1
|
Zhang X, Li S, Lason W, Greco M, Klenerman P, Hinks TSC. MAIT cells protect against sterile lung injury. Cell Rep 2025; 44:115275. [PMID: 39918959 DOI: 10.1016/j.celrep.2025.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, the most abundant unconventional T cells in the lung, can exhibit a wide range of functional responses to different triggers via their T cell receptor (TCR) and/or cytokines. Their role, especially in sterile lung injury, is unknown. Using single-cell RNA sequencing (scRNA-seq), spectral analysis, and adoptive transfer in a bleomycin-induced sterile lung injury, we found that bleomycin activates murine pulmonary MAIT cells and is associated with a protective role against bleomycin-induced lung injury. MAIT cells drive the accumulation of type 1 conventional dendritic cells (cDC1s), limiting tissue damage in a DNGR-1-dependent manner. Human scRNA-seq data revealed that MAIT cells were activated, with increased cDC populations in idiopathic pulmonary fibrosis patients. Thus, MAIT cells enhance defense against sterile lung injury by fostering cDC1-driven anti-fibrotic pathways.
Collapse
Affiliation(s)
- Xiawei Zhang
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Shuailin Li
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Wojciech Lason
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Maria Greco
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
2
|
Wang K, Espinosa V, Wang Y, Lemenze A, Kumamoto Y, Xue C, Rivera A. Innate cells and STAT1-dependent signals orchestrate vaccine-induced protection against invasive Cryptococcus infection. mBio 2024; 15:e0194424. [PMID: 39324785 PMCID: PMC11481872 DOI: 10.1128/mbio.01944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal pathogens are underappreciated causes of significant morbidity and mortality worldwide. In previous studies, we determined that a heat-killed, Cryptococcus neoformans fbp1-deficient strain (HK-fbp1) is a potent vaccine candidate. We determined that vaccination with HK-fbp1 confers protective immunity against lethal Cryptococcosis in an interferon γ (IFNγ)-dependent manner. In this study, we set out to uncover cellular sources and relevant targets of the protective effects of IFNγ in response to the HK-fbp1 vaccine. We found that early IFNγ production peaks at day 3 and that monocytes and neutrophils are important sources of this cytokine after vaccination. Neutralization of IFNγ at day 3 results in impaired CCR2+ monocyte recruitment and reduced differentiation into monocyte-derived dendritic cells (Mo-DC). In turn, depletion of CCR2+ cells prior to immunization results in impaired activation of IFNγ-producing CD4 and CD8 T cells. Thus, monocytes are important targets of innate IFNγ and help promote further IFNγ production by lymphocytes. We employed monocyte-fate mapper and conditional STAT1 knockout mice to uncover that STAT1 activation in CD11c+ cells, including alveolar macrophages, Mo-DCs, and monocyte-derived macrophages (Mo-Mac) is essential for HK-fbp1 vaccine-induced protection. Altogether, our aggregate findings suggest critical roles for innate cells as orchestrators of vaccine-induced protection against Cryptococcus infection.IMPORTANCEThe number of patients susceptible to invasive fungal infections across the world continues to rise at an alarming pace yet current antifungal drugs are often inadequate. Immune-based interventions and novel antifungal vaccines hold the promise of significantly improving patient outcomes. In previous studies, we identified a Cryptococcus neoformans mutant strain (Fbp1-deficient) as a potent, heat-inactivated vaccine candidate capable of inducing homologous and heterologous antifungal protection. In this study, we used a combination of methods together with a cohort of conditional knockout mouse strains to interrogate the roles of innate cells in the orchestration of vaccine-induced antifungal protection. We uncovered novel roles for neutrophils and monocytes as coordinators of a STAT1-dependent cascade of responses that mediate vaccine-induced protection against invasive cryptococcosis. This new knowledge will help guide the future development of much-needed antifungal vaccines.
Collapse
Affiliation(s)
- Keyi Wang
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vanessa Espinosa
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Alexander Lemenze
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yosuke Kumamoto
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Amariliz Rivera
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
3
|
Kulkarni NA, Nanjappa SG. Advances in Dendritic-Cell-Based Vaccines against Respiratory Fungal Infections. Vaccines (Basel) 2024; 12:981. [PMID: 39340013 PMCID: PMC11435842 DOI: 10.3390/vaccines12090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ever since the discovery of dendritic cells by Ralph Steinman and Zanvil Cohn in 1973, it is increasingly evident that dendritic cells are integral for adaptive immune responses, and there is an undeniable focus on them for vaccines development. Fungal infections, often thought to be innocuous, are becoming significant threats due to an increased immunocompromised or immune-suppressed population and climate change. Further, the recent COVID-19 pandemic unraveled the wrath of fungal infections and devastating outcomes. Invasive fungal infections cause significant case fatality rates ranging from 20% to 90%. Regrettably, no licensed fungal vaccines exist, and there is an urgent need for preventive and therapeutic purposes. In this review, we discuss the ontogeny, subsets, tissue distribution, and functions of lung dendritic cells. In the latter part, we summarize and discuss the studies on the DC-based vaccines against pulmonary fungal infections. Finally, we highlight some emerging potential avenues that can be incorporated for DC-based vaccines against fungal infections.
Collapse
Affiliation(s)
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
4
|
Xu J, Hissong R, Bareis R, Creech A, Goughenour KD, Freeman CM, Olszewski MA. Batf3-dependent orchestration of the robust Th1 responses and fungal control during cryptococcal infection, the role of cDC1. mBio 2024; 15:e0285323. [PMID: 38349130 PMCID: PMC10936214 DOI: 10.1128/mbio.02853-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.
Collapse
Affiliation(s)
- Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rylan Hissong
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rachel Bareis
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Arianna Creech
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christine M. Freeman
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Goughenour KD, Nair AS, Xu J, Olszewski MA, Wozniak KL. Dendritic Cells: Multifunctional Roles in Host Defenses to Cryptococcus Infections. J Fungi (Basel) 2023; 9:1050. [PMID: 37998856 PMCID: PMC10672120 DOI: 10.3390/jof9111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are an increasingly growing public health concern, and Cryptococcus is one of the most problematic fungal organisms causing substantial mortality and morbidity worldwide. Clinically, this high incidence of cryptococcosis is most commonly seen in immunocompromised patients, especially those who lack an adaptive T cell response, such as HIV/AIDS patients. However, patients with other underlying immunodeficiencies are also at an increased risk for cryptococcosis. The adaptive immune response, in particular the Th1/Th17 T-cell-mediated responses, to pulmonary Cryptococcus infections are required for host protection. Dendritic cells (DCs), encompassing multiple subsets identified to date, are recognized as the major professional antigen-presenting cell (APC) subset essential for the initiation and execution of T-cell immunity. Apart from their prominent role in orchestration of the adaptive arm of the immune defenses, DCs are fully armed cells from the innate immune system capable of the recognition, uptake, and killing of the fungal cells. Thus, DCs serve as a critical point for the endpoint outcomes of either fungal control or unrestrained fungal infection. Multiple studies have shown that DCs are required for anti-cryptococcal defense in the lungs. In addition, the role of DCs in Cryptococcus gattii infections is just starting to be elucidated. C. gattii has recently risen to prominence with multiple outbreaks in the US and Canada, demonstrating increased virulence in non-immunocompromised individuals. C. gattii infection fails to generate an inflammatory immune response or a protective Th1/Th17 T cell response, at least in part, through a lack of proper DC function. Here we summarize the multiple roles of DCs, including subsets of DCs in both mouse and human models, the roles of DCs during cryptococcal infection, and mechanisms by cryptococcal cells to attempt to undermine these host defenses.
Collapse
Affiliation(s)
- Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
6
|
Zhuang W, Zhou J, Zhong L, Lv J, Zhong X, Liu G, Xie L, Wang C, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Xie X, Du C. CXCR1 drives the pathogenesis of EAE and ARDS via boosting dendritic cells-dependent inflammation. Cell Death Dis 2023; 14:608. [PMID: 37709757 PMCID: PMC10502121 DOI: 10.1038/s41419-023-06126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Chemokines secreted by dendritic cells (DCs) play a key role in the regulation of inflammation and autoimmunity through chemokine receptors. However, the role of chemokine receptor CXCR1 in inflammation-inducing experimental autoimmune encephalomyelitis (EAE) and acute respiratory distress syndrome (ARDS) remains largely enigmatic. Here we reported that compared with healthy controls, the level of CXCR1 was aberrantly increased in multiple sclerosis (MS) patients. Knockout of CXCR1 not only ameliorated disease severity in EAE mice but also suppressed the secretion of inflammatory factors (IL-6/IL-12p70) production. We observed the same results in EAE mice with DCs-specific deletion of CXCR1 and antibody neutralization of the ligand CXCL5. Mechanically, we demonstrated a positive feedback loop composed of CXCL5/CXCR1/HIF-1α direct regulating of IL-6/IL-12p70 production in DCs. Meanwhile, we found CXCR1 deficiency in DCs limited IL-6/IL-12p70 production and lung injury in LPS-induced ARDS, a disease model caused by inflammation. Overall, our study reveals CXCR1 governs DCs-mediated inflammation and autoimmune disorders and its potential as a therapeutic target for related diseases.
Collapse
Affiliation(s)
- Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Sanxing Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changjie Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuhong Hua
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
8
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
9
|
Strickland AB, Chen Y, Sun D, Shi M. Alternatively activated lung alveolar and interstitial macrophages promote fungal growth. iScience 2023; 26:106717. [PMID: 37216116 PMCID: PMC10193231 DOI: 10.1016/j.isci.2023.106717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1+ IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.
Collapse
Affiliation(s)
- Ashley B. Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Yanli Chen
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Espinosa V, Dutta O, Heung LJ, Wang K, Chang YJ, Soteropoulos P, Hohl TM, Siracusa MC, Rivera A. Cutting Edge: Neutrophils License the Maturation of Monocytes into Effective Antifungal Effectors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1827-1831. [PMID: 36216513 PMCID: PMC10115354 DOI: 10.4049/jimmunol.2200430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
Neutrophils are critical for the direct eradication of Aspergillus fumigatus conidia, but whether they mediate antifungal defense beyond their role as effectors is unclear. In this study, we demonstrate that neutrophil depletion impairs the activation of protective antifungal CCR2+ inflammatory monocytes. In the absence of neutrophils, monocytes displayed limited differentiation into monocyte-derived dendritic cells, reduced formation of reactive oxygen species, and diminished conidiacidal activity. Upstream regulator analysis of the transcriptional response in monocytes predicted a loss of STAT1-dependent signals as the potential basis for the dysfunction seen in neutrophil-depleted mice. We find that conditional removal of STAT1 on CCR2+ cells results in diminished antifungal monocyte responses, whereas exogenous administration of IFN-γ to neutrophil-depleted mice restores monocyte-derived dendritic cell maturation and reactive oxygen species production. Altogether, our findings support a critical role for neutrophils in antifungal immunity not only as effectors but also as important contributors to antifungal monocyte activation, in part by regulating STAT1-dependent functions.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Orchi Dutta
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Lena J Heung
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Yun-Juan Chang
- Genomics Research Program, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Patricia Soteropoulos
- Genomics Research Program, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Tobias M Hohl
- Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ;
| |
Collapse
|
11
|
Stempinski PR, Goughenour KD, du Plooy LM, Alspaugh JA, Olszewski MA, Kozubowski L. The Cryptococcus neoformans Flc1 Homologue Controls Calcium Homeostasis and Confers Fungal Pathogenicity in the Infected Hosts. mBio 2022; 13:e0225322. [PMID: 36169198 PMCID: PMC9600462 DOI: 10.1128/mbio.02253-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.
Collapse
Affiliation(s)
- Piotr R. Stempinski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Kristie D. Goughenour
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukas M. du Plooy
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michal A. Olszewski
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
13
|
Wilson KR, Gressier E, McConville MJ, Bedoui S. Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Front Immunol 2022; 13:897462. [PMID: 35880171 PMCID: PMC9307905 DOI: 10.3389/fimmu.2022.897462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a gateway for viruses and bacteria from the external environment to invade the human body. Critical to the protection against these invaders are dendritic cells (DCs) - a group of highly specialized myeloid cells that monitors the lung microenvironment and relays contextual and antigenic information to T cells. Following the recognition of danger signals and/or pathogen molecular associated patterns in the lungs, DCs undergo activation. This process arms DCs with the unique ability to induce the proliferation and differentiation of T cells responding to matching antigen in complex with MHC molecules. Depending on how DCs interact with T cells, the ensuing T cell response can be tolerogenic or immunogenic and as such, the susceptibility and severity of respiratory infections is influenced by the signals DCs receive, integrate, and then convey to T cells. It is becoming increasingly clear that these facets of DC biology are heavily influenced by the cellular components and metabolites produced by the lung and gut microbiota. In this review, we discuss the roles of different DC subsets in respiratory infections and outline how microbial metabolites impact the development, propensity for activation and subsequent activation of DCs. In particular, we highlight these concepts in the context of respiratory immunity.
Collapse
Affiliation(s)
- Kayla R. Wilson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kayla R. Wilson,
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Teitz-Tennenbaum S, Viglianti SP, Jomma A, Palone Q, Andrews H, Selbmann KN, Lahiri S, Subbotina N, Walker N, Perl AKT, Lama VN, Sisson TH, Osterholzer JJ. Sustained Club Cell Injury in Mice Induces Histopathologic Features of Deployment-Related Constrictive Bronchiolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:410-425. [PMID: 34954211 PMCID: PMC8895425 DOI: 10.1016/j.ajpath.2021.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
Histopathologic evidence of deployment-related constrictive bronchiolitis (DRCB) has been identified in soldiers deployed to Southwest Asia. While inhalational injury to the airway epithelium is suspected, relatively little is known about the pathogenesis underlying this disabling disorder. Club cells are local progenitors critical for repairing the airway epithelium after exposure to various airborne toxins, and a prior study using an inducible transgenic murine model reported that 10 days of sustained targeted club cell injury causes constrictive bronchiolitis. To further understand the mechanisms leading to small airway fibrosis, a murine model was employed to show that sustained club cell injury elicited acute weight loss, caused increased local production of proinflammatory cytokines, and promoted accumulation of numerous myeloid cell subsets in the lung. Transition to a chronic phase was characterized by up-regulated expression of oxidative stress-associated genes, increased activation of transforming growth factor-β, accumulation of alternatively activated macrophages, and enhanced peribronchiolar collagen deposition. Comparative histopathologic analysis demonstrated that sustained club cell injury was sufficient to induce epithelial metaplasia, airway wall thickening, peribronchiolar infiltrates, and clusters of intraluminal airway macrophages that recapitulated key abnormalities observed in DRCB. Depletion of alveolar macrophages in mice decreased activation of transforming growth factor-β and ameliorated constrictive bronchiolitis. Collectively, these findings implicate sustained club cell injury in the development of DRCB and delineate pathways that may yield biomarkers and treatment targets for this disorder.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven P Viglianti
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan
| | - Ahmad Jomma
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Quentin Palone
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Halia Andrews
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kayla N Selbmann
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shayanki Lahiri
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anne-Karina T Perl
- Pulmonary Biology, The Perinatal Institute and Section of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John J Osterholzer
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Hawkins AN, Determann BF, Nelson BN, Wozniak KL. Transcriptional Changes in Pulmonary Phagocyte Subsets Dictate the Outcome Following Interaction With The Fungal Pathogen Cryptococcus neoformans. Front Immunol 2021; 12:722500. [PMID: 34650554 PMCID: PMC8505728 DOI: 10.3389/fimmu.2021.722500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
With over 220,000 cases and 180,000 deaths annually, Cryptococcus neoformans is the most common cause of fungal meningitis and a leading cause of death in HIV/AIDS patients in Sub-Saharan Africa. Either C. neoformans can be killed by innate airway phagocytes, or it can survive intracellularly. Pulmonary murine macrophage and dendritic cell (DC) subsets have been identified in the naïve lung, and we hypothesize that each subset has different interactions with C. neoformans. For these studies, we purified murine pulmonary macrophage and DC subsets from naïve mice - alveolar macrophages, Ly6c- and Ly6c+ monocyte-like macrophages, interstitial macrophages, CD11b+ and CD103+ DCs. With each subset, we examined cryptococcal association (binding/internalization), fungicidal activity, intracellular fungal morphology, cytokine secretion and transcriptional profiling in an ex vivo model using these pulmonary phagocyte subsets. Results showed that all subsets associate with C. neoformans, but only female Ly6c- monocyte-like macrophages significantly inhibited growth, while male CD11b+ DCs significantly enhanced fungal growth. In addition, cytokine analysis revealed that some subsets from female mice produced increased amounts of cytokines compared to their counterparts in male mice following exposure to C. neoformans. In addition, although cells were analyzed ex vivo without the influence of the lung microenviroment, we did not find evidence of phagocyte polarization following incubation with C. neoformans. Imaging flow cytometry showed differing ratios of cryptococcal morphologies, c-shaped or budding, depending on phagocyte subset. RNA sequencing analysis revealed the up- and down-regulation of many genes, from immunological pathways (including differential regulation of MHC class I in the antigen processing pathway and the cell adhesion pathway) and pathways relating to relating to metabolic activity (genes in the Cytochrome P450 family, genes related to actin binding, calcium voltage channels, serine proteases, and phospholipases). Future studies gaining a more in-depth understanding on the functionality of individual genes and pathways specific to permissive and non-permissive pulmonary phagocytes will allow identification of key targets when developing therapeutic strategies to prevent cryptococcal meningitis.
Collapse
Affiliation(s)
- Ashlee N Hawkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Brenden F Determann
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
16
|
Xu J, Ganguly A, Zhao J, Ivey M, Lopez R, Osterholzer JJ, Cho CS, Olszewski MA. CCR2 Signaling Promotes Brain Infiltration of Inflammatory Monocytes and Contributes to Neuropathology during Cryptococcal Meningoencephalitis. mBio 2021; 12:e0107621. [PMID: 34311579 PMCID: PMC8406332 DOI: 10.1128/mbio.01076-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Cryptococcal meningoencephalitis (CM) is a leading cause of central nervous system (CNS) infection-related mortality worldwide, with surviving patients often developing neurological deficiencies. While CNS inflammation has been implicated in the pathogenesis of CM, little is known about the relative contribution of the specific inflammatory/immune pathways to CNS pathology versus fungal clearance. Increased cerebrospinal fluid level of C-C chemokine receptor 2 (CCR2) ligand CCL2 is associated with disease deterioration in patients with CM. Using a murine model, we investigated the role of the CCR2 pathway in the development of CNS inflammation and pathology during CM. We found that CCR2-deficient mice exhibited improved 28-day survival and alleviated neurological disease scores despite a brain fungal burden higher than that of the WT mice. Reduced CM pathology in CCR2-deficient mice was accompanied by markedly decreased neuronal cell death around cryptococcal microcysts and restored expression of genes involved in neurotransmission, connectivity, and neuronal cell structure in the brains. Results show that CCR2 axis is the major pathway recruiting CD45hiCD11b+Ly6C+ inflammatory monocyte to the brain and indirectly modulates the accumulation of CD4+ T cells and CD8+ T cells. In particular, CCR2 axis promotes recruitment of interferon gamma (IFN-γ)-producing CD4+ T cells and classical activation of myeloid cells. In this context, CCR2 deletion limits the immune network dysregulation we see in CM and attenuates neuropathology. Thus, the CCR2 axis is a potential target for interventions aimed to limit inflammatory CNS pathology in CM patients. IMPORTANCE Cryptococcal meningoencephalitis (CM) causes nearly 200,000 deaths worldwide each year, and survivors frequently develop long-lasting neurological sequelae. The high rate of mortality and neurologic sequelae in CM patients indicate that antifungal therapies alone are often insufficient to control disease progression. Here, we reveal that CM disease progression in mice is accompanied by inflammatory monocytes infiltration at the periphery of the infected foci that overlap locally perturbed neuronal function and death. Importantly, we identified that CCR2 signaling is a critical pathway driving neuroinflammation, especially inflammatory monocyte recruitment, as well as CNS pathology and mortality in CM mice. Our results imply that targeting the CCR2 pathway may be beneficial as a therapy complementary to antifungal drug treatment, helping to reduce CNS damage and mortality in CM patients.
Collapse
Affiliation(s)
- Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Zhao
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michel Ivey
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Rafael Lopez
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - John J. Osterholzer
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Miller MH, Shehat MG, Tigno-Aranjuez JT. Immune Modulation of Allergic Asthma by Early Pharmacological Inhibition of RIP2. Immunohorizons 2020; 4:825-836. [PMID: 33443037 DOI: 10.4049/immunohorizons.2000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Exposure to house dust mite (HDM) is highly associated with the development of allergic asthma. The adaptive immune response to HDM is largely Th2 and Th17 dominant, and a number of innate immune receptors have been identified that recognize HDM to initiate these responses. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a cytosolic sensor of peptidoglycan, which is important for Th2 and Th17 polarization. NOD2 mediates its signaling through its downstream effector kinase, receptor-interacting serine/threonine protein kinase 2 (RIP2). We have previously shown that RIP2 promotes HDM-associated allergic airway inflammation and Th2 and Th17 immunity, acting early in the HDM response and likely within airway epithelial cells. However, the consequences of inhibiting RIP2 during this critical period has not yet been examined. In this study, we pharmacologically inhibited RIP2 activity during the initial exposure to allergen in an acute HDM model of asthma and determined the effect on the subsequent development of allergic airway disease. We show that early inhibition of RIP2 was sufficient to reduce lung histopathology and local airway inflammation while reducing the Th2 immune response. Using a chronic HDM asthma model, we demonstrate that inhibition of RIP2, despite attenuating airway inflammation and airway remodeling, was insufficient to reduce airway hyperresponsiveness. These data demonstrate the potential of pharmacological targeting of this kinase in asthma and support further development and optimization of RIP2-targeted therapies.
Collapse
Affiliation(s)
- Madelyn H Miller
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827
| | - Michael G Shehat
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827
| | - Justine T Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827
| |
Collapse
|
18
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
19
|
Yang J, Agarwal M, Ling S, Teitz-Tennenbaum S, Zemans RL, Osterholzer JJ, Sisson TH, Kim KK. Diverse Injury Pathways Induce Alveolar Epithelial Cell CCL2/12, Which Promotes Lung Fibrosis. Am J Respir Cell Mol Biol 2020; 62:622-632. [PMID: 31922885 DOI: 10.1165/rcmb.2019-0297oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggests that fibrosis is a multicellular process with contributions from alveolar epithelial cells (AECs), recruited monocytes/macrophages, and fibroblasts. We have previously shown that AEC injury is sufficient to induce fibrosis, but the precise mechanism remains unclear. Several cell types, including AECs, can produce CCL2 and CCL12, which can promote fibrosis through CCR2 activation. CCR2 signaling is critical for the initiation and progression of pulmonary fibrosis, in part through recruitment of profibrotic bone marrow-derived monocytes. Attempts at inhibiting CCL2 in patients with fibrosis demonstrated a marked upregulation of CCL2 production and no therapeutic response. To better understand the mechanisms involved in CCL2/CCR2 signaling, we generated mice with conditional deletion of CCL12, a murine homolog of human CCL2. Surprisingly, we found that mice with complete deletion of CCL12 had markedly increased concentrations of other CCR2 ligands and were not protected from fibrosis after bleomycin injury. In contrast, mice with lung epithelial cell-specific deletion of CCL12 were protected from bleomycin-induced fibrosis and had expression of CCL2 and CCL7 similar to that of control mice treated with bleomycin. Deletion of CCL12 within AECs led to decreased recruitment of exudate macrophages. Finally, injury to murine and human primary AECs resulted in increased production of CCL2 and CCL12, in part through activation of the mTOR pathway. In conclusion, these data suggest that targeting CCL2 may be a viable antifibrotic strategy once the pathways involved in the production and function of CCL2 and other CCR2 ligands are better defined.
Collapse
Affiliation(s)
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and.,Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, Michigan
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and.,Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, Michigan
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
20
|
Fu MS, Drummond RA. The Diverse Roles of Monocytes in Cryptococcosis. J Fungi (Basel) 2020; 6:jof6030111. [PMID: 32708673 PMCID: PMC7558978 DOI: 10.3390/jof6030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Monocytes are considered to play a central role in the pathogenesis of Cryptococcus neoformans infection. Monocytes and monocyte-derived macrophages and dendritic cells are key components for the control of infection, but paradoxically they can also contribute to detrimental host responses and may even support fungal proliferation and dissemination. Simultaneously, the C. neoformans polysaccharide capsule can impair the functions of monocytes. Although monocytes are often seen as simple precursor cells, they also function as independent immune effector cells. In this review, we summarize these monocyte-specific functions during cryptococcal infection and the influence of C. neoformans on monocyte responses. We also cover the most recent findings on the functional and phenotypic heterogeneity of monocytes and discuss how new advanced technologies provide a platform to address outstanding questions in the field.
Collapse
|
21
|
Heung LJ. Monocytes and the Host Response to Fungal Pathogens. Front Cell Infect Microbiol 2020; 10:34. [PMID: 32117808 PMCID: PMC7031161 DOI: 10.3389/fcimb.2020.00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Monocytes and their derivatives, including macrophages and dendritic cells, play diverse roles in the response to fungal pathogens. Sensing of fungi by monocytes triggers signaling pathways that mediate direct effects like phagocytosis and cytokine production. Monocytes can also present fungal antigens to elicit adaptive immune responses. These monocyte-mediated pathways may be either beneficial or harmful to the host. In some instances, fungi have developed mechanisms to evade the consequences of monocyte activation and subvert these cells to promote disease. Thus, monocytes are critically involved in mediating the outcomes of these often highly fatal infections. This review will highlight the roles of monocytes in the immune response to some of the major fungi that cause invasive human disease, including Aspergillus, Cryptococcus, Candida, Histoplasma, Blastomyces, and Coccidioides, and discuss potential strategies to manipulate monocyte responses in order to enhance anti-fungal immunity in susceptible hosts.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
22
|
Nelson BN, Hawkins AN, Wozniak KL. Pulmonary Macrophage and Dendritic Cell Responses to Cryptococcus neoformans. Front Cell Infect Microbiol 2020; 10:37. [PMID: 32117810 PMCID: PMC7026008 DOI: 10.3389/fcimb.2020.00037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans can cause life-threatening infections in immune compromised individuals. This pathogen is typically acquired via inhalation, and enters the respiratory tract. Innate immune cells such as macrophages and dendritic cells (DCs) are the first host cells that encounter C. neoformans, and the interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease. Cryptococcus possesses several virulence factors and evasion strategies to prevent its killing and destruction by pulmonary phagocytes, but these phagocytic cells can also contribute to anti-cryptococcal responses. This review will focus on the interactions between Cryptococcus and primary macrophages and dendritic cells (DCs), dealing specifically with the cryptococcal/pulmonary cell interface.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Ashlee N Hawkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
23
|
Zarakas MA, Desai JV, Chamilos G, Lionakis MS. Fungal Infections with Ibrutinib and Other Small-Molecule Kinase Inhibitors. CURRENT FUNGAL INFECTION REPORTS 2019; 13:86-98. [PMID: 31555394 DOI: 10.1007/s12281-019-00343-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of review Small molecule kinase inhibitors (SMKIs) have revolutionized the management of malignant and autoimmune disorders. Emerging clinical reports point toward an increased risk for invasive fungal infections (IFIs) in patients treated with certain SMKIs. In this mini-review, we highlight representative examples of SMKIs that have been associated with or are expected to give rise to IFIs. Recent findings The clinical use of the Bruton's tyrosine kinase inhibitor ibrutinib as well as other FDA-approved SMKIs has been associated with IFIs. The fungal infection susceptibility associated with the clinical use of certain SMKIs underscores their detrimental effects on innate and adaptive antifungal immune responses. Summary The unprecedented development and clinical use of SMKIs is expected to give rise to an expansion of iatrogenic immunosuppressive factors predisposing to IFIs (and other opportunistic infections). Beyond increased clinical surveillance, better understanding of the pathogenesis of SMKI-associated immune dysregulation should help devising improved risk stratification and prophylaxis strategies in vulnerable patients.
Collapse
Affiliation(s)
- Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Freire-de-Lima CG. Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Front Med (Lausanne) 2019; 6:129. [PMID: 31275938 PMCID: PMC6593061 DOI: 10.3389/fmed.2019.00129] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans. In immunocompetent patients, cryptococcal infection is often confined to the lungs. In immunocompromised individuals, C. neoformans may cause life-threatening illness, either from novel exposure or through reactivation of a previously acquired latent infection. For example, cryptococcal meningitis is a severe clinical disease that can manifest in people that are immunocompromised due to AIDS. The major constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM), and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal), are considered the primary virulence factors of Cryptococcus. Despite the predominance of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory effects on host cellular immunity. This review summarizes current knowledge regarding host-Crytococcus neoformans interactions and the role of capsular polysaccharides in host immunomodulation. Future studies will likely facilitate a better understanding of the mechanisms involved in antigenic recognition and host immune response to C. neoformans and lead to the development of new therapeutic pathways for cryptococcal infection.
Collapse
Affiliation(s)
- Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle O Nascimento
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
25
|
Heung LJ, Hohl TM. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathog 2019; 15:e1007627. [PMID: 30897162 PMCID: PMC6428256 DOI: 10.1371/journal.ppat.1007627] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a leading cause of invasive fungal infections among immunocompromised patients. However, the cellular constituents of the innate immune response that promote clearance versus progression of infection upon respiratory acquisition of C. neoformans remain poorly defined. In this study, we found that during acute C. neoformans infection, CCR2+ Ly6Chi inflammatory monocytes (IM) rapidly infiltrate the lungs and mediate fungal trafficking to lung-draining lymph nodes. Interestingly, this influx of IM is detrimental to the host, since ablating IM or impairing their recruitment to the lungs improves murine survival and reduces fungal proliferation and dissemination. Using a novel conditional gene deletion strategy, we determined that MHC class II expression by IM did not mediate their deleterious impact on the host. Furthermore, although ablation of IM reduced the number of lymphocytes, innate lymphoid cells, and eosinophils in the lungs, the effects of IM were not dependent on these cells. We ascertained that IM in the lungs upregulated transcripts associated with alternatively activated (M2) macrophages in response to C. neoformans, consistent with the model that IM assume a cellular phenotype that is permissive for fungal growth. We also determined that conditional knockout of the prototypical M2 marker arginase 1 in IM and deletion of the M2-associated transcription factor STAT6 were not sufficient to reverse the harmful effects of IM. Overall, our findings indicate that C. neoformans can subvert the fungicidal potential of IM to enable the progression of infection through a mechanism that is not dependent on lymphocyte priming, eosinophil recruitment, or downstream M2 macrophage polarization pathways. These results give us new insight into the plasticity of IM function during fungal infections and the level of control that C. neoformans can exert on host immune responses. Cryptococcus neoformans is a fungus that is prevalent throughout the environment and can cause a fatal infection of the central nervous system when inhaled into the lungs by patients with impaired immune systems. Our understanding of the immune responses that either help clear C. neoformans from the lungs or permit development of disease remains limited. In this study, we used a mouse model of lethal C. neoformans infection to determine that inflammatory monocytes, immune cells that are often among the first responders to infections, actually facilitate the progression of infection rather than clearance. These findings establish a foundation for future work to target the immune response of inflammatory monocytes as a strategy to improve the outcomes of patients that develop C. neoformans infections.
Collapse
Affiliation(s)
- Lena J. Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| | - Tobias M. Hohl
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| |
Collapse
|
26
|
Arifuzzaman M, Mobley YR, Choi HW, Bist P, Salinas CA, Brown ZD, Chen SL, Staats HF, Abraham SN. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. SCIENCE ADVANCES 2019; 5:eaav0216. [PMID: 30613778 PMCID: PMC6314830 DOI: 10.1126/sciadv.aav0216] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance of Staphylococcus aureus from infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+ dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuvon R. Mobley
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | | | - Zachary D. Brown
- Undergraduate Program in Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Swaine L. Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Herman F. Staats
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Corresponding author.
| |
Collapse
|
27
|
Involvement of the capsular GalXM-induced IL-17 cytokine in the control of Cryptococcus neoformans infection. Sci Rep 2018; 8:16378. [PMID: 30401972 PMCID: PMC6219535 DOI: 10.1038/s41598-018-34649-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungus that can cause lethal brain infections in immunosuppressed individuals. Infection usually occurs via the inhalation of a spore or desiccated yeast which can then disseminate from the lung to the brain and other tissues. Dissemination and disease is largely influence by the production of copious amounts of cryptococcal polysaccharides, both which are secreted to the extracellular environment or assembled into a thick capsule surrounding the cell body. There are two important polysaccharides: glucuronoxylomannan (GXM) and galactoxylomannan, also called as glucuronoxylomanogalactan (GXMGal or GalXM). Although GXM is more abundant, GalXM has a more potent modulatory effect. In the present study, we show that GalXM is a potent activator of murine dendritic cells, and when co-cultured with T cells, induces a Th17 cytokine response. We also demonstrated that treating mice with GalXM prior to infection with C. neoformans protects from infection, and this phenomenon is dependent on IL-6 and IL-17. These findings help us understand the immune biology of capsular polysaccharides in fungal pathogenesis.
Collapse
|
28
|
Elsegeiny W, Marr KA, Williamson PR. Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy. Front Immunol 2018; 9:651. [PMID: 29670625 PMCID: PMC5893745 DOI: 10.3389/fimmu.2018.00651] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30-50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts.
Collapse
Affiliation(s)
- Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
29
|
Wozniak KL. Interactions of Cryptococcus with Dendritic Cells. J Fungi (Basel) 2018; 4:jof4010036. [PMID: 29543719 PMCID: PMC5872339 DOI: 10.3390/jof4010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
30
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Abstract
Cryptococcus neoformans is the main etiologic agent of cryptococcal meningitis and causes a significant number of deadly infections per year. Although it is well appreciated that host immune responses are crucial for defense against cryptococcosis, our understanding of factors that control the development of effective immunity to this fungus remains incomplete. In previous studies, we identified the F-box protein Fbp1 as a novel determinant of C. neoformans virulence. In this study, we found that the hypovirulence of the fbp1Δ mutant is linked to the development of a robust host immune response. Infection with the fbp1Δ mutant induces a rapid influx of CCR2+ monocytes and their differentiation into monocyte-derived dendritic cells (mo-DCs). Depletion of CCR2+ monocytes and their derivative mo-DCs resulted in impaired activation of a protective inflammatory response and the rapid death of mice infected with the fbp1Δ mutant. Mice lacking B and T cells also developed fungal meningitis and succumbed to infection with the fbp1Δ mutant, demonstrating that adaptive immune responses to the fbp1Δ mutant help to maintain the long-term survival of the host. Adaptive immune responses to the fbp1Δ mutant were characterized by enhanced differentiation of Th1 and Th17 CD4+ T cells together with diminished Th2 responses compared to the H99 parental strain. Importantly, we found that the enhanced immunogenicity of fbp1Δ mutant yeast cells can be harnessed to confer protection against a subsequent infection with the virulent H99 parental strain. Altogether, our findings suggest that Fbp1 functions as a novel virulence factor that shapes the immunogenicity of C. neoformansIMPORTANCECryptococcus neoformans is the most common cause of deadly fungal meningitis, with over 270,000 infections per year. Immune responses are critically required for the prevention of cryptococcosis, and patients with impaired immunity and low CD4+ T cell numbers are at high risk of developing these deadly infections. Although it is well appreciated that the development of protective immunity is shaped by the interactions of the host immune system with fungal cells, our understanding of fungal products that influence this process remains poor. In this study, we found that the activity of F-box protein 1 (Fbp1) in highly virulent C. neoformans clinical strain H99 shapes its immunogenicity and thus affects the development of protective immune responses in the host. The identification of this new mechanism of virulence may facilitate the future development of therapeutic interventions aimed at boosting antifungal host immunity.
Collapse
|
33
|
Roussey JA, Viglianti SP, Teitz-Tennenbaum S, Olszewski MA, Osterholzer JJ. Anti-PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:3535-3546. [PMID: 29038249 DOI: 10.4049/jimmunol.1700840] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
Activation of immunomodulatory pathways in response to invasive fungi can impair clearance and promote persistent infections. The programmed cell death protein-1 (PD-1) signaling pathway inhibits immune effector responses against tumors, and immune checkpoint inhibitors that block this pathway are being increasingly used as cancer therapy. The objective of this study was to investigate whether this pathway contributes to persistent fungal infection and to determine whether anti-PD-1 Ab treatment improves fungal clearance. Studies were performed using C57BL/6 mice infected with a moderately virulent strain of Cryptococcus neoformans (52D), which resulted in prolonged elevations in fungal burden and histopathologic evidence of chronic lung inflammation. Persistent infection was associated with increased and sustained expression of PD-1 on lung lymphocytes, including a mixed population of CD4+ T cells. In parallel, expression of the PD-1 ligands, PD-1 ligands 1 and 2, was similarly upregulated on specific subsets of resident and recruited lung dendritic cells and macrophages. Treatment of persistently infected mice for 4 wk by repetitive administration of neutralizing anti-PD-1 Ab significantly improved pulmonary fungal clearance. Treatment was well tolerated without evidence of morbidity. Immunophenotyping revealed that anti-PD-1 Ab treatment did not alter immune effector cell numbers or myeloid cell activation. Treatment did reduce gene expression of IL-5 and IL-10 by lung leukocytes and promoted sustained upregulation of OX40 by Th1 and Th17 cells. Collectively, this study demonstrates that PD-1 signaling promotes persistent cryptococcal lung infection and identifies this pathway as a potential target for novel immune-based treatments of chronic fungal disease.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and.,Pulmonary Section, Medical Service, University of Michigan Health System, Ann Arbor, MI 48103
| |
Collapse
|
34
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
35
|
Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3548-3557. [PMID: 28298522 DOI: 10.4049/jimmunol.1700057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO-/- mice was accompanied by impaired recruitment of Ly6Chigh monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO-/- mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Adam Flaczyk
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Zhenzong Fa
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Antoni N Malachowski
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Daphne Cheng
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| |
Collapse
|
36
|
Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in Fungal Diseases. Microorganisms 2016; 4:microorganisms4040047. [PMID: 27973396 PMCID: PMC5192530 DOI: 10.3390/microorganisms4040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
This review addresses specific regulatory mechanisms involved in the host immune response to fungal organisms. We focus on key cells and regulatory pathways involved in these responses, including a brief overview of their broader function preceding a discussion of their specific relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory T cells, with a focus on specific studies relating to their effects on immune responses to fungi. We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated protein 4 signaling pathways and emphasize interrelationships between these pathways and the regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify selected studies best illustrating the role of these cells and pathways in response to specific fungal pathogens to provide a contextual understanding of the tightly-controlled network of regulatory mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range of immunoregulatory mechanisms active in response to fungi.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Heterogeneity, functional specialization and differentiation of monocyte‐derived dendritic cells. Immunol Cell Biol 2016; 95:244-251. [DOI: 10.1038/icb.2016.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
38
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Efficacy of β-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother 2016; 60:6146-54. [PMID: 27480866 DOI: 10.1128/aac.01024-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/26/2016] [Indexed: 01/19/2023] Open
Abstract
Community-acquired pneumonia is a common disease with considerable morbidity and mortality, for which Streptococcus pneumoniae is accepted as a leading cause. Although β-lactam-plus-macrolide combination therapy for this disease is recommended in several guidelines, the clinical efficacy of this strategy against pneumococcal pneumonia remains controversial. In this study, we examined the effects of β-lactam-plus-macrolide combination therapy on lethal mouse pneumococcal pneumonia and explored the mechanisms of action in vitro and in vivo We investigated survival, lung bacterial burden, and cellular host responses in bronchoalveolar lavage fluids obtained from mice infected with pneumonia and treated with ceftriaxone, azithromycin, or both in combination. Although in vitro synergy was not observed, significant survival benefits were demonstrated with combination treatment. Lung neutrophil influx was significantly lower in the ceftriaxone-plus-azithromycin-treated group than in the ceftriaxone-treated group, whereas no differences in the lung bacterial burden were observed on day 3 between the ceftriaxone-plus-azithromycin-treated group and the ceftriaxone-treated group. Notably, the analysis of cell surface markers in the ceftriaxone-plus-azithromycin combination group exhibited upregulation of presumed immune checkpoint ligand CD86 and major histocompatibility complex class II in neutrophils and CD11b-positive CD11c-positive (CD11b(+) CD11c(+)) macrophages and dendritic cells, as well as downregulation of immune checkpoint receptors cytotoxic-T lymphocyte-associated antigen 4 and programmed death 1 in T helper and T regulatory cells. Our data demonstrate that the survival benefits of ceftriaxone-plus-azithromycin therapy occur through modulation of immune checkpoints in mouse pneumococcal pneumonia. In addition, immune checkpoint molecules may be a novel target class for future macrolide research.
Collapse
|
40
|
Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 2016; 27:397-409. [PMID: 27021645 DOI: 10.1016/j.smim.2016.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023]
Abstract
Circulating blood monocytes are a heterogeneous leukocyte population that contributes critical antimicrobial and regulatory functions during systemic and tissue-specific infections. These include patrolling vascular tissue for evidence of microbial invasion, infiltrating peripheral tissues and directly killing microbial invaders, conditioning the inflammatory milieu at sites of microbial tissue invasion, and orchestrating the activation of innate and adaptive immune effector cells. The central focus of this review is the in vivo mechanisms by which monocytes and their derivative cells promote microbial clearance and immune regulation. We include an overview of murine models to examine monocyte functions during microbial challenges and review our understanding of the functional roles of monocytes and their derivative cells in host defense against bacteria, fungi, and parasites.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, United States.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Immunology Program, Memorial Sloan Kettering Cencer Center, New York, NY, United States.
| |
Collapse
|
41
|
Innate host defenses against Cryptococcus neoformans. J Microbiol 2016; 54:202-11. [PMID: 26920880 DOI: 10.1007/s12275-016-5625-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and remains the third most common invasive fungal infection among organ transplant recipients. The administration of highly active antiretroviral therapy (HAART) has resulted in a decrease in the number of cases of AIDS-related cryptococcosis in developed countries, but in developing countries where HAART is not readily available, Cryptococcus is still a major concern. Therefore, there is an urgent need for the development of novel therapies and/or vaccines to combat cryptococcosis. Understanding the protective immune responses against Cryptococcus is critical for development of vaccines and immunotherapies to combat cryptococcosis. Consequently, this review focuses on our current knowledge of protective immune responses to C. neoformans, with an emphasis on innate immune responses.
Collapse
|
42
|
Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome. Front Microbiol 2016; 7:105. [PMID: 26903984 PMCID: PMC4746234 DOI: 10.3389/fmicb.2016.00105] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Camaron R Hole
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Karen L Wozniak
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
43
|
Chen GH, Teitz-Tennenbaum S, Neal LM, Murdock BJ, Malachowski AN, Dils AJ, Olszewski MA, Osterholzer JJ. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:1810-21. [PMID: 26755822 DOI: 10.4049/jimmunol.1501512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023]
Abstract
Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Lori M Neal
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Benjamin J Murdock
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Antoni N Malachowski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Anthony J Dils
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| |
Collapse
|
44
|
Kashyap S, Warner GM, Hartono SP, Boyilla R, Knudsen BE, Zubair AS, Lien K, Nath KA, Textor SC, Lerman LO, Grande JP. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. Am J Physiol Renal Physiol 2015; 310:F372-84. [PMID: 26661648 DOI: 10.1152/ajprenal.00131.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
Renovascular hypertension (RVH) is a common cause of both cardiovascular and renal morbidity and mortality. In renal artery stenosis (RAS), atrophy in the stenotic kidney is associated with an influx of macrophages and other mononuclear cells. We tested the hypothesis that chemokine receptor 2 (CCR2) inhibition would reduce chronic renal injury by reducing macrophage influx in the stenotic kidney of mice with RAS. We employed a well-established murine model of RVH to define the relationship between macrophage infiltration and development of renal atrophy in the stenotic kidney. To determine the role of chemokine ligand 2 (CCL2)/CCR2 signaling in the development of renal atrophy, mice were treated with the CCR2 inhibitor RS-102895 at the time of RAS surgery and followed for 4 wk. Renal tubular epithelial cells expressed CCL2 by 3 days following surgery, a time at which no significant light microscopic alterations, including interstitial inflammation, were identified. Macrophage influx increased with time following surgery. At 4 wk, the development of severe renal atrophy was accompanied by an influx of inducible nitric oxide synthase (iNOS)+ and CD206+ macrophages that coexpressed F4/80, with a modest increase in macrophages coexpressing arginase 1 and F4/80. The CCR2 inhibitor RS-102895 attenuated renal atrophy and significantly reduced the number of dual-stained F4/80+ iNOS+ and F4/80+ CD206+ but not F4/80+ arginase 1+ macrophages. CCR2 inhibition reduces iNOS+ and CD206+ macrophage accumulation that coexpress F4/80 and renal atrophy in experimental renal artery stenosis. CCR2 blockade may provide a novel therapeutic approach to humans with RVH.
Collapse
Affiliation(s)
- Sonu Kashyap
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gina M Warner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stella P Hartono
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Mayo Medical School, Mayo Clinic, Rochester, Minnesota; and
| | - Rajendra Boyilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Bruce E Knudsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Adeel S Zubair
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota; and
| | - Karen Lien
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
45
|
The Cnes2 locus on mouse chromosome 17 regulates host defense against cryptococcal infection through pleiotropic effects on host immunity. Infect Immun 2015; 83:4541-54. [PMID: 26371125 DOI: 10.1128/iai.00697-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023] Open
Abstract
The genetic basis of natural susceptibility to progressive Cryptococcus neoformans infection is not well understood. Using C57BL/6 and CBA/J inbred mice, we previously identified three chromosomal regions associated with C. neoformans susceptibility (Cnes1, Cnes2, and Cnes3). To validate and characterize the role of Cnes2 during the host response, we constructed a congenic strain on the C57BL/6 background (B6.CBA-Cnes2). Phenotypic analysis of B6.CBA-Cnes2 mice 35 days after C. neoformans infection showed a significant reduction of fungal burden in the lungs and spleen with higher pulmonary expression of gamma interferon (IFN-γ) and interleukin-12 (IL-12), lower expression of IL-4, IL-5, and IL-13, and an absence of airway epithelial mucus production compared to that in C57BL/6 mice. Multiparameter flow cytometry of infected lungs also showed a significantly higher number of neutrophils, exudate macrophages, CD11b(+) dendritic cells, and CD4(+) cells in B6.CBA-Cnes2 than in C57BL/6 mice. The activation state of recruited macrophages and dendritic cells was also significantly increased in B6.CBA-Cnes2 mice. Taken together, these findings demonstrate that the Cnes2 interval is a potent regulator of host defense, immune responsiveness, and differential Th1/Th2 polarization following C. neoformans infection.
Collapse
|
46
|
Zhang M, Sun D, Shi M. Dancing cheek to cheek: Cryptococcus neoformans and phagocytes. SPRINGERPLUS 2015; 4:410. [PMID: 26266081 PMCID: PMC4531118 DOI: 10.1186/s40064-015-1192-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 01/04/2023]
Abstract
Meningoencephalitis caused by Cryptococcus neoformans (Cn) has become one of the leading causes of mortality in AIDS patients. Understanding the interactions between Cn and phagocytes is fundamental in exploring the pathogenicity of cryptococcal meningoencephalitis. Cn may be extracellular or contained in the monocytes, macrophages, neutrophils, dendritic cells and even endothelial cells. The internalized Cn may proliferate inside the host cells, or cause the lysis of host cells, or leave the host cells via non-lytic exocytosis, or even hijack the host cells (Trojan horse) for the brain dissemination, which are regulated by microbe factors and also immune molecules. Coexistence of protective and deleterious roles of phagocytes in the progression of cryptococcosis warrant further investigation.
Collapse
Affiliation(s)
- Mingshun Zhang
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA ; Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu China
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| |
Collapse
|
47
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 PMCID: PMC4430359 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Timothy J. Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| |
Collapse
|
48
|
Alonso MN, Gregorio JG, Davidson MG, Gonzalez JC, Engleman EG. Depletion of inflammatory dendritic cells with anti-CD209 conjugated to saporin toxin. Immunol Res 2015; 58:374-7. [PMID: 24781193 DOI: 10.1007/s12026-014-8511-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monocytes rapidly infiltrate inflamed tissues and differentiate into CD209(+) inflammatory dendritic cells (DCs) that promote robust immunity or, if unregulated, inflammatory disease. Previous studies in experimental animal models indicate that inflammatory DC depletion through systemic elimination of their monocyte precursors with clodronate-loaded liposomes ameliorates the development of psoriasis and other diseases. However, translation of systemic monocyte depletion strategies is difficult due to the importance of monocytes during homeostasis and infection clearance. Here, we describe a strategy that avoids the monocyte intermediates to deplete inflammatory DCs through antibody-loaded toxin. Mice with an abundance of inflammatory DCs as a consequence of lipopolysaccharide exposure were treated with anti-CD209 antibody conjugated to saporin, a potent ribosome inactivator. The results demonstrate depletion of CD209(+) DCs. This strategy could prove useful for the targeted reduction of inflammatory DCs in disease.
Collapse
Affiliation(s)
- Michael N Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
49
|
Gibson JF, Johnston SA. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 2014; 78:76-86. [PMID: 25498576 PMCID: PMC4503824 DOI: 10.1016/j.fgb.2014.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 10/25/2022]
Abstract
The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Josie F Gibson
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK
| | - Simon A Johnston
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK.
| |
Collapse
|
50
|
Clarkson BD, Walker A, Harris MG, Rayasam A, Sandor M, Fabry Z. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. THE JOURNAL OF IMMUNOLOGY 2014; 194:531-41. [PMID: 25505278 DOI: 10.4049/jimmunol.1401320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs)--although absent from the healthy CNS parenchyma--rapidly accumulate within brain and spinal cord tissue during neuroinflammation associated with experimental autoimmune encephalomyelitis (EAE; a mouse model of multiple sclerosis). Yet, although DCs have been appreciated for their role in initiating adaptive immune responses in peripheral lymphoid organ tissues, how DCs infiltrate the CNS and contribute to ongoing neuroinflammation in situ is poorly understood. In this study, we report the following: 1) CD11c(+) bone marrow-derived DCs and CNS-infiltrating DCs express chemokine receptor CCR2; 2) compared with CCR2(+/+) cells, adoptively transferred CCR2(-/-) bone marrow-derived DCs or DC precursors do not accumulate in the CNS during EAE, despite abundance in blood; 3) CCR2(-/-) DCs show less accumulation in the inflamed CNS in mixed bone marrow chimeras, when compared with CCR2(+/+) DCs; and 4) ablation of CCR2(+/+) DCs during EAE clinical onset delays progression and attenuates cytokine production by infiltrating T cells. Whereas the role of CCR2 in monocyte migration into the CNS has been implicated previously, the role of CCR2 in DC infiltration into the CNS has never been directly addressed. Our data suggest that CCR2-dependent DC recruitment to the CNS during ongoing neuroinflammation plays a crucial role in effector T cell cytokine production and disease progression, and signify that CNS-DCs and circulating DC precursors might be key therapeutic targets for suppressing ongoing neuroinflammation in CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin D Clarkson
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; and
| | - Alec Walker
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Melissa G Harris
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Aditya Rayasam
- Graduate Training Program of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Matyas Sandor
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Zsuzsanna Fabry
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792;
| |
Collapse
|