1
|
Marshall T, Dysert K, Young M, DuMont T. Pathophysiology of Sepsis. Crit Care Nurs Q 2025; 48:88-92. [PMID: 40009855 DOI: 10.1097/cnq.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Sepsis is a condition of life-threatening organ dysfunction caused by a dysregulated host response to infection. It is the result of a series of exaggerated physiologic responses that lead to simultaneous hyper- and hypoinflammatory states. In the hyperinflammatory phase, there is an exuberant release of cytokines, commonly referred to as a cytokine storm. The immune-suppressive phase is characterized by counterregulatory attempts to achieve homeostasis that sometimes "overshoot", leaving the host in a state of immunosuppression, thus predisposing to recurrent nosocomial and secondary infections. The aging population with comorbidities faces higher risks of immune dysfunction and inflammation. Thus, the number of sepsis survivors that develop subsequent infections is predicted to rise substantially in the next few decades. Understanding sepsis-induced immune dysregulation may enhance surveillance and outcomes. This review is intended to describe the pathophysiology of sepsis and its effects on the immune system.
Collapse
Affiliation(s)
- Tanya Marshall
- Pulmonary Critical Care Division, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
2
|
Cisneros-Segura JA, Rodríguez-Rodríguez N, Albarrán-Godínez A, García-González HB, Rodríguez-Osorio CA, Valdés-Ferrer SI, Tapia-Urzúa G, Recillas-Targa F, Madera-Salcedo IK, Rosetti F, Crispín JC. Sepsis Impairs IFN-γ Production in CD8 T Cells through Changes in Local Chromatin Landscape. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:619-627. [PMID: 39037267 DOI: 10.4049/jimmunol.2300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Sepsis is a complex condition of inflammatory and immune dysregulation, triggered by severe infection. In survivors, chronic inflammation and immune dysregulation linger, facilitating the emergence of infections. CD8 dysfunction contributes to immunosuppression in sepsis survivors. We devised an animal model that enabled us to identify and analyze CD8-intrinsic defects induced by sepsis. We adoptively transferred CD45.1 CD8 OT-I T cells into CD45.2 congenic mice and subjected them to cecal ligature and puncture, to induce abdominal sepsis. One month later, we isolated the transferred CD8 cells. Surface marker expression confirmed they had not been activated through the TCR. CD8 OT-I T cells isolated from septic (or sham-operated) mice were transferred to second recipients, which were challenged with OVA-expressing Listeria monocytogenes. We compared effector capacities between OT-I cells exposed to sepsis and control cells. Naive mice that received OT-I cells exposed to sepsis had higher bacterial burden and a shorter survival when challenged with OVA-expressing L. monocytogenes. OT-I cells isolated from septic mice produced less IFN-γ but had conserved activation, expansion potential, and cytotoxic function. We observed lower transcript levels of IFN-γ and of the long noncoding RNA Ifng-as1, a local regulator of the epigenetic landscape, in cells exposed to sepsis. Accordingly, local abundance of a histone modification characteristic of active promoter regions was reduced in sepsis-exposed CD8 T cells. Our results identify a mechanism through which inflammation in the context of sepsis affects CD8 T cell function intrinsically.
Collapse
Affiliation(s)
- J Alejandro Cisneros-Segura
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Noé Rodríguez-Rodríguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Adrián Albarrán-Godínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - H Benjamín García-González
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Rodríguez-Osorio
- Departament of Critical Care, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Respiratory Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Iván Valdés-Ferrer
- Department of Neurology & Psychiatry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Center for Biomedical Science, Feinstein Institutes for Medical Research, New York, NY
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
3
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
4
|
Yang XW, Li H, Feng T, Zhang W, Song XR, Ma CY, Nie M, Wang L, Tan X, Kang Y, Liao X. Impairment of antigen-presenting function of peripheral γδ T cells in patients with sepsis. Clin Exp Immunol 2022; 207:104-112. [PMID: 35020851 PMCID: PMC8802185 DOI: 10.1093/cei/uxab029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Impairment of antigen-presenting functions is a key mechanism contributing to sepsis-induced immunosuppression. Recently, γδ T cells have been demonstrated as professional antigen-presenting cells (APCs); however, their role in sepsis remains unknown. In this in vitro study, the APC function of human peripheral γδ T cells was assessed using samples collected from 42 patients with sepsis and 27 age-matched healthy controls. The APC-related markers HLA-DR, CD27, CD80, and CCR7 on fresh γδT cells were significantly higher in patients with sepsis compared with matched controls; however, they responded poorly to 4-hydroxy-3-methyl-2-butenyl pyrophosphate (HMBPP) stimulation, characterized by the deactivation of these APC markers and impaired proliferation. Furthermore, the adhesion function of γδ T cells, essential for antigen presentation, was greatly reduced in patients with sepsis; for instance, in co-cultures with green fluorescent protein-expressing Escherichia coli, HMBPP-activated γδT cells from healthy individuals adhered to E. coli efficiently, whereas no such phenomenon was observed with respect to γδT cells from patients with sepsis. In line with these results, in co-cultures with isolated CD4+ αβ T cells, HMBPP-activated γδT cells of healthy individuals promoted the efficient proliferation of CD4+ αβ T cells, whereas γδT cells from patients with sepsis did not do so. In conclusion, our findings show that the antigen-presenting function of γδT cells is severely impaired in patients with sepsis and the mechanisms behind need further study.
Collapse
Affiliation(s)
- Xue-Wei Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang-Rong Song
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng-Yong Ma
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Menzhen Nie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojiao Tan
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
XU Y, WANG Y, FANG J, DONG S. Extraction of ginsenoside Rg2 from stems-leaves of Panax ginseng and its protective effect on myocardial injury in rats with sepsis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.32422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Yi WANG
- Zhejiang University School of Medicine, China
| | - Jinyan FANG
- Zhejiang University School of Medicine, China
| | | |
Collapse
|
6
|
Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. NPJ Biofilms Microbiomes 2021; 7:87. [PMID: 34880222 PMCID: PMC8655052 DOI: 10.1038/s41522-021-00257-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.
Collapse
|
7
|
Liu SQ, Ren C, Yao RQ, Wu Y, Luan YY, Dong N, Yao YM. TNF-α-induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis 2021; 12:1032. [PMID: 34718337 PMCID: PMC8557212 DOI: 10.1038/s41419-021-04327-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-β (TGF-β)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.
Collapse
Affiliation(s)
- Shuang-Qing Liu
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Liu AR, Du WJ, Xie JF, Xu JY, Huang YZ, Qiu HB, Yang Y. Role of immunodeficiency in Acinetobacter baumannii associated pneumonia in mice. Chin Med J (Engl) 2021; 133:2161-2169. [PMID: 32842019 PMCID: PMC7508442 DOI: 10.1097/cm9.0000000000001027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) has become one of the most important opportunistic pathogens inducing nosocomial pneumonia and increasing mortality in critically ill patients recently. The interaction between A. baumannii infection and immune response can influence the prognosis of A. baumannii related pneumonia. The target of the present study was to investigate the role of immunodeficiency in A. baumannii induced pneumonia. Methods Male BALB/c mice were randomly divided into the normal immunity control (NIC) group, normal immunity infection (NIA) group, immune compromised control (CIC) group, and immune compromised infection (CIA) group (n = 15 for each group). Intraperitoneal injection of cyclophosphamide and intranasal instillation of A. baumannii solution were used to induce compromised immunity and murine pneumonia, respectively. The mice were sacrificed at 6 and 24 h later and the specimens were collected for further tests. Seven-day mortality of mice was also assessed. Results After A. baumannii stimulation, the recruitment of neutrophils in mice with normal immunity increased sharply (P = 0.030 at 6 h), while there was no significant raise of neutrophil counts in mice with compromised immune condition (P = 0.092 at 6 h, P = 0.772 at 24 h). The Th cell polarization presented with pulmonary interleukin (IL)-4 and interferon (IFN)-γ level in response to the A. baumannii in CIA group were significantly depressed in comparison with in NIA group (IFN-γ: P = 0.003 at 6 h; P = 0.001 at 24 h; IL-4: P < 0.001 at 6 h; P < 0.001 at 24 h). The pulmonary conventional dendritic cell accumulation was even found to be inhibited after A. baumannii infection in immunocompromised mice (P = 0.033). Correspondingly, A. baumannii associated pneumonia in mice with compromised immunity caused more early stage death, more severe histopathological impairment in lung. Conclusion A. baumannii could frustrate the immune response in immunocompromised conditions, and this reduced immune response is related to more severe lung injury and worse outcome in A. baumannii induced pneumonia.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wen-Jing Du
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ying-Zi Huang
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
9
|
Tanno H, Kanno E, Sato S, Asao Y, Shimono M, Kurosaka S, Oikawa Y, Ishi S, Shoji M, Sato K, Kasamatsu J, Miyasaka T, Yamamoto H, Ishii K, Imai Y, Tachi M, Kawakami K. Contribution of Invariant Natural Killer T Cells to the Clearance of Pseudomonas aeruginosa from Skin Wounds. Int J Mol Sci 2021; 22:3931. [PMID: 33920301 PMCID: PMC8070359 DOI: 10.3390/ijms22083931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.
Collapse
Grants
- a Grant-in-Aid for Scientific Research (B) (19H03918), The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Challenging Exploratory Research (17K19710) The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (17K17393) the Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (19K19494) The Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Suzuna Sato
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Yu Asao
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Mizuki Shimono
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Yukari Oikawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Hideki Yamamoto
- Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan;
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| |
Collapse
|
10
|
Mirouse A, Vigneron C, Llitjos JF, Chiche JD, Mira JP, Mokart D, Azoulay E, Pène F. Sepsis and Cancer: An Interplay of Friends and Foes. Am J Respir Crit Care Med 2020; 202:1625-1635. [PMID: 32813980 DOI: 10.1164/rccm.202004-1116tr] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis and cancer share a number of pathophysiological features, and both result from the inability of the host's immune system to cope with the initial insult (tissue invasion by pathogens and malignant cell transformation, respectively). The common coexistence of both disorders and the profound related alterations in immune homeostasis raise the question of their mutual impact on each other's course. This translational review aims to discuss the interactions between cancer and sepsis supported by clinical data and the translation to experimental models. The dramatic improvement in cancer has come at a cost of increased risks of life-threatening infectious complications. Investigating the long-term outcomes of sepsis survivors has revealed an unexpected susceptibility to cancer long after discharge from the ICU. Nonetheless, it is noteworthy that an acute septic episode may harbor antitumoral properties under particular circumstances. Relevant double-hit animal models have provided clues to whether and how bacterial sepsis may impact malignant tumor growth. In sequential sepsis-then-cancer models, postseptic mice exhibited accelerated tumor growth. When using reverse cancer-then-sepsis models, bacterial sepsis applied to mice with cancer conversely resulted in inhibition or even regression of tumor growth. Experimental models thus highlight dual effects of sepsis on tumor growth, mostly depending on the sequence of insults, and allow deciphering the immune mechanisms and their relation with microorganisms.
Collapse
Affiliation(s)
- Adrien Mirouse
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Clara Vigneron
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-François Llitjos
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-Daniel Chiche
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-Paul Mira
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Djamel Mokart
- Réanimation Polyvalente, Département d'Anesthésie et de Réanimation, Institut Paoli Calmettes, Marseille, France
| | - Elie Azoulay
- Université de Paris, Paris, France.,Médecine Intensive et Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Pène
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| |
Collapse
|
11
|
Baudesson de Chanville C, Chousterman BG, Hamon P, Laviron M, Guillou N, Loyher PL, Meghraoui-Kheddar A, Barthelemy S, Deterre P, Boissonnas A, Combadière C. Sepsis Triggers a Late Expansion of Functionally Impaired Tissue-Vascular Inflammatory Monocytes During Clinical Recovery. Front Immunol 2020; 11:675. [PMID: 32425929 PMCID: PMC7212400 DOI: 10.3389/fimmu.2020.00675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis is characterized by a systemic inflammation that can cause an immune dysfunction, for which the underlying mechanisms are unclear. We investigated the impact of cecal ligature and puncture (CLP)-mediated polymicrobial sepsis on monocyte (Mo) mobilization and functions. Our results show that CLP led to two consecutive phases of Mo deployment. The first one occurred within the first 3 days after the induction of the peritonitis, while the second phase was of a larger amplitude and extended up to a month after apparent clinical recovery. The latter was associated with the expansion of Mo in the tissue reservoirs (bone marrow and spleen), their release in the blood and their accumulation in the vasculature of peripheral non-lymphoid tissues. It occurred even after antibiotic treatment but relied on inflammatory-dependent pathways and inversely correlated with increased susceptibility and severity to a secondary infection. The intravascular lung Mo displayed limited activation capacity, impaired phagocytic functions and failed to transfer efficient protection against a secondary infection into monocytopenic CCR2-deficient mice. In conclusion, our work unveiled key dysfunctions of intravascular inflammatory Mo during the recovery phase of sepsis and provided new insights to improve patient protection against secondary infections.
Collapse
Affiliation(s)
| | - Benjamin Glenn Chousterman
- Inserm UMRS 1160, Département d'Anesthésie-Réanimation, Hôpitaux Universitaires Lariboisière-Saint-Louis, Paris, France
| | - Pauline Hamon
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Marie Laviron
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Noelline Guillou
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Pierre Louis Loyher
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Aida Meghraoui-Kheddar
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Sandrine Barthelemy
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Philippe Deterre
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| |
Collapse
|
12
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
13
|
Bieber K, Autenrieth SE. Dendritic cell development in infection. Mol Immunol 2020; 121:111-117. [PMID: 32199210 DOI: 10.1016/j.molimm.2020.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 01/21/2023]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. This is predominantly mediated by innate immune cells like neutrophils, monocytes and dendritic cells (DCs) expressing specific receptors recognizing pathogen-associated molecular patterns. DC activation by pathogens leads to the initiation of antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. However, various pathogens have evolved immune evasion strategies to ensure their survival. In this review, we highlight recent findings on how various microorganisms or their structural features affect or modulate DC development and whether this has any consequences for a protective immune response.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
14
|
Vigneron C, Mirouse A, Merdji H, Rousseau C, Cousin C, Alby-Laurent F, Mira JP, Chiche JD, Llitjos JF, Pène F. Sepsis inhibits tumor growth in mice with cancer through Toll-like receptor 4-associated enhanced Natural Killer cell activity. Oncoimmunology 2019; 8:e1641391. [PMID: 31646090 DOI: 10.1080/2162402x.2019.1641391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced immune dysfunctions are likely to impact on malignant tumor growth. Sequential sepsis-then-cancer models of tumor transplantation in mice recovering from sepsis have shown that the post-septic immunosuppressive environment was able to promote tumor growth. We herein addressed the impact of sepsis on pre-established malignancy in a reverse cancer-then sepsis experimental model. Mice previously inoculated with MCA205 fibrosarcoma cells were subjected to septic challenges by polymicrobial peritonitis induced by cecal ligation and puncture or endotoxinic shock. The anti-tumoral immune response was assessed through the distribution of tumor-infiltrating immune cells, as well as the functions of cytotoxic cells. As compared to sham surgery, polymicrobial sepsis dampened malignant tumor growth in wild-type (WT) mice, but neither in Toll-like receptor 4 (Tlr4)-/- nor in Myd88-/- mice. Similar tumor growth inhibition was observed following a LPS challenge in WT mice, suggesting a regulatory role of Tlr4 in this setting. The low expression of MHC class 1 onto MCA205 cells suggested the involvement of Natural Killer (NK) cells in sepsis-induced tumor inhibition. Septic insults applied to mice with cancer promoted the main anti-tumoral NK functions of IFNγ production and degranulation. The anti-tumoral properties of NK cells obtained from septic mice were exacerbated when cultured with MHC1low MCA205 or YAC-1 cells. These results suggest that sepsis may harbor dual effects on tumor growth depending on the sequential experimental model. When applied in mice with cancer, sepsis prevents tumor growth in a Tlr4-dependent manner by enhancing the anti-tumoral functions of NK cells.
Collapse
Affiliation(s)
- Clara Vigneron
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Adrien Mirouse
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Hamid Merdji
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Clément Cousin
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Fanny Alby-Laurent
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jean-Paul Mira
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France.,Médecine Intensive & Réanimation, hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-Daniel Chiche
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France.,Médecine Intensive & Réanimation, hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-François Llitjos
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France.,Médecine Intensive & Réanimation, hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Paris, France.,Médecine Intensive & Réanimation, hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
15
|
Beshara R, Sencio V, Soulard D, Barthélémy A, Fontaine J, Pinteau T, Deruyter L, Ismail MB, Paget C, Sirard JC, Trottein F, Faveeuw C. Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathog 2018; 14:e1007360. [PMID: 30372491 PMCID: PMC6224179 DOI: 10.1371/journal.ppat.1007360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/08/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.
Collapse
Affiliation(s)
- Ranin Beshara
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Valentin Sencio
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Daphnée Soulard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Adeline Barthélémy
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Josette Fontaine
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Thibault Pinteau
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Christophe Paget
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
16
|
Fms-Like Tyrosine Kinase-3 Ligand Attenuates Local and Systemic Infection in a Model of Post-Burn Pneumonia. Shock 2018; 49:721-727. [DOI: 10.1097/shk.0000000000000964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Poulin LF, Lasseaux C, Chamaillard M. Understanding the Cellular Origin of the Mononuclear Phagocyte System Sheds Light on the Myeloid Postulate of Immune Paralysis in Sepsis. Front Immunol 2018; 9:823. [PMID: 29740436 PMCID: PMC5928298 DOI: 10.3389/fimmu.2018.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Sepsis, in essence, is a serious clinical condition that can subsequently result in death as a consequence of a systemic inflammatory response syndrome including febrile leukopenia, hypotension, and multiple organ failures. To date, such life-threatening organ dysfunction remains one of the leading causes of death in intensive care units, with an increasing incidence rate worldwide and particularly within the rapidly growing senior population. While most of the clinical trials are aimed at dampening the overwhelming immune response to infection that spreads through the bloodstream, based on several human immunological investigations, it is now widely accepted that susceptibility to nosocomial infections and long-term sepsis mortality involves an immunosuppressive phase that is characterized by a decrease in some subsets of dendritic cells (DCs). Only recently substantial advances have been made in terms of the origin of the mononuclear phagocyte system that is now likely to allow for a better understanding of how the paralysis of DCs leads to sepsis-related death. Indeed, the unifying view of each subset of DCs has already improved our understanding of the pivotal pathways that contribute to the shift in commitment of their progenitors that originate from the bone marrow. It is quite plausible that this anomaly in sepsis may occur at the single level of DC-committed precursors, and elucidating the immunological basis for such a derangement during the ontogeny of each subset of DCs is now of particular importance for restoring an adequate cell fate decision to their vulnerable progenitors. Last but not least, it provides a direct perspective on the development of sophisticated myelopoiesis-based strategies that are currently being considered for the treatment of immunosenescence within different tissue microenvironments, such as the kidney and the spleen.
Collapse
Affiliation(s)
- Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
18
|
Lasseaux C, Fourmaux MP, Chamaillard M, Poulin LF. Type I interferons drive inflammasome-independent emergency monocytopoiesis during endotoxemia. Sci Rep 2017; 7:16935. [PMID: 29209091 PMCID: PMC5717267 DOI: 10.1038/s41598-017-16869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Emergency monocytopoiesis is an inflammation-driven hematological process that supplies the periphery with monocytes and subsequently with macrophages and monocyte-derived dendritic cells. Yet, the regulatory mechanisms by which early bone marrow myeloid progenitors commit to monocyte-derived phagocytes during endotoxemia remains elusive. Herein, we show that type I interferons signaling promotes the differentiation of monocyte-derived phagocytes at the level of their progenitors during a mouse model of endotoxemia. In this model, we characterized early changes in the numbers of conventional dendritic cells, monocyte-derived antigen-presenting cells and their respective precursors. While loss of caspase-1/11 failed to impair a shift toward monocytopoiesis, we observed sustained type-I-IFN-dependent monocyte progenitors differentiation in the bone marrow correlated to an accumulation of Mo-APCs in the spleen. Importantly, IFN-alpha and -beta were found to efficiently generate the development of monocyte-derived antigen-presenting cells while having no impact on the precursor activity of conventional dendritic cells. Consistently, the LPS-driven decrease of conventional dendritic cells and their direct precursor occurred independently of type-I-IFN signaling in vivo. Our characterization of early changes in mononuclear phagocytes and their dependency on type I IFN signaling during sepsis opens the way to the development of treatments for limiting the immunosuppressive state associated with sepsis.
Collapse
Affiliation(s)
- Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marie-Pierre Fourmaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
19
|
Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 2017; 274:330-353. [PMID: 27782333 DOI: 10.1111/imr.12499] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis occurs when an infection exceeds local tissue containment and induces a series of dysregulated physiologic responses that result in organ dysfunction. A subset of patients with sepsis progress to septic shock, defined by profound circulatory, cellular, and metabolic abnormalities, and associated with a greater mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the complex interplay between the initial inflammatory and later anti-inflammatory responses. With advances in intensive care medicine and goal-directed interventions, early 30-day sepsis mortality has diminished, only to steadily escalate long after "recovery" from acute events. As so many sepsis survivors succumb later to persistent, recurrent, nosocomial, and secondary infections, many investigators have turned their attention to the long-term sepsis-induced alterations in cellular immune function. Sepsis clearly alters the innate and adaptive immune responses for sustained periods of time after clinical recovery, with immune suppression, chronic inflammation, and persistence of bacterial representing such alterations. Understanding that sepsis-associated immune cell defects correlate with long-term mortality, more investigations have centered on the potential for immune modulatory therapy to improve long-term patient outcomes. These efforts are focused on more clearly defining and effectively reversing the persistent immune cell dysfunction associated with long-term sepsis mortality.
Collapse
Affiliation(s)
- Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep 2017; 7:5850. [PMID: 28724977 PMCID: PMC5517568 DOI: 10.1038/s41598-017-06205-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis remains a significant health burden and a major clinical need exists for therapeutics to dampen the excessive and uncontrolled immune activation. Nuclear protein high mobility group box protein 1 (HMGB1) is released following cell death and is a late mediator in sepsis pathogenesis. While approaches targeting HMGB1 have demonstrated reduced mortality in pre-clinical models of sepsis, the impact of HMGB1 blockade on the complex septic inflammatory milieu and the development of subsequent immunosuppression remain enigmatic. Analysis of plasma samples obtained from septic shock patients established an association between increased HMGB1 and non-survival, higher APACHE II scores, and increased pro-inflammatory cytokine responses. Pre-clinically, administration of neutralising ovine anti-HMGB1 polyclonal antibodies improved survival in murine endotoxaemia and caecal ligation and puncture-induced sepsis models, and altered early cytokine profiles to one which corresponded to patterns observed in the surviving patient cohort. Additionally, anti-HMGB1 treated murine sepsis survivors were significantly more resistant to secondary bacterial infection and exhibited altered innate immune cell phenotypes and cytokine responses. These findings demonstrate that anti-HMGB1 antibodies alter inflammation in murine sepsis models and reduce sepsis mortality without potentiating immunosuppression.
Collapse
|
21
|
Strother RK, Danahy DB, Kotov DI, Kucaba TA, Zacharias ZR, Griffith TS, Legge KL, Badovinac VP. Polymicrobial Sepsis Diminishes Dendritic Cell Numbers and Function Directly Contributing to Impaired Primary CD8 T Cell Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 197:4301-4311. [PMID: 27798171 DOI: 10.4049/jimmunol.1601463] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022]
Abstract
Patients surviving acute stages of sepsis often display impaired adaptive-immune responses. Using the cecal ligation and puncture model, we demonstrated that sepsis leads to substantial and long-lasting changes in the naive CD8 T cell repertoire, affecting the capacity of the host to respond to new infections. However, the identity of CD8 T cell-extrinsic factor(s) and mechanism(s) that contribute to impaired CD8 T cell responses after sepsis is unknown. Priming of naive CD8 T cells is critically dependent on the ability of dendritic cells (DCs) to provide Ag, costimulation, and inflammatory signal 3 cytokines; therefore, the sepsis-induced changes in the DC compartment might represent a contributing factor leading to diminished CD8 T cell immunity in septic hosts. In a direct test of this hypothesis, we show that, in addition to numerical decline, sepsis leads to functional impairments in DCs, diminishing their capacity to produce cytokines upon TLR stimulation in vitro or postinfection in vivo. Importantly, we demonstrated a direct link between DC dysfunction and impairments in CD8 T cell immunity after sepsis by directly targeting Ag to DCs. Finally, postsepsis Flt3 ligand treatment increased the number of DCs and improved DC function, including the ability to sense inflammation and produce IL-12, leading to improved primary CD8 T cell responses to newly encountered Ags. Thus, sepsis-induced numerical and functional loss of DCs contributes to the observed defects in CD8 T cell immunity, and therapeutic approaches designed to improve the status of the DC compartment after sepsis might facilitate the recovery of CD8 T cell immunity.
Collapse
Affiliation(s)
- Robert K Strother
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Dmitri I Kotov
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Zeb R Zacharias
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Minneapolis VA Health Care System, Minneapolis, MN 55417; and
| | - Kevin L Legge
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242.,Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
22
|
Mice Survival and Plasmatic Cytokine Secretion in a "Two Hit" Model of Sepsis Depend on Intratracheal Pseudomonas Aeruginosa Bacterial Load. PLoS One 2016; 11:e0162109. [PMID: 27574993 PMCID: PMC5004855 DOI: 10.1371/journal.pone.0162109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022] Open
Abstract
Sepsis is characterized by pro- and anti-inflammatory responses following infection. While inflammation is responsible for widespread organ damage, anti-inflammatory mediators lead to immunoparalysis increasing susceptibility to secondary infections (nosocomial pneumonia). We aimed to investigate the impact of bacterial load on survival and cytokine release in a two-hit murine (C57BL/6J) model of CLP followed by P. aeruginosa pneumonia. Plasmatic TNFα, IL-6, IL-10, sTNFr I and II were quantified until 13 days. At D5, splenocytes were processed for immunological assays or mice were intratracheally instilled with Pseudomonas aeruginosa (5.106, 2.107 and 108 CFU) to evaluate survival and cytokines production. TNFα, sTNFrs, IL-6 and IL-10 increased 2h post CLP. TNFα and sTNFrs declined respectively one and two days later. In CLP mice, IL-6 and IL-10 remained high for the whole experiment, as compared to Sham. At D5, for CLP mice, whereas total T cells population (CD3+) decreased, Treg fraction (CD4+/CD25+) increased. In parallel, T cells proliferation and LPS-stimulated splenocytes ability to release TNFα decreased. At D13, survival was 100% after 5.106 CFU, 50% for CLP mice after 2.107 CFU and 0% for CLP and Sham after 108 CFU. After instillation, IL-10 and IL-6 increased and appeared to be dose and time dependent. Pseudomonas was detected in all CLP and Sham’s lungs; in spleen and liver only in CLP at 2.107 CFU, and in CLP and Sham at 108 CFU. We demonstrated that post-CLP immunosuppression followed by Pseudomonas aeruginosa lung instillation increases mortality reactivates cytokines secretion and is associated with systemic dissemination in septic mice depending on bacterial load.
Collapse
|
23
|
Llitjos JF, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N, Toubiana J, Belaïdouni N, Mira JP, Lucas B, Chiche JD, Pène F. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4. J Pathol 2016; 239:473-83. [PMID: 27178223 DOI: 10.1002/path.4744] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/27/2016] [Indexed: 02/02/2023]
Abstract
Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-François Llitjos
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cédric Auffray
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fanny Alby-Laurent
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hamid Merdji
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nelly Bonilla
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Toubiana
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadia Belaïdouni
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Paul Mira
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Lucas
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Daniel Chiche
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
24
|
Roquilly A, Villadangos JA. The role of dendritic cell alterations in susceptibility to hospital-acquired infections during critical-illness related immunosuppression. Mol Immunol 2015; 68:120-3. [DOI: 10.1016/j.molimm.2015.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
|
25
|
Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SMM. CD1d- and MR1-Restricted T Cells in Sepsis. Front Immunol 2015; 6:401. [PMID: 26322041 PMCID: PMC4533011 DOI: 10.3389/fimmu.2015.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022] Open
Abstract
Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - Ram V Anantha
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of General Surgery, Department of Medicine, Western University , London, ON , Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada
| |
Collapse
|
26
|
Hraiech S, Papazian L, Rolain JM, Bregeon F. Animal models of polymicrobial pneumonia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3279-92. [PMID: 26170617 PMCID: PMC4492661 DOI: 10.2147/dddt.s70993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although "two hits" animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information.
Collapse
Affiliation(s)
- Sami Hraiech
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Laurent Papazian
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France
| | - Fabienne Bregeon
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Service d'explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, France
| |
Collapse
|
27
|
Pène F, Ait-Oufella H, Taccone FS, Monneret G, Sharshar T, Tamion F, Mira JP. Insights and limits of translational research in critical care medicine. Ann Intensive Care 2015; 5:8. [PMID: 25977834 PMCID: PMC4420765 DOI: 10.1186/s13613-015-0050-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/20/2015] [Indexed: 12/23/2022] Open
Abstract
Experimental research has always been the cornerstone of pathophysiological and therapeutic advances in critical care medicine, where clinical observations and basic research mutually fed each other in a so-called translational approach. The objective of this review is to address the different aspects of translational research in the field of critical care medicine. We herein highlighted some demonstrative examples including the animal-to-human approach to study host-pathogen interactions, the human-to-animal approach for sepsis-induced immunosuppression, the still restrictive human approach to study critical illness-related neuromyopathy, and the technological developments to assess the microcirculatory changes in critically ill patients. These examples not only emphasize how translational research resulted in major improvements in the comprehension of the pathophysiology of severe clinical conditions and offered promising perspectives in critical care medicine but also point out the obstacles to translate such achievements into clinical practice.
Collapse
Affiliation(s)
- Frédéric Pène
- Service de Réanimation Médicale, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ; Faculté de Médecine, Université Paris Descartes, 12 Rue de l'Ecole de Médecine, 75006 Paris, France
| | - Hafid Ait-Oufella
- Service de Réanimation Médicale, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France ; Faculté de Médecine, Université Pierre-et-Marie-Curie, 27 Rue Chaligny, 75571 Paris, France
| | - Fabio Silvio Taccone
- Département de Soins Intensifs, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Guillaume Monneret
- Laboratoire d'Immunologie Cellulaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003 Lyon, France ; Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon I, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Tarek Sharshar
- Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, 104 Boulevard Raymond Poincaré, 92380 Garches, France ; Université de Versailles-Saint Quentin en Yvelines, 55 Avenue de Paris, 78000 Versailles, France
| | - Fabienne Tamion
- Service de Réanimation Médicale, Hôpital Charles Nicolle, CHU Rouen, 1 Rue de Germont, 76000 Rouen, France ; Faculté de Médecine, Institut de Recherche et Innovation Biomédicale (IRIB), 22 Boulevard Gambetta, 76000 Rouen, France
| | - Jean-Paul Mira
- Service de Réanimation Médicale, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ; Faculté de Médecine, Université Paris Descartes, 12 Rue de l'Ecole de Médecine, 75006 Paris, France
| | | |
Collapse
|
28
|
Grimaldi D, Llitjos JF, Pène F. Post-infectious immune suppression: a new paradigm of severe infections. Med Mal Infect 2014; 44:455-63. [PMID: 25169939 DOI: 10.1016/j.medmal.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/24/2014] [Accepted: 07/29/2014] [Indexed: 01/25/2023]
Abstract
Infectious diseases remain a major public health issue in both developing and developed countries. For instance, there is still a high rate of morbidity and mortality due to seasonal influenza outbreaks and severe bacterial sepsis, despite major advances in their prevention and treatment. It is now clear that severe influenza and bacterial infections promote susceptibility for superinfections worsening the prognosis. Various immune defects acquired during severe infection may result in complex immunosuppression and may affect both innate and adaptive components. Some animal models of these common clinical situations have demonstrated the increased susceptibility of infected hosts to secondary infectious insult and allowed assessing the regulatory mechanisms. Such pathophysiological advances may help create new immunomodulatory therapeutics for infected patients exposed to severe secondary sepsis.
Collapse
Affiliation(s)
- D Grimaldi
- Réanimation médico-chirurgicale, centre hospitalier de Versailles, 177, rue de Versailles, 78150 Le Chesnay, France; Institut Cochin, CNRS UMR8104, 75005 Paris, France; Inserm U1016, 75005 Paris France.
| | - J F Llitjos
- Institut Cochin, CNRS UMR8104, 75005 Paris, France; Inserm U1016, 75005 Paris France
| | - F Pène
- Institut Cochin, CNRS UMR8104, 75005 Paris, France; Inserm U1016, 75005 Paris France; Réanimation médicale, hôpital Cochin, AP-HP, 75005 Paris, France; Université Paris Descartes, 75005 Paris, France.
| |
Collapse
|
29
|
Vega-Ramos J, Roquilly A, Asehnoune K, Villadangos JA. Modulation of dendritic cell antigen presentation by pathogens, tissue damage and secondary inflammatory signals. Curr Opin Pharmacol 2014; 17:64-70. [PMID: 25128781 DOI: 10.1016/j.coph.2014.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022]
Abstract
Antigen presentation by dendritic cells (DC) is regulated directly by pathogen-associated or cell death-associated cues, or indirectly by immunomodulatory molecules produced during infection or tissue damage. DC modulation by direct encounter of pathogen-associated compounds has been thoroughly studied; the effects of molecules associated with cell death are less well characterized; modulation by secondary signals remain poorly understood. In this review we describe recent studies on the role of these three categories of immunomodulatory compounds on DC. We conclude that characterization of the role of secondary immunomodulators is an area in dare need of further study. The outcomes of this endeavor will be new opportunities for the development of better vaccines and compounds applicable to the therapeutic immunomodulation of DC function.
Collapse
Affiliation(s)
- Javier Vega-Ramos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia; Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculte de Médecine, Université de Nantes, France; Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculte de Médecine, Université de Nantes, France; Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
30
|
Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice. Anesthesiology 2014; 120:1450-62. [PMID: 24667831 DOI: 10.1097/aln.0000000000000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldanamycin in mice that had their lungs instilled with Pseudomonas aeruginosa 24 h later (at least six mice per experimental group). Four hours after instillation, lung endothelial and epithelial permeability, bacterial counts, protein levels in bronchoalveolar lavage fluid, and lung myeloperoxidase activity were measured. Mortality rate 24 h after P. aeruginosa instillation was recorded. The HSR effect on the release of interleukin-10 and killing of P. aeruginosa bacteria by a mouse alveolar macrophage cell line and on neutrophil phagocytosis was also examined. RESULTS HSR activation worsened lung endothelial (42%) and epithelial permeability (50%) to protein, decreased lung bacterial clearance (71%), and increased mortality (50%) associated with P. aeruginosa pneumonia, an effect that was not observed in heat-shock protein-72-null mice. HSR-mediated decrease in neutrophil phagocytosis (69%) and bacterial killing (38%) by macrophages was interleukin-10 dependent, a mechanism confirmed by increased lung bacterial clearance and decreased mortality (70%) caused by P. aeruginosa pneumonia in heat-shocked interleukin-10-null mice. CONCLUSIONS Prior HSR activation worsens lung injury associated with P. aeruginosa pneumonia in mice via heat-shock protein-72- and interleukin-10-dependent mechanisms. These results provide a novel mechanism for the immunosuppression observed after severe trauma that is known to activate HSR in humans.
Collapse
|
31
|
Pastille E, Pohlmann S, Wirsdörfer F, Reib A, Flohé SB. A disturbed interaction with accessory cells upon opportunistic infection with Pseudomonas aeruginosa contributes to an impaired IFN-γ production of NK cells in the lung during sepsis-induced immunosuppression. Innate Immun 2014; 21:115-26. [PMID: 24406749 DOI: 10.1177/1753425913517274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Impaired resistance to Pseudomonas aeruginosa-induced pneumonia after cecal ligation and puncture (CLP), a mouse model for human polymicrobial sepsis, is associated with decreased IFN-γ, but increased IL-10, levels in the lung. We investigated the so far unknown mechanisms underlying this reduced IFN-γ synthesis in CLP mice. CD11b(+) NK cells, but not T or NKT cells in the lung were impaired in IFN-γ synthesis upon challenge with Pseudomonas in vitro and in vivo after CLP. The inhibition of NK cells was independent of IL-10. IFN-γ synthesis of NK cells was only partly restored by addition of recombinant IL-12. Accessory cells including dendritic cells and alveolar macrophages were required for maximal IFN-γ secretion. But accessory cells of CLP mice suppressed the IFN-γ secretion from naive lung leukocytes. In turn, naive accessory cells were unable to restore the IFN-γ production from lung leukocytes of CLP mice. Thus, a disturbed interaction of accessory cells and NK cells is involved in the impaired IFN-γ release in response to Pseudomonas in the lung of CLP mice. Considering the importance of IFN-γ in the immune defense against bacteria the dysfunction of accessory cells and NK cells might contribute to the enhanced susceptibility to Pseudomonas after CLP.
Collapse
Affiliation(s)
- Eva Pastille
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephanie Pohlmann
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany Institute of Cell Biology (Cancer Research), Medical School, University Duisburg-Essen, Essen, Germany
| | - Anna Reib
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Xiang XS, Li N, Zhao YZ, Li QR, Li JS. Combination Therapy with Thymosin Alpha1 and Dexamethasone Helps Mice Survive Sepsis. Inflammation 2013; 37:402-16. [DOI: 10.1007/s10753-013-9753-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Leentjens J, Kox M, van der Hoeven JG, Netea MG, Pickkers P. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med 2013; 187:1287-93. [PMID: 23590272 DOI: 10.1164/rccm.201301-0036cp] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is the leading cause of death in the intensive care unit and ranks in the top 10 causes of death in general worldwide. Proinflammatory mediators are related to symptoms observed early in patients with sepsis, such as fever and hemodynamic instability. However, in recent years it has become clear that most septic patients do not die from an overwhelming proinflammatory immune response but in an immunosuppressive state, which can last for days or even weeks, and that results in increased susceptibility to secondary (opportunistic) infections. Although infection control and supportive therapies will remain the cornerstone of treatment, especially in the early phase of sepsis, the identification of this so-called "immunoparalysis" is currently causing a paradigm shift in the adjunctive treatment of sepsis from therapies that suppress the immune system toward immunostimulation. In this Critical Care Perspective we give an overview of the pathophysiology of sepsis, with a focus on immunosuppressive mechanisms that play an important role in outcome. In addition, we present an appraisal of the recent advances in immunotherapy as an adjunctive treatment for sepsis.
Collapse
Affiliation(s)
- Jenneke Leentjens
- Department of Intensive Care Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Roquilly A, Braudeau C, Cinotti R, Dumonte E, Motreul R, Josien R, Asehnoune K. Impaired blood dendritic cell numbers and functions after aneurysmal subarachnoid hemorrhage. PLoS One 2013; 8:e71639. [PMID: 23951210 PMCID: PMC3739744 DOI: 10.1371/journal.pone.0071639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
Previous Presentation Portions of this study were presented at the Annual Congress of Société Française d’Anesthésie et de Réanimation in Paris, September 2012. Background Toll-like receptor (TLR) agonists are promising therapy for the prevention of nosocomial infections in critical ill patients. We aimed to analyze the TLR-reactivity of circulating dendritic cells (DC) as assessed by cytokine production after an ex vivo challenge with TLR agonists in aneurysmal subarachnoid hemorrhage (SAH) patients. Methods and Findings A single-center prospective observational study took place in one intensive care unit of a teaching hospital. Blood samples were harvested on days 2, 5 and 10 in 21 severe SAH patients requiring mechanical ventilation and 17 healthy controls. DC production of cytokines (Tumour Necrosis Factor, TNF-α; Interleukin, IL-12; and Interferon, IFN-α) was assessed by intracellular immunostaining on TLR-3, 4, 7/8 and 9 stimulations. SAH patients had decreased numbers of blood myeloid (mDCs) and plasmacytoid DCs (pDCs) on days 2, 5 and 10. Compared with the healthy controls, the frequency of mDCs producing TNF-α after TLR-3 stimulation was decreased in the SAH patients. The frequency of myeloid DCs producing IL-12 after TLR-3 and 4 stimulations was also decreased in the SAH patients. In contrast, the mDCs response to TLR-7/8 was not impaired in the SAH patients. The frequency of pDCs producing TNF-α+ and IFN-α+ on TLR-7/8 stimulation were reduced at all of the tested times in the SAH patients, whereas reactivity to TLR-9 was preserved. On day 2, the pDCs from non-survivor patients (n = 8) had a decreased ability to produce IFN-α on TLR-9 stimulation compared with the survivors. Conclusions These data suggest functional abnormalities of circulating pDCs and mDCs that could be important for immunomodulation after SAH.
Collapse
Affiliation(s)
- Antoine Roquilly
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
| | - Cécile Braudeau
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Raphael Cinotti
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Erwan Dumonte
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Rémi Motreul
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Régis Josien
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
- * E-mail:
| |
Collapse
|
35
|
Lipopeptides rather than lipopolysaccharide favor the development of dendritic cell dysfunction similar to polymicrobial sepsis in mice. Inflamm Res 2013; 62:627-36. [DOI: 10.1007/s00011-013-0616-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/10/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022] Open
|
36
|
Laudanski K. Adoptive transfer of naïve dendritic cells in resolving post-sepsis long-term immunosuppression. Med Hypotheses 2012; 79:478-80. [PMID: 22840328 DOI: 10.1016/j.mehy.2012.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 01/22/2023]
Abstract
Following initial episode of sepsis, survivors suffer an increased risk of mortality that persists long-term and remains a significant health care problem. Opportunistic infections and neoplasms are more frequent partially accounting for shorter life expectancy. This suggests that during sepsis the immune system becomes aberrant and is unable to restore its optimal function after the initial insult. Dendritic cells (DC) or their precursors are frequently affected during the initial episode of sepsis as well as after the resolution of symptom. Considering these cells' pivotal role in regulating innate and acquired immune, they are promising candidates for therapeutic manipulation. Sepsis induces several changes in the populations of DCs via epigenetic, and/or other, mechanisms. Here, we propose that transplantation of 'naïve dendritic cells' (DCs which are never exposed to sepsis) can reverse several aspects of the long-term post-sepsis immunosuppression. Furthermore, we present advantages of the presented therapeutic approach.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Pène F, Grimaldi D, Zuber B, Sauneuf B, Rousseau C, El Hachem C, Martin C, Belaïdouni N, Balloy V, Mira JP, Chiche JD. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction. J Infect Dis 2012; 206:932-42. [PMID: 22782952 DOI: 10.1093/infdis/jis438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sepsis is characterized by a dysregulated inflammatory response followed by immunosuppression that favors the development of secondary infections. Toll-like receptors (TLRs) are major regulators of the host's response to infections. How variability in TLR signaling may impact the development of sepsis-induced immune dysfunction has not been established. We sought to establish the role of TLR2, TLR4, and TLR5 in postseptic mice with Pseudomonas aeruginosa pneumonia. METHODS We used an experimental model of sublethal polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wild-type, tlr2(-/-), tlr4(-/-), tlr5(-/-), tlr2 4(-/-) mice that underwent CLP were secondarily subjected to P. aeruginosa pulmonary infection. RESULTS Postseptic wild-type and tlr4(-/-) and tlr5(-/-) mice displayed high susceptibility to P. aeruginosa pneumonia. In contrast, TLR2-deficient mice, either tlr2(-/-)or tlr2 4(-/-), that underwent CLP were resistant to the secondary pulmonary infection. As compared to wild-type mice, tlr2(-/-) mice displayed improvement in bacterial clearance, decreased bacteremic dissemination, and attenuated lung damage. Furthermore, tlr2(-/-) mice exhibited a pulmonary proinflammatory cytokine balance, with increased production of tumor necrosis factor α and decreased release of interleukin 10. CONCLUSIONS In a model of secondary P. aeruginosa pneumonia in postseptic mice, TLR2 deficiency improves survival by promoting efficient bacterial clearance and restoring a proinflammatory cytokine balance in the lung.
Collapse
|
38
|
Immunodépression induite par le sepsis: réalité clinique et données expérimentales. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13546-012-0462-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Mohr A, Polz J, Martin EM, Griessl S, Kammler A, Pötschke C, Lechner A, Bröker BM, Mostböck S, Männel DN. Sepsis leads to a reduced antigen-specific primary antibody response. Eur J Immunol 2011; 42:341-52. [PMID: 22105154 DOI: 10.1002/eji.201141692] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/17/2011] [Accepted: 11/14/2011] [Indexed: 01/13/2023]
Abstract
Immunosuppression, impaired cytokine production and high susceptibility to secondary infections are characteristic for septic patients, and for mice after induction of polymicrobial septic peritonitis by sublethal cecal ligation and puncture (CLP). Here, we demonstrate that CLP markedly altered subsequent B-cell responses. Total IgG and IgM levels, as well as the memory B-cell response, were increased in septic mice, but antigen-specific primary antibody production was strongly impaired. We found that two days after CLP, CD11b(+) splenocytes were activated as demonstrated by the increased expression of activation markers, expression of arginase and production of NO by immature myeloid cells. The in vivo clearance of a bacterial infection was not impaired. DCs demonstrated reduced IL-12 production and altered antigen presentation, resulting in decreased proliferation but enhanced IFN-γ production by CD4(+) cells. CD4(+) T cells from mice immunized on day 2 after CLP showed reduced Th1 and Th2 cytokine production. In addition, there was an increase in Treg cells. Interestingly, levels of immature B cells decreased but levels of mature B cells increased two days after CLP. However, adoptive transfer of naïve CD4(+) T cells, naïve B cells, or naïve DCs did not rescue the antigen-specific antibody response.
Collapse
Affiliation(s)
- Arno Mohr
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bedrosian AS, Nguyen AH, Hackman M, Connolly MK, Malhotra A, Ibrahim J, Cieza-Rubio NE, Henning JR, Barilla R, Rehman A, Pachter HL, Medina-Zea MV, Cohen SM, Frey AB, Acehan D, Miller G. Dendritic cells promote pancreatic viability in mice with acute pancreatitis. Gastroenterology 2011; 141:1915-26.e1-14. [PMID: 21801698 PMCID: PMC3202684 DOI: 10.1053/j.gastro.2011.07.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/21/2011] [Accepted: 07/18/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS The cellular mediators of acute pancreatitis are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. METHODS Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier method. RESULTS Numbers of major histocompatibility complex II(+)CD11c(+) DCs increased 100-fold in pancreata of mice with acute pancreatitis to account for nearly 15% of intrapancreatic leukocytes. Intrapancreatic DCs acquired a distinct immune phenotype in mice with acute pancreatitis; they expressed higher levels of major histocompatibility complex II and CD86 and increased production of interleukin-6, membrane cofactor protein-1, and tumor necrosis factor-α. However, rather than inducing an organ-destructive inflammatory process, DCs were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DCs and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DCs died from acinar cell death within 4 days. Depletion of DCs from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DCs did not require infiltrating neutrophils, activation of nuclear factor-κB, or signaling by mitogen-activated protein kinase or tumor necrosis factor-α. CONCLUSIONS DCs are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress.
Collapse
Affiliation(s)
- Andrea S. Bedrosian
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Andrew H. Nguyen
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Michael Hackman
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Michael K. Connolly
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Ashim Malhotra
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Junaid Ibrahim
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Napoleon E. Cieza-Rubio
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Justin R. Henning
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Rocky Barilla
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Adeel Rehman
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - H. Leon Pachter
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Marco V. Medina-Zea
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Steven M. Cohen
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Alan B. Frey
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Devrim Acehan
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - George Miller
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016,Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
41
|
Grimaldi D, Louis S, Pène F, Sirgo G, Rousseau C, Claessens YE, Vimeux L, Cariou A, Mira JP, Hosmalin A, Chiche JD. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. Intensive Care Med 2011; 37:1438-46. [PMID: 21805160 DOI: 10.1007/s00134-011-2306-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/27/2011] [Indexed: 01/23/2023]
Abstract
PURPOSE Septic shock induces a decrease in dendritic cells (DCs) that may contribute to sepsis-induced immunosuppression. We analyzed the time course of circulating DCs in patients with septic shock and its relation to susceptibility to intensive care unit (ICU)-acquired infections. METHODS We enrolled adult patients with septic shock (n = 43), non-septic shock (n = 29), and with sepsis without organ dysfunction (n = 16). Healthy controls (n = 16) served as reference. Blood samples were drawn on the day of shock (day 1), then after 3 and 7 days. Myeloid (mDC) and plasmacytoid (pDC) DCs were counted by flow cytometry. Cell surface HLA-DR expression was analyzed in both DC subsets. RESULTS At day 1, median mDC and pDC counts were dramatically lower in septic shock patients as compared to healthy controls (respectively, 835 mDCs and 178 pDCs/ml vs. 19,342 mDCs and 6,169 pDCs/ml; P < 0.0001) but also to non-septic shock and sepsis patients (P < 0.0001). HLA-DR expression was decreased in both mDCs and pDCS within the septic shock group as compared to healthy controls. DC depletion was sustained for at least 7 days in septic shock patients. Among them, 10/43 developed ICU-acquired infections after a median of 9 [7.5-11] days. At day 7, mDC counts increased in patients devoid of secondary infections, whereas they remained low in those who subsequently developed ICU-acquired infections. CONCLUSION Septic shock is associated with profound and sustained depletion of circulating DCs. The persistence of low mDC counts is associated with the development of ICU-acquired infections, suggesting that DC depletion is a functional feature of sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- D Grimaldi
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011; 13:1133-45. [PMID: 21839853 DOI: 10.1016/j.micinf.2011.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/05/2023]
Abstract
Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.
Collapse
|
43
|
Perl M, Lomas-Neira J, Venet F, Chung CS, Ayala A. Pathogenesis of indirect (secondary) acute lung injury. Expert Rev Respir Med 2011; 5:115-26. [PMID: 21348592 DOI: 10.1586/ers.10.92] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, therapeutic interventions to treat acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) remain largely limited to lung-protective strategies, as no real molecular-pathophysiologic-driven therapeutic intervention has yet become available. This is in part the result of the heterogeneous nature of the etiological processes that contribute to the state of ALI/ARDS. This article sets out to understand the development of ALI resulting from indirect pulmonary insults, such as extrapulmonary sepsis and trauma, shock, burn injury or mass transfusion, as opposed to direct pulmonary challenges, such as pneumonia, aspiration or lung contusion. Here, we consider not only the experimental and clinical data concerning the roles of various immune (neutrophil, macrophage, lymphocyte and dendritic) as well as nonimmune (epithelial and endothelial) cells in orchestrating the development of ALI resulting from indirect pulmonary stimuli, but also how these cell populations might be targeted therapeutically.
Collapse
Affiliation(s)
- Mario Perl
- Department of Traumatology, Hand and Reconstructive Surgery, University of Ulm Medical School, Ulm, Germany
| | | | | | | | | |
Collapse
|
44
|
Dreschler K, Bratke K, Petermann S, Thamm P, Kuepper M, Virchow JC, Lommatzsch M. Altered phenotype of blood dendritic cells in patients with acute pneumonia. Respiration 2011; 83:209-17. [PMID: 21677425 DOI: 10.1159/000328406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) play a key role in the host defence against inhaled pathogens. However, the phenotype of blood DCs in patients with acute respiratory infections is unknown. OBJECTIVE To investigate the number and the expression of function-associated molecules of blood DCs in patients with acute infectious pneumonia. METHODS Sixteen patients with acute pneumonia and 19 controls without pneumonia were included in the study. The number as well as the expression of function-associated molecules of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) were analysed in peripheral blood using four-colour flow cytometry. RESULTS Elevated concentrations of procalcitonin (median: 0.55 ng/ml) and the rapid response to antibiotic treatment suggested a bacterial origin of the pneumonia in the patients. Total mDC (median: 27% of the controls) and pDC counts (median: 53% of the controls) were markedly reduced in patients with pneumonia, as compared to the controls. Percentages of blood mDCs, but not pDCs, were negatively correlated with serum concentrations of C-reactive protein. Patients with pneumonia were characterised by a significantly increased expression of Fc gamma receptors (CD32 and CD64) on mDCs and the Toll-like receptor 9 (TLR9) on pDCs. CONCLUSIONS Circulating DCs are markedly reduced in patients with pneumonia, and characterised by an up-regulation of molecules recognising pathogen-associated molecular patterns and opsonised antigens.
Collapse
|
45
|
Hoogerwerf JJ, Leendertse M, Wieland CW, de Vos AF, de Boer JD, Florquin S, Poll TVD. Loss of Suppression of Tumorigenicity 2 (ST2) Gene Reverses Sepsis-induced Inhibition of Lung Host Defense in Mice. Am J Respir Crit Care Med 2011; 183:932-40. [DOI: 10.1164/rccm.201006-0934oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Abstract
NF-κB is a critical regulator of gene expression during severe infections. NF-κB comprises homo- and heterodimers of proteins from the Rel family. Among them, p50 and p65 have been clearly implicated in the pathophysiology of sepsis. In contrast, the role of cRel in sepsis is still controversial and has been poorly studied in single-pathogen infections. We aimed to investigate the consequences of cRel deficiency in a cecal ligation and puncture (CLP) model of sepsis. We have approached the underlying mechanisms of host defense by analyzing bacterial clearance, systemic inflammation, and the distribution of spleen dendritic cell subsets. Moreover, by using a genome-wide technology, we have also analyzed the CLP-induced modifications in gene expression profiles both in wild-type (wt) and in rel(-/-) mice. The absence of cRel enhances mortality due to polymicrobial sepsis. Despite normal pathogen clearance, cRel deficiency leads to an altered systemic inflammatory response associated with a sustained loss of the spleen lymphoid dendritic cells. Furthermore, a whole-blood microarray study reveals that the differential outcome between wt and rel(-/-) mice during sepsis is preceded by remarkable changes in the expression of hundreds of genes involved in aspects of host-pathogen interaction, such as host survival and lipid metabolism. In conclusion, cRel is a key NF-κB member required for host antimicrobial defenses and a regulatory transcription subunit that controls the inflammatory and immune responses in severe infection.
Collapse
|
47
|
Pastille E, Didovic S, Brauckmann D, Rani M, Agrawal H, Schade FU, Zhang Y, Flohé SB. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2010; 186:977-86. [PMID: 21160046 DOI: 10.4049/jimmunol.1001147] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.
Collapse
Affiliation(s)
- Eva Pastille
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, D-45147 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
CpG-ODN and MPLA prevent mortality in a murine model of post-hemorrhage-Staphyloccocus aureus pneumonia. PLoS One 2010; 5:e13228. [PMID: 20949109 PMCID: PMC2951351 DOI: 10.1371/journal.pone.0013228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 09/11/2010] [Indexed: 12/18/2022] Open
Abstract
Infections are the most frequent cause of complications in trauma patients. Post-traumatic immune suppression (IS) exposes patients to pneumonia (PN). The main pathogen involved in PN is Methicillin Susceptible Staphylococcus aureus (MSSA). Dendritic cells () may be centrally involved in the IS. We assessed the consequences of hemorrhage on pneumonia outcomes and investigated its consequences on DCs functions. A murine model of hemorrhagic shock with a subsequent MSSA pneumonia was used. Hemorrhage decreased the survival rate of infected mice, increased systemic dissemination of sepsis and worsened inflammatory lung lesions. The mRNA expression of Tumor Necrosis Factor-alpha (TNF-α), Interferon-beta (IFN-β) and Interleukin (IL)-12p40 were mitigated for hemorrhaged-mice. The effects of hemorrhage on subsequent PN were apparent on the pDCs phenotype (reduced MHC class II, CD80, and CD86 molecule membrane expression). In addition, hemorrhage dramatically decreased CD8+ cDCs- and CD8- cDCs-induced allogeneic T-cell proliferation during PN compared with mice that did not undergo hemorrhage. In conclusion, hemorrhage increased morbidity and mortality associated with PN; induced severe phenotypic disturbances of the pDCs subset and functional alterations of the cDCs subset. After hemorrhage, a preventive treatment with CpG-ODN or Monophosphoryl Lipid A increased transcriptional activity in DCs (TNF-α, IFN-β and IL-12p40) and decreased mortality of post-hemorrhage MSSA pneumonia.
Collapse
|
49
|
Carrigan SO, Junkins R, Yang YJ, Macneil A, Richardson C, Johnston B, Lin TJ. IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:3602-9. [PMID: 20720199 DOI: 10.4049/jimmunol.0903429] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen. However, host defense mechanisms involved in P. aeruginosa lung infection remain incompletely defined. The transcription factor IFN regulatory factor 3 (IRF3) is primarily associated with host defense against viral infections, and a role of IRF3 in P. aeruginosa infection has not been reported previously. In this study, we showed that IRF3 deficiency led to impaired clearance of P. aeruginosa from the lungs of infected mice. P. aeruginosa infection induced IRF3 translocation to the nucleus, activation of IFN-stimulated response elements (ISRE), and production of IFN-beta, suggesting that P. aeruginosa activates the IRF3-ISRE-IFN pathway. In vitro, macrophages from IRF3-deficient mice showed complete inhibition of CCL5 (RANTES) and CXCL10 (IP-10) production, partial inhibition of TNF, but no effect on CXCL2 (MIP-2) or CXCL1 (keratinocyte-derived chemokine) in response to P. aeruginosa stimulation. In vivo, IRF3-deficient mice showed complete inhibition of CCL5 production and partial or no effects on production of other cytokines and chemokines in the bronchoalveolar lavage fluids and lung tissues. Profiling of immune cells in the airways revealed that neutrophil and macrophage recruitment into the airspace was reduced, whereas B cell, T cell, NK cell, and NKT cell infiltration was unaffected in IRF3-deficient mice following P. aeruginosa lung infection. These data suggest that IRF3 regulates a distinct profile of cytokines and chemokines and selectively modulates neutrophil and macrophage recruitment during P. aeruginosa infection. Thus, IRF3 is an integral component in the host defense against P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Svetlana O Carrigan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Lung infections caused by the opportunistic pathogen Pseudomonas aeruginosa can present as a spectrum of clinical entities from a rapidly fatal pneumonia in a neutropenic patient to a multi-decade bronchitis in patients with cystic fibrosis. P. aeruginosa is ubiquitous in our environment, and one of the most versatile pathogens studied, capable of infecting a number of diverse life forms and surviving harsh environmental factors. It is also able to quickly adapt to new environments, including the lung, where it orchestrates virulence factors to acquire necessary nutrients, and if necessary, turn them off to prevent immune recognition. Despite these capabilities, P. aeruginosa rarely infects healthy human lungs. This is secondary to a highly evolved host defence mechanism that efficiently removes inhaled or aspirated pseudomonads. Many arms of the respiratory host defence have been elucidated using P. aeruginosa as a model pathogen. Human infections with P. aeruginosa have demonstrated the importance of the mechanical barrier functions including mucus clearance, and the innate immune system, including the critical role of the neutrophilic response. As more models of persistent or biofilm P. aeruginosa infections are developed, the role of the adaptive immune response will likely become more evident. Understanding the pathogenesis of P. aeruginosa, and the respiratory host defence response to it has, and will continue to, lead to novel therapeutic strategies to help patients.
Collapse
Affiliation(s)
- Bryan J Williams
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|