.0016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Newly emerged influenza viruses have attracted extensive attention due to their high infectivity, proinflammatory actions, and potential to induce worldwide pandemics. Frequent mutations and gene reassortments between viruses complicate the development of protective vaccines and antiviral therapeutics. In contrast, targeting the host response for the development of novel cost-effective, broad-based prophylactic or therapeutic agents holds greater promise. Since inflammation often parallels the development of productive immune responses, virus-induced pulmonary inflammation and injury represents an additional challenge to the development of broad-based immunotherapeutics. Excessive inflammatory responses to respiratory viruses, also known as "cytokine storm," are largely due to immune dysregulation that manifests as proinflammatory cytokine secretion. In addition to modulating lipid and glucose metabolism, peroxisome proliferator-activated receptors (PPAR) play important roles in antagonizing core inflammatory pathways such as NF-kappaB, AP1, and STAT. Their role in regulating inflammatory responses caused by pulmonary pathogens is receiving increasing attention, setting the stage for the discovery of novel applications for anti-diabetic and lipid-lowering drugs. This review focuses on the potential use of PPAR-gamma agonists to downregulate the inflammatory responses to respiratory virus-related pulmonary inflammation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
38
|
Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci U S A 2011; 108:2390-5. [PMID: 21262803 DOI: 10.1073/pnas.1019682108] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34(+) hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens.
Collapse
|
39
|
Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC, Gao C. Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem 2010; 286:5519-28. [PMID: 21148557 DOI: 10.1074/jbc.m110.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors 3 and 4 utilize adaptor TRIF to activate interferon regulatory factor 3 (IRF3), resulting in IFN-β production to mediate anti-viral and bacterial infection. Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor expressed in various immune cells and acts as a transcriptional repressor to inhibit the transcription of many proinflammatory cytokines. But, the function of PPAR-γ in TLR3- and -4-mediated IFN-β production is not well elucidated. Here, we have analyzed the effect of the PPAR-γ agonists on IFN-β production in peritoneal primary macrophages in response to LPS and poly(I:C). PPAR-γ agonists inhibited LPS and poly(I:C)-induced IFN-β transcription and secretion. siRNA knockdown of PPAR-γ expression and transfection of PPAR-γ expression plasmid demonstrated that PPAR-γ agonist inhibits IFN-β production in a PPAR-γ-dependent manner. The ability of the PPAR-γ agonist to inhibit IFN-β production was confirmed in vivo as mice treated with troglitazone exhibited decreased levels of IFN-β upon LPS and poly(I:C) challenge. Chromatin immunoprecipitation (CHIP) assay and electrophoretic mobility shift assay (EMSA) demonstrated that troglitazone treatment impaired IRF3 binding to the IFN-β promoter. Furthermore, troglitazone could inhibit LPS and poly(I:C)-induced STAT1 phosphorylation and subsequent ISRE activation. These results demonstrate that PPAR-γ negatively regulates IFN-β production in TLR3- and 4-stimulated macrophages by preventing IRF3 binding to the IFN-β promoter.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bonfield TL, Nolan Koloze MT, Lennon DP, Caplan AI. Defining human mesenchymal stem cell efficacy in vivo. JOURNAL OF INFLAMMATION-LONDON 2010; 7:51. [PMID: 20974000 PMCID: PMC2987779 DOI: 10.1186/1476-9255-7-51] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/25/2010] [Indexed: 01/27/2023]
Abstract
Allogeneic human mesenchymal stem cells (hMSCs) can suppress graft versus host disease (GvHD) and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
41
|
Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 2010; 299:L760-70. [PMID: 20817776 DOI: 10.1152/ajplung.00182.2009] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Dept. of Pediatrics, Case Western Reserve Univ., Cleveland, OH 44106-4948, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
43
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review discusses the most recent clinical and basic research literature on pulmonary alveolar proteinosis (PAP) as it relates to pathogenesis, diagnosis, and management. RECENT FINDINGS The discovery of Granulocyte macrophage-colony stimulating factor (GM-CSF) and the alveolar macrophage as critical regulators of surfactant protein and lipid homeostasis has led to significant advances in PAP. Adults affected by PAP have circulating neutralizing anti-GM-CSF antibodies. Reduced localized GM-CSF activity in the lung (from neutralizing anti-GM-CSF antibodies), decreases alveolar macrophage surfactant degradation with surfactant excess and accumulation. Cause, source of antibodies or downstream effects of GM-CSF deficiency is speculative. GM-CSF antibodies above a threshold level have proved to be a useful diagnostic test. Research towards therapy has focused on improving the technique for therapeutic whole lung lavage as well as overcoming effects of neutralizing anti-GM-CSF, which include GM-CSF therapy (systemic and inhaled) and anecdotal reports of anti-B cell therapy. Whereas this approach has been somewhat successful for primary PAP, other causes of PAP (i.e. alveolar macrophage dysfunction, surfactant protein alterations) are still without therapy. SUMMARY Understanding of the pathogenesis of PAP has greatly increased in the last decade; study has brought better comprehension of lung biology and recognition of the critical role for GM-CSF and alveolar macrophage in surfactant clearance. Balance between resident immune cell population and normal lung function still needs further study. Resident alveolar macrophages have an essential role in surfactant homeostasis. With this knowledge more effective diagnostic tests (e.g. anti-GM-CSF antibody) and therapies for PAP are under investigation.
Collapse
|
45
|
Current World Literature. Curr Opin Pulm Med 2009; 15:521-7. [DOI: 10.1097/mcp.0b013e3283304c7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Nakaya H, Summers BD, Nicholson AC, Gotto AM, Hajjar DP, Han J. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2007-14. [PMID: 19435790 DOI: 10.2353/ajpath.2009.080611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones, a class of drugs for the treatment of type-2 diabetes, are synthetic ligands for peroxisome proliferator-activated receptor-gamma. They have been demonstrated to possess cardioprotective effects in humans and anti-atherogenic properties in animal models. However, the question remains whether a peroxisome proliferator-activated receptor-gamma ligand can reverse the development of atherosclerosis. In this study, we tested the effects of pioglitazone on the development of established atherosclerosis in low-density lipoprotein receptor-null mice. We observed that atherosclerosis in low-density lipoprotein receptor-null mice progressed when mice were fed a high-fat diet. Pioglitazone treatment of atherogenic mice prevented this progression of atherosclerosis from its middle stages of disease, but was not able to reverse it. Withdrawal of the high-fat diet from mice with advanced atherosclerosis did not result in a reduction in lesion sizes. Pioglitazone treatment also had no effect on advanced atherosclerosis. Levels of high density lipoprotein cholesterol correlated inversely with lesion development when pioglitazone was given during lesion progression. However, pioglitazone had no effect on circulating high density lipoprotein levels in mice in which treatment was initiated following 14 weeks on the high-fat diet. These findings have implications for the analysis of therapeutic agents in murine models of atherosclerosis and the use of pioglitazone in patients with established atherosclerosis.
Collapse
Affiliation(s)
- Hideaki Nakaya
- Center of Vascular Biology, Department of Pathology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|