1
|
Zhang Y, Luan H, Song P. Bilirubin metabolism and its application in disease prevention: mechanisms and research advances. Inflamm Res 2025; 74:81. [PMID: 40413269 DOI: 10.1007/s00011-025-02049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
The role of bilirubin, a product of heme metabolism, has evolved from a traditionally perceived metabolic waste product to a critical molecule with diverse biological roles. This article comprehensively reviews the metabolic functions of bilirubin and advances in its application for disease prevention. Bilirubin is primarily derived from hemoglobin catabolism in senescent erythrocytes. It is subsequently metabolized and excreted by the liver through tightly regulated processes involving enzymes, nuclear receptors, hormones, and pharmaceuticals. Bilirubin exhibits diverse physiological functions, including antioxidant, anti-inflammatory, and immunomodulatory activities. Owing to its unique chemical structure, bilirubin scavenges free radicals, inhibits lipid peroxidation, and protects cells across multiple systems. By suppressing the NF-κB signaling pathway, it reduces inflammatory factor release and mitigates chronic inflammation. Additionally, it modulates immune cell activity to maintain homeostasis, offering therapeutic potential for autoimmune and infectious diseases. Bilirubin demonstrates significant potential in disease prevention. In cardiovascular diseases, it attenuates atherosclerosis and mitigates myocardial ischemia/reperfusion injury. For metabolic disorders, it improves insulin resistance, regulates blood glucose, and reduces hepatic steatosis, offering therapeutic benefits for diabetes and non-alcoholic fatty liver disease. In neurological conditions, its antioxidant and anti-inflammatory properties hold promise for preventing and managing neurodegenerative diseases and neonatal bilirubin encephalopathy. Although research on bilirubin has advanced significantly, its intracellular targets and molecular interaction networks remain incompletely understood, and numerous challenges hinder its clinical translation. Future efforts should leverage multi-omics technologies to elucidate its mechanisms, develop intelligent and personalized therapeutics, and conduct large-scale clinical trials to accelerate translational applications and improve patient outcomes.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Haoni Luan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Peng Song
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.
| |
Collapse
|
2
|
Tatikolov AS, Pronkin PG, Panova IG. Bilirubin nanotechnology: An innovative approach in biomedicine. Biophys Chem 2025; 320-321:107412. [PMID: 39970844 DOI: 10.1016/j.bpc.2025.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Bilirubin, a product of heme catabolism, is toxic at elevated concentrations (>250-300 μM in blood serum), whereas at therapeutic concentrations (∼20-200 μM) exerts potent antioxidant, anti-inflammatory, immunomodulatory, cytoprotective and neuroprotective effects. Despite the therapeutic potential, its use in clinical practice is hampered by poor aqueous solubility, instability, and rapid metabolism. Nanotechnology overcomes these limitations and additionally imparts to bilirubin the advantages characteristic of nanopreparations: targeted action on the desired organ/tissue, increased therapeutic efficacy by delaying drug elimination from the body, improved transportation over biological barriers, the ability to combine therapeutic and diagnostic properties in a single agent. The review analyses the chemical synthesis, therapeutic mechanisms, and preclinical applications of nanosystems comprising bilirubin. In particular, nanostructures obtained by the covalent binding of bilirubin to macromolecules, bilirubin encapsulation in nanocarriers, bilirubin conjugation with metal nanoparticles and nanofunctionalization of inorganic compounds are considered; the data on the therapeutic trials of nanobilirubin are summarized. While studies on animal models and in vitro systems demonstrate improved biodistribution, reduced toxicity, and enhanced efficacy, no clinical trials to date have validated nanobilirubin formulations. Key barriers may include unresolved challenges in scalable synthesis, long-term biocompatibility, reproducible dosing of nanoformulations. Hence, further development of nanotherapeutic bilirubin agents for clinical practice is urgent.
Collapse
Affiliation(s)
- Alexander S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia.
| | - Pavel G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Ina G Panova
- International Scientific and Practical Center of Tissue Proliferation, st. Prechistenka, 14/19, Moscow 119034, Russia
| |
Collapse
|
3
|
Yang W, Liu C, Li Z, Cui M. Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy. Sci Rep 2025; 15:10618. [PMID: 40148470 PMCID: PMC11950375 DOI: 10.1038/s41598-025-94053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are confined to a single analytical approach, which limits the comprehensive understanding of the pathogenesis and potential therapeutic targets of these diseases. In light of this, we propose the hypothesis that genetic variations in specific plasma proteins have a causal relationship with immune-related bone diseases through the MR mechanism, and that key therapeutic targets can be accurately identified using an integrated multi-omic analysis approach. This study comprehensively applied a variety of analytical methods. Firstly, the protein quantitative trait locus (pQTLs) data from two large plasma protein databases and the Genome-Wide Association Study (GWAS) data of nine immune-related bone diseases were used for Mendelian randomization (MR) analysis. At the same time, we employed the Summary-based Mendelian Randomization (SMR) method, combined with the Bayesian colocalization analysis method of coding genes, as well as the Linkage Disequilibrium Score Regression (LDSC) analysis method based on genetic correlation analysis, as methods to verify the genetic association between genes and complex diseases, thus comprehensively obtaining positive results. In addition, a Phenome-wide Association Study (PheWAS) was conducted on significantly positive genes, and their expression patterns in different tissues were also explored. Subsequently, we integrated Protein-Protein Interaction (PPI) network analysis, Gene Ontology (GO) analysis. Finally, based on the above analytical methods, drug prediction and molecular docking studies were carried out with the aim of accurately identifying key therapeutic targets. Through a comprehensive analysis using four methods, namely the Mendelian randomization (MR) analysis study, Summary-based Mendelian Randomization (SMR) analysis study, Bayesian colocalization analysis study, and Linkage Disequilibrium Score Regression (LDSC) analysis study. We found that through MR, SMR, and combined with Bayesian colocalization analysis, an association was found between rheumatoid arthritis (RA) and HDGF. Using the combination of MR and Bayesian colocalization analysis, as well as LDSC analysis, it was concluded that RA was related to CCL19 and TNFRSF14. Based on the methods of MR and Bayesian colocalization, an association was found between GPT and Crohn's disease-related arthritis, and associations were found between BTN1A1, EVI5, OGA, TNFRSF14 and multiple sclerosis (MS), and associations were found between ICAM5, CCDC50, IL17RD, UBLCP1 and psoriatic arthritis (PsA). Specifically, in the MR analysis of RA, HDGF (P_ivw = 0.0338, OR = 1.0373, 95%CI = 1.0028-1.0730), CCL19 (P_ivw = 0.0004, OR = 0.3885, 95%CI = 0.2299-0.6566), TNFRSF14 (P_ivw = 0.0007, OR = 0.6947, 95%CI = 0.5634-0.8566); in the MR analysis of MS, BTN1A1 (P_ivw = 0.0000, OR = 0.6101, 95%CI = 0.4813-0.7733), EVI5 (P_ivw = 0.0000, OR = 0.3032, 95%CI = 0.1981-0.4642), OGA (P_ivw = 0.0005, OR = 0.4599, 95%CI = 0.2966-0.7131), TNFRSF14 (P_ivw = 0.0002, OR = 0.4026, 95%CI = 0.2505-0.6471); in the MR analysis of PsA, ICAM5 (P_ivw = 0.0281, OR = 1.1742, 95%CI = 1.0174-1.3552), CCDC50 (P_ivw = 0.0092, OR = 0.7359, 95%CI = 0.5843-0.9269), IL17RD (P_ivw = 0.0006, OR = 0.7887, 95%CI = 0.6886-0.9034), UBLCP1 (P_ivw = 0.0021, OR = 0.6901, 95%CI = 0.5448-0.8741); in the MR analysis of Crohn's disease-related arthritis, GPT (P_ivw = 0.0006, OR = 0.0057, 95%CI = 0.0003-0.1111). In the Bayesian colocalization analysis of RA, HDGF (H4 = 0.8426), CCL19 (H4 = 0.9762), TNFRSF14 (H4 = 0.8016); in the Bayesian colocalization analysis of MS, BTN1A1 (H4 = 0.7660), EVI5 (H4 = 0.9800), OGA (H4 = 0.8569), TNFRSF14 (H4 = 0.8904); in the Bayesian colocalization analysis of PsA, ICAM5 (H4 = 0.9476), CCDC50 (H4 = 0.9091), IL17RD (H4 = 0.9301), UBLCP1 (H4 = 0.8862); in the Bayesian colocalization analysis of Crohn's disease-related arthritis, GPT (H4 = 0.8126). In the SMR analysis of RA, HDGF (p_SMR = 0.0338, p_HEIDI = 0.0628). In the LDSC analysis of RA, CCL19 (P = 0.0000), TNFRSF14 (P = 0.0258). By comprehensively analyzing plasma proteomic and transcriptomic data, we successfully identified key therapeutic targets for various clinical subtypes of immune-associated bone diseases. Our findings indicate that the significant positive genes associated with RA include HDGF, CCL19, and TNFRSF14; the positive gene linked to Crohn-related arthropathy is GPT; for MS, the positive genes are BTN1A1, EVI5, OGA, and TNFRSF14; and for PsA, the positive genes are ICAM5, CCDC50, IL17RD, and UBLCP1. Through this comprehensive analytical approach, we have screened potential therapeutic targets for different clinical subtypes of immune-related bone diseases. This research not only enhances our understanding of the pathogenesis of these conditions but also provides a solid theoretical foundation for subsequent drug development and clinical treatment, with the potential to yield significant advancements in the management of patients with immune-related bone diseases.
Collapse
Affiliation(s)
- Wei Yang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chenglin Liu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Miao Cui
- Capital Medical University, No.10, Xitoutiao, You'anmenwai, Beijing, 100069, Fengtai District, China.
| |
Collapse
|
4
|
Kaur A, Rohit, Aran KR. Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects. Brain Res 2025; 1851:149472. [PMID: 39864645 DOI: 10.1016/j.brainres.2025.149472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS). Additionally, it contributes to immune regulation through microglial activation, cytokine release, complement system interception, fragment crystallization (Fc) receptor modulation, and major histocompatibility complex (MHC II) expression modification, which lower the risk of inflammatory and autoimmune reactions in the central nervous system (CNS). As per the literature, serum bilirubin concentrations are associated with CNS diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, schizophrenia and kernicterus spectrum disorder (KSD), which causes neuronal damage, especially in regions like the basal ganglia and cerebellum, which causes movement abnormalities and cognitive deficits. The aim of this article is to explore the dual role of bilirubin as neuroprotective and neurotoxic, essential for establishing effective therapeutic outcomes for neurodegenerative diseases by looking at its cellular mechanisms and discussing how bilirubin's antioxidant properties can shield neurons and, in some situations, may induce oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Rohit
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
5
|
Liu XM, Li Z, Wang XY, Ding BW, Wang JQ, Qiao X, Feng YK, Hao JH, Xu JY. Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy. J Control Release 2025; 379:797-813. [PMID: 39848589 DOI: 10.1016/j.jconrel.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors. Herein, HO-1i-based Platinum(IV) prodrugs are prepared and candidate complex 15 is further developed into self-assembled nanoparticles (15-NPs). 15 and 15-NPs significantly increase cytotoxicity, particularly in HepG2 (74.77- and 96.14-fold increases) and A549cisR (38.6- and 47.24-fold increases), while reducing toxicity towards normal cells compared to cisplatin. In vitro experiments show 15 and 15-NPs activated multiple pathways, including p38/MAPK- and MDR-related proteins, achieving multi-target synergistic chemosensitization and anti-resistance, further verified by RNA-sequencing analysis. In vivo tests demonstrate that 15 and 15-NPs efficiently inhibit tumor growth and systemic toxicity, especially 15-NPs with optimal tumor-inhibition rate and survival (80% and 100%), superior to cisplatin (40% and 50%), attributing to its extra endocytosis, EPR effect, and precisely tumor-targeted release besides the advantage of a free HO-1i-Pt(IV) prodrug. Additionally, 15 and 15-NPs distinctly regulate T-cell and macrophage functions, thereby exhibiting a chemoimmuno-combined action. This study highlights that multi-functional Platinum(IV) prodrug target-delivered to tumors via carrier-free nanoparticles may represent an effective modality for improving cancer therapy.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ya Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo-Wen Ding
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Ji-Hui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Tatikolov AS, Pronkin PG, Panova IG. Bilirubin: Photophysical and photochemical properties, phototherapy, analytical methods of measurement. A short review. Biophys Chem 2025; 318:107378. [PMID: 39689397 DOI: 10.1016/j.bpc.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body. Bilirubin exhibits photochemical activity, which has been the subject of numerous studies up to now. Such studies are relevant because the bilirubin photochemistry provides the basis for bilirubin removing in phototherapy of neonatal jaundice (neonatal hyperbilirubinemia) and for some therapeutic applications. Furthermore, it can model several elementary processes of molecular photonics. In particular, the bilirubin molecule is capable of ultrafast Z-E photoisomerization and contains two almost identical dipyrromethenone chromophores capable of exciton coupling. The present review considers the data on the photophysical and photochemical properties of bilirubin and ultrafast routes of its phototransformations, as well as its photochemical reactions in phototherapy of neonatal hyperbilirubinemia and the ways to decrease the possible adverse effects of the phototherapy. The main analytical methods of bilirubin measurement in biological systems are also viewed.
Collapse
Affiliation(s)
- Alexander S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia.
| | - Pavel G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Ina G Panova
- International Scientific and Practical Center of Tissue Proliferation, st. Prechistenka, 14/19, Moscow 119034, Russia
| |
Collapse
|
7
|
Mancuso C. The Heme Oxygenase/Biliverdin Reductase System and Its Genetic Variants in Physiology and Diseases. Antioxidants (Basel) 2025; 14:187. [PMID: 40002374 PMCID: PMC11852105 DOI: 10.3390/antiox14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, constitutive and committed to the physiologic turnover of heme and in the intracellular oxygen sensing. Many studies have identified genetic variants of the HO/BVR system and suggested their connection in free radical-induced diseases. The most common genetic variants include (GT)n dinucleotide length polymorphisms and single nucleotide polymorphisms. Gain-of-function mutations in the HO-1 and HO-2 genes foster the ventilator response to hypoxia and reduce the risk of coronary heart disease and age-related macular degeneration but increase the risk of neonatal jaundice, sickle cell disease, and Parkinson's disease. Conversely, loss-of-function mutations in the HO-1 gene increase the risk of type 2 diabetes mellitus, chronic obstructive pulmonary disease, and some types of cancers. Regarding BVR, the reported loss-of-function mutations increase the risk of green jaundice. Unfortunately, the physiological role of the HO/BVR system does not allow for the hypothesis gene silencing/induction strategies, but knowledge of these mutations can certainly facilitate a medical approach that enables early diagnoses and tailored treatments.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 1, 00168 Rome, Italy;
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
8
|
Liu L, Yin J, Liu Y, Li B, Kang S, Du N. Causal effects of genetically determined circulating metabolites on endometriosis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40690. [PMID: 39809150 PMCID: PMC11596758 DOI: 10.1097/md.0000000000040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025] Open
Abstract
Endometriosis (EMs) is a common gynecological disease accompanied by metabolic disturbances. However, the causality between metabolites and the risk of EMs remains unclear. We conducted a 2-sample Mendelian randomization (MR) analysis using the publicly available genome-wide association study (GWAS) of 486 circulating metabolites and EMs. The inverse variance weighted (IVW) was mainly used for assessing causality. MR-Egger intercept, MR-PRESSO Global, leave-one-out, and Cochran Q test analyses were used for sensitivity analyses. A total of 25 causal metabolites related to EMs have been identified, including 13 known and 12 unknown ones. Among the known metabolites, caffeine (OR = 0.86, 95% CI: 0.76-0.98, P = .026), cortisol (OR = 0.64, 95% CI: 0.41-0.99, P = .047), glycocholate (OR = 0.67, 95% CI: 0.51-0.87, P = .003), adrenate 22:4n6 (OR = 0.52, 95% CI: 0.35-0.77, P = .001), and ergothioneine (OR = 0.62, 95% CI: 0.47-0.81, P = .000) were protective factors for EMs, while mannose (OR = 1.43, 95% CI: 1.01-2.03, P = .044), 4-acetamidobutanoate (OR = 1.92, 95% CI: 1.27-2.89, P = .002), 1-linoleoylglycerol (OR = 1.36, 95% CI: 1.10-1.68, P = .005), bilirubin (Z, Z) (OR = 1.15, 95% CI: 1.01-1.31, P = .032), threonate (OR = 1.42, 95% CI: 1.14-1.77, P = .002), bilirubin (E, E) (OR = 1.18, 95% CI: 1.01-1.38, P = .039), erythronate (OR = 1.59, 95% CI: 1.01-2.52, P = .047), and dimethylarginine (SDMA + ADMA) (OR = 2.07, 95% CI: 1.19-3.62, P = .010) were risk factors for EMs. Additionally, there was no evidence of heterogeneity or pleiotropy of the known metabolites. Leave-one-out analysis indicated that the MR findings were robust. Our findings provide valuable circulating biomarkers as well as therapeutic targets for the screening, prevention, and treatment of EMs.
Collapse
Affiliation(s)
- Lusha Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junping Yin
- Department of Clinical Laboratory, Affiliated hospital of Hebei Engineering university, Handan, Hebei, China
| | - Yakun Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, Hebei, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
10
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
11
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
12
|
Chen J, Zhang J, Xia Y, Li J, Jia Q, Zhang Z, Jing X, Xu Y, Zou L, Wang L, Song H, Li J, Liu Q, Xiong Y, Tang Q, Chen W, Yang N, Xu H, Li Y, He J. Reactive Oxygen Species-Responsive Delivery of a Notch Inhibitor to Alleviate Nonalcoholic Steatohepatitis by Inhibiting Hepatic de Novo Lipogenesis and Inflammation. Mol Pharm 2024; 21:2922-2936. [PMID: 38751169 DOI: 10.1021/acs.molpharmaceut.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
With the increased prevalence of nonalcoholic steatohepatitis (NASH) in the world, effective pharmacotherapy in clinical practice is still lacking. Previous studies have shown that dibenzazepine (DBZ), a Notch inhibitor, could alleviate NASH development in a mouse model. However, low bioavailability, poor water solubility, and extrahepatic side effects restrict its clinical application. To overcome these barriers, we developed a reactive oxygen species (ROS)-sensitive nanoparticle based on the conjugation of bilirubin to poly(ethylene glycol) (PEG) chains, taking into account the overaccumulation of hepatic ROS in the pathologic state of nonalcoholic steatohepatitis (NASH). The PEGylated bilirubin can self-assemble into nanoparticles in an aqueous solution and encapsulate insoluble DBZ into its hydrophobic cavity. DBZ nanoparticles (DBZ Nps) had good stability, rapidly released DBZ in response to H2O2, and effectively scavenged intracellular ROS of hepatocytes. After systemic administration, DBZ Nps could accumulate in the liver of the NASH mice, extend persistence in circulation, and improve the bioavailability of DBZ. Furthermore, DBZ Nps significantly improved glucose intolerance, relieved hepatic lipid accumulation and inflammation, and ameliorated NASH-induced liver fibrosis. Additionally, DBZ Nps had no significant extrahepatic side effects. Taken together, our results highlight the potential of the ROS-sensitive DBZ nanoparticle as a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ling Zou
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Lingling Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haiying Song
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jingwei Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Na Yang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haixia Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
13
|
Kitahama T, Ishii K, Haneda R, Inoue M, Mayanagi S, Tsubosa Y. Clinical Significance of Albumin-Bilirubin Grade in Thoracic Esophageal Squamous Cell Carcinoma. J Surg Res 2024; 295:673-682. [PMID: 38128346 DOI: 10.1016/j.jss.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The albumin-bilirubin (ALBI) score evaluates liver dysfunction severity. However, this score had prognostic effects in patients with hepatocellular, pancreatic, and gastric carcinomas. We aimed to assess the predictive value of the ALBI score in patients with esophageal squamous cell carcinoma (ESCC). METHODS Data from 154 patients with ESCC who consecutively underwent neoadjuvant chemotherapy (NAC) and subtotal esophagectomy were retrospectively investigated. The ALBI score was calculated as pre-NAC ALBI and categorized into grades 1, 2a, 2b, and 3; low-ALBI group (n = 134) was assigned with ALBI grade 1 and the other grades were assigned to the high-ALBI group (n = 20). RESULTS The pre-NAC ALBI was significantly associated with relapse-free survival (RFS) and overall survival (P = 0.003 and P = 0.014, respectively). Based on multivariate analysis, pre-NAC ALBI, pathological T factor, and N factor were identified as independent prognostic factors for poor RFS. Multivariate and univariate analyses limited to factors were obtained before treatment, indicating high pre-NAC ALBI as an independent prognostic factor of poor overall survival (P = 0.039) and RFS (P = 0.008). With respect to pathological response to NAC, patients in the high pre-NAC ALBI group had a significantly lower response than patients in the low pre-NAC ALBI group (P = 0.010). CONCLUSIONS Our results suggested that the pre-NAC ALBI marker predicts the long-term outcome and pathological response to NAC in patients with ESCC consecutively undergoing NAC and a subtotal esophagectomy.
Collapse
Affiliation(s)
- Takumi Kitahama
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenjiro Ishii
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Ryoma Haneda
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masazumi Inoue
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shuhei Mayanagi
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
14
|
Zhang J, Zhou P, Hu S, Cai S, He T. Causal inference between serum bilirubin levels and juvenile idiopathic arthritis-associated uveitis: A bidirectional Mendelian randomization study. Health Sci Rep 2024; 7:e1847. [PMID: 38313187 PMCID: PMC10835017 DOI: 10.1002/hsr2.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background Several observational studies have suggested an association between low serum bilirubin levels and Behçet's disease uveitis. However, the causal inference between bilirubin level and juvenile idiopathic arthritis-associated uveitis (JIAU) remains ambiguous. We investigated the potential causal relationship between serum bilirubin levels and JIAU using a bidirectional two-sample Mendelian randomization (MR) framework. Methods We systemically integrated summary-level data from published large-scale genome-wide association studies on bilirubin level and JIAU in a Caucasian British population. To determine the causal effect of bilirubin level on JIAU, we constructed strong instrumental variables using 47 and 80 single-nucleotide polymorphisms (SNPs) specific to direct bilirubin and total bilirubin levels, respectively. For reverse causal inference, seven SNPs associated with JIAU were included in our study. Multiple complementary methods were further performed to evaluate the robustness of MR estimates. Results The inverse-variance weighted estimate did not show any significant causal associations of genetically predicted serum direct or total bilirubin level with the risk of JIAU (odds ratio [OR]: 1.010, 95% confidence interval [CI]: 0.750-1.359, p = 0.947; OR: 0.867, 95% CI: 0.688-1.093; p = 0.227, respectively). MR-Egger and weighted median methods also obtained similar associations. Additionally, the results of reverse MR analyses using JIAU as exposure showed no associations of genetically predicted risk of JIAU with serum bilirubin levels (p > 0.05). In sensitivity analysis, the causal estimate between serum bilirubin levels and JIAU did not differ when SNPs associated with possible confounders were omitted. Conclusion Genetic evidence from our bidirectional analysis did not support a causal association between serum bilirubin levels and JIAU risk in the Caucasian British population. Future large-scale studies should be conducted to validate these findings and explore any causal effects on the disease process.
Collapse
Affiliation(s)
- Jun Zhang
- Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Peng Zhou
- College of ArchitectureChangsha University of Science and TechnologyChangshaHunanChina
| | - Shuqiong Hu
- Wuhan Aier Eye Hospital of Wuhan UniversityWuhanHubeiChina
| | - Shiya Cai
- Department of Ophthalmology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Tao He
- Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
15
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
16
|
Mejia A, Vivian E, Shah J, Barrera Gutierrez JC. Albumin-Bilirubin (ALBI) Score and Systemic Immune-Inflammation Indexes Used As Pretreatment Outcome Predictors in Patients With Pancreatic Ductal Adenocarcinoma Undergoing Robotic or Open Whipple Procedures: A Logistic Regression Analysis. Cureus 2023; 15:e50949. [PMID: 38249287 PMCID: PMC10800120 DOI: 10.7759/cureus.50949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer (PC) in the United States. In patients with resectable PC, identification of pretreatment biomarkers before surgery can help in the decision-making process by weighing the benefits of neo-adjuvant therapy, surgical procedure, and adjuvant therapy. The purpose of this study was to determine if the albumin-bilirubin (ALBI) score and immune-inflammatory marker levels can be used in combination as pretreatment predictors of mortality risk in patients undergoing the Whipple procedure (alternatively, pancreatoduodenectomy (PD)) for PDAC. Methods This retrospective study included 115 patients with PDAC who underwent open or robotic Whipple procedures between January 2013 and December 2022 at a single tertiary medical center. Logistic regression analysis was used to find the association between predictors and mortality. Machine learning algorithms were used to calculate the performance of the different models. Results Bivariate analysis showed that the variables "sex" and "body mass index (BMI)" had a potential association with mortality, although statistical significance was not achieved for sex (p = 0.07). Patients with BMIs >25 kg/m2 had a higher risk of mortality compared to patients with BMIs ≤24.9 kg/m2 (odds ratio (OR) = 2.2, 95% CI = 1.03-4.8, p = 0.04). Higher (more positive) ALBI scores (>-2.24) were also associated with increased mortality risk (OR = 4.6, 95% CI = 2-10.5, p = 0.0003). When the cutoff values of the inflammatory markers were used to categorize these variables, values greater than the cutoff values were associated with an increased risk of mortality. In the multivariate logistic regression model, an ALBI score >-2.24 (OR = 4.3, 95% CI = 1.8-10.3, p = 0.0008), neutrophil-to-lymphocyte ratio (NLR) >3.5 (OR = 3.3, 95% CI = 1.4-7.9, p = 0.007), and being a woman (OR = 2.6, 95% CI = 1.1-6.4, p = 0.03) remained influential predictors of increased mortality (c value = 0.77). Conclusion The ALBI score and the NLR are easily accessible markers; their use, combined with a patient's sex, can provide useful pre-surgical information regarding mortality risk after PD. This can aid in treatment planning as well as expedite decisions about the type of Whipple procedure, adjuvant therapy, and surveillance, which can subsequently improve a patient's outcomes and survival.
Collapse
Affiliation(s)
- Alejandro Mejia
- Surgery, The Liver Institute, Methodist Dallas Medical Center, Dallas, USA
| | - Elaina Vivian
- Performance Improvement, Methodist Dallas Medical Center, Dallas, USA
| | - Jimmy Shah
- Performance Improvement, Methodist Dallas Medical Center, Dallas, USA
| | | |
Collapse
|
17
|
Shi L, Li D, Zhang Y, Wang J, Fu J, Liu X, Wang P. Factors influencing the degree of disability in patients with neuromyelitis optica spectrum disorders. Eur J Med Res 2023; 28:426. [PMID: 37821922 PMCID: PMC10568753 DOI: 10.1186/s40001-023-01404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE To investigate the factors influencing the degree of disability in patients with neuromyelitis optica spectrum disorder (NMOSD) and provide evidence for disease monitoring and clinical intervention. METHODS Eighty-four patients with NMOSD at Xuanwu Hospital Capital Medical University were enrolled in this retrospective study. Before treatment, blood was collected from all patients, and their expanded disability status scores were assessed. RESULTS Of the 84 patients assessed, 66 (78.57%) had an expanded disability status scale score < 7, and 18 (21.43%) had scores ≥ 7. The univariate analysis showed that the total bilirubin (TBil), cerebrospinal fluid albumin (CSF ALB), cerebrospinal fluid immunoglobulin G (CSF IgG), QALB, and QIgG levels in the group with scores ≥ 7 were significantly different from those with scores < 7 (P < 0.05). In addition, Spearman's correlation analysis showed a significant correlation between ALB and expanded disability status scores in patients with NMOSD (P < 0.05), and the multivariate logistic regression analysis showed that TBil was an independent factor influencing the degree of disability in patients with NMOSD (P < 0.05). The receiver operating characteristic curve was constructed using TBil values; the area under the curve of TBil was 0.729 (P < 0.01), and the best cut-off value was 11.015 g/L. Its sensitivity in predicting the severity of disability in NMOSD patients was 51.5% while its specificity was 88.9%. CONCLUSION TBil is an independent factor that influences the severity of disability in patients with NMOSD. In addition, ALB is closely related to NMOSD severity, and some factors associated with the BBB are significantly increased in severely disabled NMOSD patients.
Collapse
Affiliation(s)
- Lili Shi
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dawei Li
- Neurology of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunxiu Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinling Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Fu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xia Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
19
|
Yamashita S, Wada T, Deguchi R, Mashima N, Higuchi M, Miyai H, Koike H, Kohjimoto Y, Hara I. Prognostic significance of pre-treatment albumin-bilirubin grade in metastatic urothelial carcinoma receiving pembrolizumab. Jpn J Clin Oncol 2023; 53:845-850. [PMID: 37357945 DOI: 10.1093/jjco/hyad069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Pre-treatment albumin-bilirubin grade is a useful biomarker for predicting prognosis in patients receiving immune checkpoint inhibitors for advanced malignancies. We evaluated the prognostic impact of pre-treatment albumin-bilirubin grade in patients receiving pembrolizumab for metastatic urothelial carcinoma. METHODS In this multicenter retrospective study, we calculated pre-treatment albumin-bilirubin scores of 96 patients who received pembrolizumab for metastatic urothelial carcinoma between January 2018 and March 2022. Patients were classified according to albumin-bilirubin grade. Progression-free survival and cancer-specific survival were compared between the groups. To evaluate the prognostic impact of pre-treatment albumin-bilirubin grade, we also performed Cox proportional regression analyses for progression-free survival and cancer-specific survival. RESULTS The median pre-treatment albumin bilirubin score was -2.52 (quartile: -2.76 to -2.10), and albumin-bilirubin grade was grade 1 in 37 patients (39%), grade 2a in 30 patients (31%), 2b in 22 patients (23%) and grade 3 in 7 patients (7%). The median progression-free survival and cancer-specific survival were 2 and 7 months, respectively. Progression-free survival and cancer-specific survival were significantly different between the albumin-bilirubin grade groups (P < 0.01 and P < 0.01, respectively) and prognosis became poorer as albumin-bilirubin grade increased. High albumin-bilirubin grade was shown in multivariable Cox proportional analyses to be independently associated with both poor progression-free survival and poor cancer-specific survival. CONCLUSIONS High pre-treatment albumin-bilirubin grade could be a significant independent predictor of poor prognosis in patients receiving pembrolizumab for advanced urothelial carcinoma.
Collapse
Affiliation(s)
- Shimpei Yamashita
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Takuma Wada
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Ryusuke Deguchi
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Nobuyuki Mashima
- Department of Urology, Kinan Hospital, 46-70 Shinjyo, Tanabe, Wakayama 646-8588, Japan
| | - Masatoshi Higuchi
- Department of Urology, Rinku General Medical Center, 2-23 Rinkuoraikita, Izumisano, Osaka 598-8577, Japan
| | - Haruka Miyai
- Department of Urology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori cho, Kishiwada, Osaka 596-0042, Japan
| | - Hiroyuki Koike
- Department of Urology, Wakayama Rosai Hospital, 93-1 Kinomoto, Wakayama 640-8505, Japan
| | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| |
Collapse
|
20
|
Panova IG, Tatikolov AS. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals (Basel) 2023; 16:1077. [PMID: 37630992 PMCID: PMC10458090 DOI: 10.3390/ph16081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The use of conventional contrast media for diagnostic purposes (in particular, Gd-containing and iodinated agents) causes a large number of complications, the most common of which is contrast-induced nephropathy. It has been shown that after exposure to contrast agents, oxidative stress often occurs in patients, especially in people suffering from various diseases. Antioxidants in the human body can diminish the pathological consequences of the use of contrast media by suppressing oxidative stress. This review considers the research studies on the role of antioxidants in preventing the negative consequences of the use of contrast agents in diagnostics (mainly contrast-induced nephropathy) and the clinical trials of different antioxidant drugs against contrast-induced nephropathy. Composite antioxidant/contrast systems as theranostic agents are also considered.
Collapse
Affiliation(s)
- Ina G. Panova
- International Scientific and Practical Center of Tissue Proliferation, 29/14 Prechistenka Str., 119034 Moscow, Russia;
| | - Alexander S. Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
21
|
Wang Y, Wang H, Zhang Q, Li S, Mao Y, Lu J, Shen Y, Han Y. Correlation between hyperbilirubinemia risk and immune cell mitochondria parameters in neonates with jaundice. Front Pediatr 2023; 11:1200099. [PMID: 37397145 PMCID: PMC10313225 DOI: 10.3389/fped.2023.1200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose To explore the correlation between mitochondria parameters of immune cells and hyperbilirubinemia risk in hospitalized neonates with jaundice. Methods This retrospective study included jaundiced neonates born between September 2020 and March 2022 at Shaoxing Keqiao Women & Children's Hospital. The neonates were divided into low, intermediate-low, intermediate-high, and high-risk groups according to the hyperbilirubinemia risk. The purpose parameters including percentage, absolute count, mitochondrial mass (MM), and single-cell MM (SCMM) of peripheral blood T lymphocytes detected by flow cytometry were collected. Results Finally, 162 neonates with jaundice (47, 41, 39, and 35 with low, intermediate-low, intermediate-high, and high-risk) were included. CD3+ SCMM was significantly higher in the high-risk group compared with the low and intermediate-low-risk groups (both P < 0.0083), CD4+ SCMM was significantly higher in the high-risk group compared with the three other groups (all P < 0.0083), and CD8+ SCMM was significantly higher in the intermediate-low and high-risk groups compared with the low-risk group (both P < 0.0083). CD3+ (r = 0.34, P < 0.001) and CD4+ (r = 0.20, P = 0.010) SCMM positively correlated with bilirubin levels. Conclusions The mitochondrial SCMM parameters differed significantly among jaundiced neonates with different hyperbilirubinemia risks. CD3+ and CD4+ T cell SCMM values were positively correlated with the serum bilirubin levels, and might correlated with hyperbilirubinemia risk.
Collapse
|
22
|
Huang X, Pan Y, Liu Y, Zhou Z, Zhang Y, Gao C, He C. Clinical Utility of the Neutrophil-to-Bilirubin Ratio in the Detection of Disease Activity in Ulcerative Colitis. J Inflamm Res 2023; 16:2549-2559. [PMID: 37346801 PMCID: PMC10281274 DOI: 10.2147/jir.s413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Background Ulcerative colitis (UC) is a chronic relapsing remitting form of inflammatory bowel disease (IBD). Current disease monitoring includes evaluation of symptoms, fecal calprotectin, and colonoscopy. Due to limited availability of the latter two modalities in China, we sought a readily available, inexpensive, disease monitoring laboratory assessment. We recently identified a novel serological index (the neutrophil-to-bilirubin ratio, NBR) for monitoring disease activity in Crohn's disease. However, the clinical significance has not been evaluated in UC. Here, we aimed to verify the hypothesis that NBR might be useful in monitoring clinical and endoscopic activity in patients with UC. Methods To test our hypothesis, we conducted a single-center, retrospective study including a total of 188 patients with UC and 145 non-IBD controls. NBR was calculated to determine its practical value in monitoring disease activity (including clinical and endoscopic activity). Disease activity of UC was determined by the partial Mayo score and the Mayo endoscopic score (MES) system. Results NBR was significantly higher in patients with UC than that in controls (12.10, IQR: 9.85-16.69 versus 5.06, IQR: 3.94-6.55; p < 0.001) and showed positive correlations with clinical and endoscopic disease activity in UC. Additionally, NBR was significantly lower in patients with endoscopic mucosal healing (MH) than that in those without endoscopic MH (8.81, IQR: 6.67-11.67 versus 13.51, IQR: 11.04-18.71; p < 0.001). Serial evaluation of NBR in a subset of patients demonstrated that NBR was significantly decreased during the MH stage compared with that during the endoscopically active stage. Conclusion Our study suggests that NBR may be a promising candidate for assessing disease activity in UC, with potential for widespread clinical use and significant clinical implications.
Collapse
Affiliation(s)
- Xijing Huang
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ya Liu
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Zhou Zhou
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yinghui Zhang
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chong He
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
Cui Y, Wu C, Li L, shi H, Li C, Yin S. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases. Mater Today Bio 2023; 20:100658. [PMID: 37214553 PMCID: PMC10196858 DOI: 10.1016/j.mtbio.2023.100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Bilirubin, an open chain tetrapyrrole, has powerful antioxidant, anti-inflammatory, immuno-suppressive, metabolic-modulating and anti-proliferative activities. Bilirubin is a natural molecule that is produced and metabolized within the human body, making it highly biocompatible and well suited for clinical use. However, the use of bilirubin has been hampered by its poor water solubility and instability. With advanced construction strategies, bilirubin-derived nanoparticles (BRNPs) have not only overcome the disadvantages of bilirubin but also enhanced its therapeutic effects by targeting damaged tissues, passing through physiological barriers, and ensuring controlled sustained release. We review the mechanisms underlying the biological activities of bilirubin, BRNP preparation strategies and BRNP applications in various disease models. Based on their superior performance, BRNPs require further exploration of their efficacy, biodistribution and long-term biosafety in nonhuman primate models that recapitulate human disease to promote their clinical translation.
Collapse
Affiliation(s)
- Yaqi Cui
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cuiping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haibo shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - ChunYan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
24
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
25
|
Zhang L, Yang J, Deng M, Xu C, Lai C, Deng X, Wang Y, Zhou Q, Liu Y, Wan L, Li P, Fang J, Hou J, Lai X, Ma F, Li N, Li G, Kong W, Zhang W, Li J, Cao M, Feng L, Chen Z, Chen L, Ji T. Blood unconjugated bilirubin and tacrolimus are negative predictors of specific cellular immunity in kidney transplant recipients after SAR-CoV-2 inactivated vaccination. Sci Rep 2023; 13:7263. [PMID: 37142713 PMCID: PMC10158706 DOI: 10.1038/s41598-023-29669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023] Open
Abstract
The immunogenicity of SARS-CoV-2 vaccines is poor in kidney transplant recipients (KTRs). The factors related to poor immunogenicity to vaccination in KTRs are not well defined. Here, observational study demonstrated no severe adverse effects were observed in KTRs and healthy participants (HPs) after first or second dose of SARS-CoV-2 inactivated vaccine. Different from HPs with excellent immunity against SARS-CoV-2, IgG antibodies against S1 subunit of spike protein, receptor-binding domain, and nucleocapsid protein were not effectively induced in a majority of KTRs after the second dose of inactivated vaccine. Specific T cell immunity response was detectable in 40% KTRs after the second dose of inactivated vaccine. KTRs who developed specific T cell immunity were more likely to be female, and have lower levels of total bilirubin, unconjugated bilirubin, and blood tacrolimus concentrations. Multivariate logistic regression analysis found that blood unconjugated bilirubin and tacrolimus concentration were significantly negatively associated with SARS-CoV-2 specific T cell immunity response in KTRs. Altogether, these data suggest compared to humoral immunity, SARS-CoV-2 specific T cell immunity response are more likely to be induced in KTRs after administration of inactivated vaccine. Reduction of unconjugated bilirubin and tacrolimus concentration might benefit specific cellular immunity response in KTRs following vaccination.
Collapse
Affiliation(s)
- Lei Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanhui Xu
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Xuanying Deng
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Li Wan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Jiali Fang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jingcai Hou
- Organ Transplant Department, Zhongshan City People's Hospital, Zhongshan, 528403, People's Republic of China
| | - Xingqiang Lai
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Feifei Ma
- Obstetrical Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ning Li
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Guanghui Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiting Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jiali Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Mibu Cao
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Zheng Chen
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China.
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
26
|
Lee JJB, Park JS, Hong HP, Kim MS, Koo DH, Lee H, Nam H. Evaluation of Pretreatment Albumin-Bilirubin Grade as a Better Prognostic Factor Compared to Child-Pugh Classification in Patients with Hepatocellular Carcinoma Receiving Transarterial Chemoembolization Combined with Radiotherapy. J Pers Med 2023; 13:jpm13020354. [PMID: 36836588 PMCID: PMC9963241 DOI: 10.3390/jpm13020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This study assessed the use of pretreatment albumin--bilirubin (ALBI) grade as a prognostic factor in patients with hepatocellular carcinoma (HCC) receiving combined transarterial chemoembolization (TACE) and radiotherapy (RT). Patients who underwent RT following TACE between January 2011 and December 2020 were analyzed retrospectively. The survival outcomes of patients in regard to the ALBI grade and Child-Pugh (C-P) classification were evaluated. A total of 73 patients with a median follow-up of 16.3 months were included. Thirty-three (45.2%) and forty patients (54.8%) were categorized into ALBI grades 1 and 2-3, respectively, while sixty-four (87.7%) and nine (12.3%) were C-P classes A and B, respectively (p = 0.003). The median progression-free survival (PFS) and overall survival (OS) for ALBI grade 1 vs. 2-3 were 8.6 months vs. 5.0 months (p = 0.016) and 27.0 months vs. 15.9 months (p = 0.006), respectively. The median PFS and OS for C-P class A vs. B were 6.3 months vs. 6.1 months (p = 0.265) and 24.8 months vs. 19.0 months (p = 0.630), respectively. A multivariate analysis showed that ALBI grades 2-3 were significantly associated with worse PFS (p = 0.035) and OS (p = 0.021). In conclusion, the ALBI grade could be a good prognosticator in HCC patients who were treated with combined TACE-RT.
Collapse
Affiliation(s)
- Jason Joon Bock Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jun Su Park
- Department of Radiation Oncology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong 30099, Republic of Korea
| | - Hyun Pyo Hong
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Myung Sub Kim
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Dong-Hoe Koo
- Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence: (H.L.); (H.N.)
| | - Heerim Nam
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence: (H.L.); (H.N.)
| |
Collapse
|
27
|
Dirim AB, Kalayci T, Safak S, Garayeva N, Gultekin B, Hurdogan O, Solakoglu S, Yazici H, Cefle K, Ozturk S, Yildiz A. Heme oxygenase-1 deficiency as an extremely rare cause of AA-type renal amyloidosis: Expanding the clinical features and review of the literature. Clin Rheumatol 2023; 42:597-606. [PMID: 36502441 DOI: 10.1007/s10067-022-06465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Heme oxygenase-1 (HMOX-1) is an enzyme that regulates heme degradation. Antiinflammatory, antioxidant, and cytoprotective effects of HMOX-1 were also described. It is encoded by the HMOX1 gene, and biallelic mutations cause HMOX-1 deficiency, which is a rare chronic multisystemic inflammatory disorder. This inflammatory status could lead to the development of secondary AA-type amyloidosis theoretically. Here, we report a 30-year-old male with AA-type renal amyloidosis due to a chronic inflammatory condition of unknown origin. Paternal consanguinity and dysmorphic features raised suspicion of a rare genetic disorder. Clinical exome sequencing (CES) confirmed the HMOX-1 deficiency diagnosis related to homozygous missense G139V mutation. To the best of our knowledge, our patient is the eleventh HMOX-1 deficiency case in the literature. Also, HMOX-1 deficiency-related systemic AA-type amyloidosis has not been reported before.
Collapse
Affiliation(s)
- Ahmet Burak Dirim
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| | - Tugba Kalayci
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seda Safak
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Nurane Garayeva
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Burak Gultekin
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Ozge Hurdogan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seyhun Solakoglu
- Department of Histology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Halil Yazici
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Kivanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Yildiz
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| |
Collapse
|
28
|
Mito M, Sakata J, Hirose Y, Abe S, Saito S, Miura Y, Ishikawa H, Miura K, Takizawa K, Ichikawa H, Shimada Y, Kobayashi T, Wakai T. Preoperative controlling nutritional status score predicts systemic disease recurrence in patients with resectable biliary tract cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:399-409. [PMID: 36404251 DOI: 10.1016/j.ejso.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This study aimed to evaluate the association between the preoperative Controlling Nutritional Status (CONUT) score, survival outcomes, and recurrence pattern in patients with resectable biliary tract cancer (BTC). METHODS A total of 224 BTC patients (gallbladder, n = 69; intrahepatic bile ducts, n = 26; perihilar bile ducts, n = 72; distal bile duct, n = 57) who underwent surgery with curative intent were enrolled. The best cutoff point of the preoperative CONUT score in discriminating survival was determined using χ2 scores. The sites of recurrence were subclassified as locoregional or distant. RESULTS Patients were subdivided into the CONUT-low (score ≤ 3, n = 156) and the CONUT-high (score > 3; n = 68) groups. In-hospital mortality occurred more frequently in the CONUT-high group than in the CONUT-low group (7.4% vs. 1.3%; p = 0.028). A high preoperative CONUT score was independently associated with worse overall survival (hazard ratio [HR] 1.906, p = 0.001), worse disease-specific survival (HR 1.840, p = 0.006), and worse recurrence-free survival (HR 1.680, p = 0.005). Recurrence developed in 110 (49.1%) patients. A high preoperative CONUT score was independently associated with a higher risk of distant recurrence (HR 2.245, p = 0.001), but not locoregional recurrence. The incidences of distant recurrence at 5 years were 55.4% and 34.2% in the CONUT-high and CONUT-low groups, respectively (p = 0.001). CONCLUSIONS The preoperative CONUT score independently predicts survival outcomes and may serve as a surrogate marker of aggressive systemic disease recurrence in patients with resectable BTC.
Collapse
Affiliation(s)
- Masato Mito
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun Abe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Seiji Saito
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirosuke Ishikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuyasu Takizawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
29
|
Wu C, Jin Y, Cui Y, Zhu Y, Yin S, Li C. Effects of bilirubin on the development and electrical activity of neural circuits. Front Cell Neurosci 2023; 17:1136250. [PMID: 37025700 PMCID: PMC10070809 DOI: 10.3389/fncel.2023.1136250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
In the past several decades, bilirubin has attracted great attention for central nervous system (CNS) toxicity in some pathological conditions with severely elevated bilirubin levels. CNS function relies on the structural and functional integrity of neural circuits, which are large and complex electrochemical networks. Neural circuits develop from the proliferation and differentiation of neural stem cells, followed by dendritic and axonal arborization, myelination, and synapse formation. The circuits are immature, but robustly developing, during the neonatal period. It is at the same time that physiological or pathological jaundice occurs. The present review comprehensively discusses the effects of bilirubin on the development and electrical activity of neural circuits to provide a systematic understanding of the underlying mechanisms of bilirubin-induced acute neurotoxicity and chronic neurodevelopmental disorders.
Collapse
|
30
|
Sugeçti S, Kepekçi AB, Büyükgüzel K. Effects of Midazolam on Antioxidant Levels, Biochemical and Metabolic Parameters in Eurygaster integriceps Puton (Hemiptera: Scutelleridae) Eggs Parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:4. [PMID: 36495324 DOI: 10.1007/s00128-022-03648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is among the most important insect pests of wheat (Triticum sativum L.) and barley (Hordeum vulgare L.) grown in the Middle East. Biological and chemical methods are insufficient to control E. integriceps populations below economic thresholds. In this study, we investigated the effects of midazolam, a clinical drug, on selected metabolic enzyme activity, antioxidant levels, and biochemical parameters in E. integriceps eggs parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). Increasing concentrations of midazolam caused cell damage in the parasitized eggs due to its oxidative effects. Transferase enzymes, such as, aspartate transferase, alanine transferase, and gamma glutamyl transferase activities were altered following exposure. Metabolic enzymes, such as, creatine kinase, alkaline phosphatase, amylase, and lactate dehydrogenase also were adversely affected. Levels of the non-enzymatic antioxidants uric acid, bilirubin, and albumin also were altered.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Ali Bestemi Kepekçi
- Department of Anesthesia, Vocational School of Health Services, İstanbul Yeni Yüzyıl University, İstanbul, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
31
|
Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem 2022; 37:487-501. [PMID: 34986721 PMCID: PMC8741241 DOI: 10.1080/14756366.2021.2020773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bilirubin (BR) is the final product of haem catabolism. Disruptions along BR metabolic/transport pathways resulting from inherited disorders can increase plasma BR concentration (hyperbilirubinaemia). Unconjugated hyperbilirubinemia may induce BR accumulation in brain, potentially causing irreversible neurological damage, a condition known as BR encephalopathy or kernicterus, to which newborns are especially vulnerable. Numerous pharmaceutical strategies, mostly based on hemoperfusion, have been proposed over the last decades to identify new valid, low-risk alternatives for BR removal from plasma. On the other hand, accumulating evidence indicates that BR produces health benefits due to its potent antioxidant, anti-inflammatory and immunomodulatory action with a significant potential for the treatment of a multitude of diseases. The present manuscript reviews both such aspects of BR pharmacology, gathering literature data on applied pharmaceutical strategies adopted to: (i) reduce the plasma BR concentration for preventing neurotoxicity; (ii) produce a therapeutic effect based on BR efficacy in the treatment of many disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Alessandro Bonardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Simone Pratesi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Paola Gratteri
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin Prevents the TH + Dopaminergic Neuron Loss in a Parkinson's Disease Model by Acting on TNF-α. Int J Mol Sci 2022; 23:14276. [PMID: 36430754 PMCID: PMC9693357 DOI: 10.3390/ijms232214276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD), the fastest-growing movement disorder, is still challenged by the unavailability of disease-modifying therapy. Mildly elevated levels of unconjugated bilirubin (UCB, PubChem CID 5280352) have been shown to be protective against several extra-CNS diseases, and the effect is attributed to its well-known anti-oxidant and anti-inflammatory capability. We explored the neuroprotective effect of low concentrations of UCB (from 0.5 to 4 µM) in our PD model based on organotypic brain cultures of substantia nigra (OBCs-SN) challenged with a low dose of rotenone (Rot). UCB at 0.5 and 1 µM fully protects against the loss of TH+ (dopaminergic) neurons (DOPAn). The alteration in oxidative stress is involved in TH+ positive neuron demise induced by Rot, but is not the key player in UCB-conferred protection. On the contrary, inflammation, specifically tumor necrosis factor alpha (TNF-α), was found to be the key to UCB protection against DOPAn sufferance. Further work will be needed to introduce the use of UCB into clinical settings, but determining that TNF-α plays a key role in PD may be crucial in designing therapeutic options.
Collapse
Affiliation(s)
- Sri Jayanti
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
- Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy
| | - Claudio Tiribelli
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Silvia Gazzin
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
33
|
Seya M, Aokage T, Nojima T, Nakao A, Naito H. Bile pigments in emergency and critical care medicine. Eur J Med Res 2022; 27:224. [PMID: 36309733 PMCID: PMC9618204 DOI: 10.1186/s40001-022-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Bile pigments, such as bilirubin and biliverdin, are end products of the heme degradation pathway in mammals and are widely known for their cytotoxic effects. However, recent studies have revealed that they exert cytoprotective effects through antioxidative, anti-inflammatory, and immunosuppressive properties. All these mechanisms are indispensable in the treatment of diseases in the field of emergency and critical care medicine, such as coronary ischemia, stroke, encephalomyelitis, acute lung injury/acute respiratory distress syndrome, mesenteric ischemia, and sepsis. While further research is required before the safe application of bile pigments in the clinical setting, their underlying mechanisms shed light on their utilization as therapeutic agents in the field of emergency and critical care medicine. This article aims to summarize the current understanding of bile pigments and re-evaluate their therapeutic potential in the diseases listed above.
Collapse
|
34
|
Vuerich M, Wang N, Graham JJ, Gao L, Zhang W, Kalbasi A, Zhang L, Csizmadia E, Hristopoulos J, Ma Y, Kokkotou E, Cheifetz AS, Robson SC, Longhi MS. Blockade of PGK1 and ALDOA enhances bilirubin control of Th17 cells in Crohn's disease. Commun Biol 2022; 5:994. [PMID: 36131123 PMCID: PMC9492699 DOI: 10.1038/s42003-022-03913-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Unconjugated bilirubin (UCB) confers Th17-cells immunosuppressive features by activating aryl-hydrocarbon-receptor, a modulator of toxin and adaptive immune responses. In Crohn's disease, Th17-cells fail to acquire regulatory properties in response to UCB, remaining at an inflammatory/pathogenic state. Here we show that UCB modulates Th17-cell metabolism by limiting glycolysis and through downregulation of glycolysis-related genes, namely phosphoglycerate-kinase-1 (PGK1) and aldolase-A (ALDOA). Th17-cells of Crohn's disease patients display heightened PGK1 and ALDOA and defective response to UCB. Silencing of PGK1 or ALDOA restores Th17-cell response to UCB, as reflected by increase in immunoregulatory markers like FOXP3, IL-10 and CD39. In vivo, PGK1 and ALDOA silencing enhances UCB salutary effects in trinitro-benzene-sulfonic-acid-induced colitis in NOD/scid/gamma humanized mice where control over disease activity and enhanced immunoregulatory phenotypes are achieved. PGK1 and/or ALDOA blockade might have therapeutic effects in Crohn's disease by favoring acquisition of regulatory properties by Th17-cells along with control over their pathogenic potential.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Gao
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lina Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jason Hristopoulos
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yun Ma
- Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam S Cheifetz
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Xu X, Yu X, Gong K, Tu H, Yao J, Lan Y, Ye S, Weng H, Shi Y, Sheng J. Acute decompensation events differentially impact the risk of nosocomial infections and short-term outcomes in patients with cirrhosis. Front Med (Lausanne) 2022; 9:962541. [PMID: 36059822 PMCID: PMC9428487 DOI: 10.3389/fmed.2022.962541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Aims This research aimed to evaluate the influence of acute decompensation (AD) events upon admission on the subsequent risk of nosocomial infections (NIs) and the synergy between AD and the following NIs on the short-term outcome. Methods A total of 419 hospitalized individuals with cirrhosis and AD participated in the current study. Various AD events at admission and outcomes in patients with or without NIs were compared. The logistic regression and Cox proportional hazards models were designed for NIs development and liver transplant (LT)-free mortality at 28 and 90 days, respectively. Results During hospitalization, 91 patients developed NIs. Notably, a higher proportion of patients with NIs had jaundice (52.7 vs. 30.5%; p < 0.001) and bacterial infections (37.4 vs. 20.7%; p = 0.001) at admission compared to patients without NIs, while a lower proportion suffered gastrointestinal hemorrhage (16.5 vs. 36.6%; p < 0.001). Multivariate analysis revealed that jaundice was independently linked with the development of NIs (OR, 2.732; 95% CI: 1.104–6.762). The 28-day (16.5 vs. 7.3%; p = 0.008) and 90-day (27.5 vs. 15.9%; p = 0.011) LT-free mortality rates of patients with NIs were significantly higher than those without NIs. According to the Cox proportional hazards model, jaundice remained an independent risk factor for 90-day death (HR, 5.775; 95% CI: 1.217–27.397). The connection between total bilirubin and 90-day mortality was nonlinear, and a 6 mg/mL threshold was proposed. Conclusion The types of AD events differentially predispose to risk of NIs. Presenting jaundice at admission is independently associated with NIs occurrence and increased 90-day mortality of patients with NIs. Antibiotic prophylaxis may benefit this specific subset of patients.
Collapse
|
37
|
Pareek S, Flegle AS, Boagni D, Kim JY, Yoo D, Trujillo-Ocampo A, Lee SE, Zhang M, Jon S, Im JS. Post Transplantation Bilirubin Nanoparticles Ameliorate Murine Graft Versus Host Disease via a Reduction of Systemic and Local Inflammation. Front Immunol 2022; 13:893659. [PMID: 35720391 PMCID: PMC9199387 DOI: 10.3389/fimmu.2022.893659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Allogeneic stem cell transplantation is a curative immunotherapy where patients receive myeloablative chemotherapy and/or radiotherapy, followed by donor stem cell transplantation. Graft versus host disease (GVHD) is a major complication caused by dysregulated donor immune system, thus a novel strategy to modulate donor immunity is needed to mitigate GVHD. Tissue damage by conditioning regimen is thought to initiate the inflammatory milieu that recruits various donor immune cells for cross-priming of donor T cells against alloantigen and eventually promote strong Th1 cytokine storm escalating further tissue damage. Bilirubin nanoparticles (BRNP) are water-soluble conjugated of bilirubin and polyethylene glycol (PEG) with potent anti-inflammatory properties through its ability to scavenge reactive oxygen species generated at the site of inflammation. Here, we evaluated whether BRNP treatment post-transplantation can reduce initial inflammation and subsequently prevent GVHD in a major histocompatibility (MHC) mismatched murine GVHD model. After myeloablative irradiation, BALB/c mice received bone marrow and splenocytes isolated from C57BL/6 mice, with or without BRNP (10 mg/kg) daily on days 0 through 4 post-transplantation, and clinical GVHD and survival was monitored for 90 days. First, BRNP treatment significantly improved clinical GVHD score compared to untreated mice (3.4 vs 0.3, p=0.0003), and this translated into better overall survival (HR 0.0638, p=0.0003). Further, BRNPs showed a preferential accumulation in GVHD target organs leading to a reduced systemic and local inflammation evidenced by lower pathologic GVHD severity as well as circulating inflammatory cytokines such as IFN-γ. Lastly, BRNP treatment post-transplantation facilitated the reconstitution of CD4+ iNK T cells and reduced expansion of proinflammatory CD8α+ iNK T cells and neutrophils especially in GVHD organs. Lastly, BRNP treatment decreased ICOS+ or CTLA-4+ T cells but not PD-1+ T cells suggesting a decreased level of T cell activation but maintaining T cell tolerance. In conclusion, we demonstrated that BRNP treatment post-transplantation ameliorates murine GVHD via diminishing the initial tissue damage and subsequent inflammatory responses from immune subsets.
Collapse
Affiliation(s)
- Sumedha Pareek
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Alexandra S Flegle
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Drew Boagni
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Jin Yong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dohyun Yoo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, Seoul, South Korea
| | - Mao Zhang
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jin S Im
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States.,Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
39
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
40
|
Zhou Z, Zhang Y, Yang X, Pan Y, Li L, Gao C, He C. Clinical Significance of Novel Neutrophil-Based Biomarkers in the Diagnosis and Prediction of Response to Infliximab Therapy in Crohn’s Disease. Front Immunol 2022; 13:865968. [PMID: 35309310 PMCID: PMC8931310 DOI: 10.3389/fimmu.2022.865968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
With the increasing incidence and prevalence, Crohn’s disease (CD) has become one of the most challenging diseases in both diagnosis and treatment of gastroenterology. Evaluation of the disease activity and mucosal healing guides clinical decisions regarding subsequent therapy for CD. In this study, we enrolled a total of 144 patients with CD and 239 healthy controls were enrolled. Clinical characteristics and laboratory parameters of enrolled subjects were retrieved from the electronic medical record database of our hospital. Serum cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA). Mucosa expression levels of inflammatory agents were measured by quantitative RT-PCR (qRT-PCR). We identified two neutrophil-based indexes, the neutrophil-to-albumin ratio (NAR) and neutrophil-to-bilirubin ratio (NBR), both of which had not yet been explored in CD or UC. NAR and NBR were significantly increased in patients with CD compared to those in healthy controls, and both indexes showed significantly positive correlations with CD activity and inflammatory load. In note, NAR and NBR showed better performance than blood neutrophil percentage, serum albumin, or bilirubin alone in these scenarios. More importantly, both NAR and NBR discriminated CD patients who completely or partially responded to infliximab (IFX) induction therapy from those with primary non-response. Our observations suggest that NAR and NBR may serve as promising biomarkers in the diagnosis and prediction of response to IFX therapy in CD.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinghui Zhang
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Yang
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangping Li
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Chong He, ; Caiping Gao,
| | - Chong He
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Chong He, ; Caiping Gao,
| |
Collapse
|
41
|
Clinical Significance of Albumin- and Bilirubin-Based Biomarkers in Glaucoma: A Retrospective Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063651. [PMID: 35281459 PMCID: PMC8916859 DOI: 10.1155/2022/8063651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is the second leading cause of global blindness. The etiology of glaucoma is complicated. In addition to elevated intraocular pressure (IOP), several other mechanisms have been implicated in pathogenesis, such as oxidative stress and systemic inflammation. Serum albumin (ALB) and bilirubin (BIL) have been reported to have potent antioxidant properties and contribute to maintain redox homeostasis in various diseases. However, associations between these parameters and glaucoma remain mostly unknown. Here, we conducted a retrospective case-control study, revealing that serum ALB, total BIL (TBIL), and indirect BIL (IBIL) levels were markedly lower in glaucoma patients than those in healthy controls. Furthermore, the neutrophil-to-ALB (NAR), neutrophil-to-TBIL (NTBR), and neutrophil-to-IBIL (NIBR) ratios were greatly higher in glaucoma. Additionally, interestingly, lower ALB and BIL levels and higher NAR, NTBR, and NIBR were associated with severer glaucomatous visual impairment, and NAR, NTBR, and NIBR showed good accuracy as diagnostic tests for glaucoma severity, suggesting these indices might be useful as discriminative biomarkers for disease severity. Our current findings demonstrate associations between ALB, BIL, NAR, NTBR, NIBL, and glaucoma. It might be useful to use NAR, NTBR, and NIBR as predictive markers for disease severity and employ ALB/BIL as alternative therapy or adjuvant medicines in glaucoma patients.
Collapse
|
42
|
Han R, Tian Z, Jiang Y, Guan G, Sun X, Yu Y, Zhang L, Zhou J, Jing X. Prognostic significance of systemic immune-inflammation index and platelet-albumin-bilirubin grade in patients with pancreatic cancer undergoing radical surgery. Gland Surg 2022; 11:576-587. [PMID: 35402206 PMCID: PMC8984986 DOI: 10.21037/gs-22-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/14/2022] [Indexed: 09/10/2023]
Abstract
BACKGROUND Systemic inflammatory markers are associated with patient survival in pancreatic cancer (PC). The aim of this study was to investigate the prognostic significance of the systemic immune-inflammation index (SII) in PC patients who underwent radical surgery. Platelet-albumin-bilirubin (PALBI) grade is a composite evaluation index based on liver function. Patients with pancreatic head cancer are prone to obstructive jaundice, which leads to abnormal liver function. Based on this, we also explored the prognostic value of PALBI grade in PC patients. METHODS Patients with pathologically confirmed PC who had undergone radical surgery (with negative surgical margin) for the first time at the Affiliated Hospital of Qingdao University from January 2013 to December 2019 and followed up by December 2020 were retrospectively analyzed. Peripheral blood cell count is easily affected by infection or hematological diseases, which affects the results, so it is excluded. Clinical data and laboratory examination indexes were collected. The SII and PALBI grade were calculated. The cutoff values were determined using the Youden index. The Cox proportional hazards regression model was used to analyze the prognostic value of the SII and PALBI grade through univariate and multivariate survival analysis. RESULTS A total of 214 patients [median age, 60.29 years; 128 (59.8%) men] met the inclusion criteria. There were 140 patients (65.4%) with pancreatic head cancer according to the tumor location. They were divided into high and low SII or PALBI groups by cutoff values of 705 and -5.6, respectively. According to the multivariate analysis, SII (P<0.001) was an independent factor negatively associated with overall survival (OS) and disease-free survival (DFS). In patients with pancreatic head cancer, PALBI grade was associated with shorter OS (P=0.031). The combination of high SII and high PALBI grade had stronger predictive value for poor prognosis (log-rank test, P<0.001), which the OS was 11.3 months less than the combination of low two groups. CONCLUSIONS SII was a promising prognostic biomarker in PC. And PALBI grade also showed predictive value for patients with pancreatic head cancer. Therefore, it can help predict the treatment outcomes in these patients.
Collapse
Affiliation(s)
- Rongshuang Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueguo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingyun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianrui Zhou
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
44
|
He J, Jiang G, Li X, Xiao Q, Chen Y, Xu H, Liu G, Lei A, Zhou P, Shi K, Yang Q, Zhao M, Yao Z, Zhou J. Bilirubin represents a negative regulator of ILC2 in allergic airway inflammation. Mucosal Immunol 2022; 15:314-326. [PMID: 34686839 DOI: 10.1038/s41385-021-00460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) play an important role in allergic airway inflammation. Despite recent advances in defining molecular mechanisms that control ILC2 development and function, the role of endogenous metabolites in the regulation of ILC2s remains poorly understood. Herein, we demonstrated that bilirubin, an end product of heme catabolism, was a potent negative regulator of ILC2s. Bilirubin metabolism was found to be significantly induced during airway inflammation in mouse models. The administration of unconjugated bilirubin (UCB) dramatically suppressed ILC2 responses to interleukin (IL)-33 in mice, including cell proliferation and the production of effector cytokines. Furthermore, UCB significantly alleviated ILC2-driven airway inflammation, which was aggravated upon clearance of endogenous UCB. Mechanistic studies showed that the effects of bilirubin on ILC2s were associated with downregulation of ERK phosphorylation and GATA3 expression. Clinically, newborns with hyperbilirubinemia displayed significantly lower levels of ILC2 with impaired function and suppressed ERK signaling. Together, these findings indicate that bilirubin serves as an endogenous suppressor of ILC2s and might have potential therapeutic value in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Juan He
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xing Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingying Chen
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haixu Xu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aihua Lei
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Shi
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
45
|
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing Tumors Protected. Cancer Discov 2022; 12:625-643. [PMID: 35101864 DOI: 10.1158/2159-8290.cd-21-0922] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Makiko Hayashi
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Anastasia-Maria Zavitsanou
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
46
|
Yang FC, Vivian JL, Traxler C, Shapiro SM, Stanford JA. MGE-Like Neural Progenitor Cell Survival and Expression of Parvalbumin and Proenkephalin in a Jaundiced Rat Model of Kernicterus. Cell Transplant 2022; 31:9636897221101116. [PMID: 35596532 PMCID: PMC9125107 DOI: 10.1177/09636897221101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Kernicterus is a permanent condition caused by brain damage from bilirubin toxicity. Dystonia is one of the most debilitating symptoms of kernicterus and results from damage to the globus pallidus (GP). One potential therapeutic strategy to treat dystonia in kernicterus is to replace lost GP neurons and restore basal ganglia circuits through stem cell transplantation. Toward this end, we differentiated human embryonic stem cells (hESCs) into medial ganglion eminence (MGE; the embryological origin of most of the GP neurons)-like neural precursor cells (NPCs). We determined neurochemical phenotype in cell culture and after transplanting into the GP of jaundiced Gunn rats. We also determined grafted cell survival as well as migration, distribution, and morphology after transplantation. As in the GP, most cultured MGE-like NPCs expressed γ-aminobutyric acid (GABA), with some co-expressing markers for parvalbumin (PV) and others expressing markers for pro-enkephalin (PENK). MGE-like NPCs survived in brains at least 7 weeks after transplantation, with most aggregating near the injection site. Grafted cells expressed GABA and PV or PENK as in the normal GP. Although survival was low and the maturity of grafted cells varied, many cells produced neurite outgrowth. While promising, our results suggest the need to further optimize the differentiation protocol for MGE-like NPC for potential use in treating dystonia in kernicterus.
Collapse
Affiliation(s)
- Fu-Chen Yang
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Jay L. Vivian
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine Traxler
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven M. Shapiro
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Stanford
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
47
|
Takada K, Takamori S, Shimokawa M, Toyokawa G, Shimamatsu S, Hirai F, Tagawa T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Inoue K, Yoneshima Y, Tanaka K, Okamoto I, Nakanishi Y, Mori M. Assessment of the albumin-bilirubin grade as a prognostic factor in patients with non-small-cell lung cancer receiving anti-PD-1-based therapy. ESMO Open 2021; 7:100348. [PMID: 34942439 PMCID: PMC8695291 DOI: 10.1016/j.esmoop.2021.100348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction The albumin-bilirubin (ALBI) grade is a novel indicator of the liver function. Some studies showed that the ALBI grade was a prognostic and predictive biomarker for the efficacy of chemotherapy in cancer patients. The association between the ALBI grade and outcomes in patients with non-small-cell lung cancer (NSCLC) treated with cancer immunotherapy, however, is poorly understood. Methods We retrospectively enrolled 452 patients with advanced or recurrent NSCLC who received anti-programmed cell death protein 1 (PD-1)-based therapy between 2016 and 2019 at three medical centers in Japan. The ALBI score was calculated from albumin and bilirubin measured at the time of treatment initiation and was stratified into three categories, ALBI grade 1-3, with reference to previous reports. We examined the clinical impact of the ALBI grade on the outcomes of NSCLC patients receiving anti-PD-1-based therapy using Kaplan–Meier survival curve analysis with log-rank test and Cox proportional hazards regression analysis. Results The classifications of the 452 patients were as follows: grade 1, n = 158 (35.0%); grade 2, n = 271 (60.0%); and grade 3, n = 23 (5.0%). Kaplan–Meier survival curve analysis showed that the ALBI grade was significantly associated with progression-free survival and overall survival. Moreover, Cox regression analysis revealed that the ALBI grade was an independent prognostic factor for progression-free survival and overall survival. Conclusion The ALBI grade was an independent prognostic factor for survival in patients with advanced or recurrent NSCLC who receive anti-PD-1-based therapy. These findings should be validated in a prospective study with a larger sample size. ALBI grade is calculated from albumin and bilirubin. We evaluated the impact of ALBI grade on survival in NSCLC patients receiving immune checkpoint inhibitors. ALBI grade was an independent prognostic factor for progression-free survival (PFS) and overall survival (OS). ALBI grade effectively stratified PFS and OS in patients with performance status 1-3. ALBI grade was significantly associated with PFS and OS, regardless of programmed death ligand-1.
Collapse
Affiliation(s)
- K Takada
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan.
| | - S Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - M Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - G Toyokawa
- Department of Thoracic Surgery, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - S Shimamatsu
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - F Hirai
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - T Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - M Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - Y Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - K Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - K Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - Y Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - I Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Y Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - M Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Williams MM, Hafeez SA, Christenson JL, O’Neill KI, Hammond NG, Richer JK. Reversing an Oncogenic Epithelial-to-Mesenchymal Transition Program in Breast Cancer Reveals Actionable Immune Suppressive Pathways. Pharmaceuticals (Basel) 2021; 14:ph14111122. [PMID: 34832904 PMCID: PMC8622696 DOI: 10.3390/ph14111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Approval of checkpoint inhibitors for treatment of metastatic triple negative breast cancer (mTNBC) has opened the door for the use of immunotherapies against this disease. However, not all patients with mTNBC respond to current immunotherapy approaches such as checkpoint inhibitors. Recent evidence demonstrates that TNBC metastases are more immune suppressed than primary tumors, suggesting that combination or additional immunotherapy strategies may be required to activate an anti-tumor immune attack at metastatic sites. To identify other immune suppressive mechanisms utilized by mTNBC, our group and others manipulated oncogenic epithelial-to-mesenchymal transition (EMT) programs in TNBC models to reveal differences between this breast cancer subtype and its more epithelial counterpart. This review will discuss how EMT modulation revealed several mechanisms, including tumor cell metabolism, cytokine milieu and secretion of additional immune modulators, by which mTNBC cells may suppress both the innate and adaptive anti-tumor immune responses. Many of these pathways/proteins are under preclinical or clinical investigation as therapeutic targets in mTNBC and other advanced cancers to enhance their response to chemotherapy and/or checkpoint inhibitors.
Collapse
|
49
|
Poupore N, Chosed R, Arce S, Rainer R, Goodwin RL, Nathaniel TI. Metabolomic Profiles of Men and Women Ischemic Stroke Patients. Diagnostics (Basel) 2021; 11:diagnostics11101786. [PMID: 34679483 PMCID: PMC8534835 DOI: 10.3390/diagnostics11101786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Stroke is known to affect both men and women; however, incidence and outcomes differ between them. Therefore, the discovery of novel, sex-specific, blood-based biomarkers for acute ischemic stroke (AIS) patients has the potential to enhance the understanding of the etiology of this deadly disease in the content of sex. The objective of this study was to identify serum metabolites associated with male and female AIS patients. Methods: Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass spectrometry quantification from blood specimens collected from AIS patients. Samples were collected from 36 patients comprising each of 18 men and women with matched controls. Metabolic pathway analysis and principal component analysis (PCA) was used to differentiate metabolite profiles for male and female AIS patients from the control, while logistic regression was used to determine differences in metabolites between male and female AIS patients. Results: In female AIS patients, 14 distinct altered metabolic pathways and 49 corresponding metabolites were identified, while 39 metabolites and 5 metabolic pathways were identified in male patients. Metabolites that are predictive of ischemic stroke in female patients were 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) (AUC = 0.914, 0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000). Significant metabolites that were predictive of stroke in male patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951, 0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877, 0.716–1.000), and bilirubin (AUC = 0.817, 0.746–1.000). Conclusions: In the current study, the untargeted serum metabolomics platform identified multiple pathways and metabolites associated with male and female AIS patients. Further research is necessary to characterize how these metabolites are associated with the pathophysiology in male and female AIS patients.
Collapse
Affiliation(s)
- Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Renee Chosed
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Sergio Arce
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
- Correspondence: ; Tel.: +1-8644559846; Fax: +1-8644558404
| |
Collapse
|
50
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|